
1

Courtesy of Professors
Chris Clifton & Matt Bishop

INFSCI 2935: Introduction of Computer Security 1

September 23, 2004September 23, 2004

Introduction to Introduction to
Computer SecurityComputer Security

Lecture 4Lecture 4
SPM, Security Policies, SPM, Security Policies,

Confidentiality and Integrity PoliciesConfidentiality and Integrity Policies

INFSCI 2935: Introduction to Computer Security 2

Schematic Protection ModelSchematic Protection Model

Key idea is to use the notion of a protection type Key idea is to use the notion of a protection type
Label that determines how control rights affect an entity
Take-Grant:

subject and object are different protection types
TS and TO represent subject type set and object set
τ(X) is the type of entity X

A A ticket ticket describes a rightdescribes a right
Consists of an entity name and a right symbol: X/z

Possessor of the ticket X/z has right r over entity X
Y has tickets X/r, X/w -> Y has tickets X/rw

Each entity X has a set dom(X) of tickets Y/z
τ(X/r:c) = τ(X)/r:c is the type of a ticket

2

INFSCI 2935: Introduction to Computer Security 3

Schematic Protection ModelSchematic Protection Model

Inert right vs. Control rightInert right vs. Control right
Inert right doesn’t affect protection state, e.g. read right
take right in Take-Grant model is a control right

Copy flag cCopy flag c
Every right r has an associated copyable right rc
r:c means r or rc

Manipulation of rightsManipulation of rights
A link predicate

Determines if a source and target of a transfer are
“connected”

A filter function
Determines if a transfer is authorized

INFSCI 2935: Introduction to Computer Security 4

Transferring RightsTransferring Rights

domdom((XX) : set of tickets that X has) : set of tickets that X has
Link predicate: Link predicate: linklinkii((XX,,YY))

conjunction or disjunction of the following terms
X/z ∈ dom(X); X/z ∈ dom(Y);
Y/z ∈ dom(X); Y/z ∈ dom(Y)
true

Determines if X and Y “connected” to transfer right
Examples:

Take-Grant: link(X, Y) = Y/g ∈ dom(X) v X/t∈dom(Y)
Broadcast: link(X, Y) = X/b ∈dom(X)
Pull: link(X, Y) = Y/p ∈dom(Y)
Universal: link(X, Y) = true

SchemeScheme: a finite set of link predicates is called a scheme: a finite set of link predicates is called a scheme

3

INFSCI 2935: Introduction to Computer Security 5

Filter FunctionFilter Function

Filter function: Filter function:
Imposes conditions on when tickets can be transferred
fi: TS x TS → 2TxR (range is copyable rights)

XX//r:cr:c can be copied from can be copied from domdom((YY)) to to domdom((ZZ)) iffiff ∃∃ii s. t. the s. t. the
following are true:following are true:

X/rc ∈ dom(Y)
linki(Y, Z)
τ(X)/r:c ∈fi(τ(Y), τ(Z))

Examples:Examples:
If fi(τ(Y), τ(Z)) = T x R then any rights are transferable
If fi(τ(Y), τ(Z)) = T x RI then only inert rights are transferable
If fi(τ(Y), τ(Z)) = Ө then no tickets are transferable

One filter function is defined for each link predicateOne filter function is defined for each link predicate

INFSCI 2935: Introduction to Computer Security 6

SCM Example 1SCM Example 1

OwnerOwner--based policybased policy
Subject U can authorize subject V to access an object F iff U
owns F
Types: TS= {user}, TO = {file}
Ownership is viewed as copy attributes

If U owns F, all its tickets for F are copyable
RI: { r:c, w:c, a:c, x:c }; RC is empty

read, write, append, execute; copy on each
∀ U, V ∈ user, link(U, V) = true

Anyone can grant a right to anyone else if they posses the right to
do so (copy)

f(user, user) = { file/r, file/w, file/a, file/x }
Can copy read, write, append, execute

4

INFSCI 2935: Introduction to Computer Security 7

SPM Example 1SPM Example 1

PeterPeter owns file owns file DoomDoom; can he give ; can he give PaulPaul
execute permission over execute permission over DoomDoom??
1.τ(Peter) is user and τ(Paul) is user
2.τ(Doom) is file
3.Doom/xc ∈ dom(Peter)
4.Link(Peter, Paul) = TRUE
5.τ(Doom)/x ∈ f(τ(Peter), τ(Paul)) - because of 1

and 2
Therefore, Peter can give ticket Doom/xc to Paul

INFSCI 2935: Introduction to Computer Security 8

SPM Example2SPM Example2

TakeTake--Grant Protection ModelGrant Protection Model
TS = { subjects }, TO = { objects }
RC = {tc, gc}, RI = {rc, wc}

Note that all rights can be copied in T-G model

link(p, q) = p/t ∈ dom(q) v q/t ∈dom(p)
f(subject, subject) = { subject, object } × { tc, gc,
rc, wc }

Note that any rights can be transferred in T-G model

5

INFSCI 2935: Introduction to Computer Security 9

DemandDemand

A subject can demand a right from another A subject can demand a right from another
entityentity

Demand function d:TS → 2TxR

Let a and b be types
a/r:c ∈d(b) : every subject of type b can demand a
ticket X/r:c for all X such that τ(X) = a

A sophisticated construction eliminates the
need for the demand operation – hence omitted

INFSCI 2935: Introduction to Computer Security 10

Create OperationCreate Operation

Need to handle Need to handle
type of the created entity, &
tickets added by the creation

Relation Relation can•createcan•create((aa, , bb)) ⊆⊆ TSTS x x TT
A subject of type a can create an entity of type b

Rule of Rule of acyclic createsacyclic creates
Limits the membership in can•create(a, b)
If a subject of type a can create a subject of type b, then none of the
descendants can create a subject of type a

a b

c d

a b

c d

6

INFSCI 2935: Introduction to Computer Security 11

Create operation Create operation
Distinct TypesDistinct Types

create rulecreate rule crcr((aa, , bb) specifies the) specifies the
tickets introduced when a subject of type a creates an
entity of type b

BB object: object: crcr((aa, , bb)) ⊆⊆ { { bb//rr::cc ∈∈ RIRI }}
Only inert rights can be created
A gets B/r:c iff b/r:c ∈ cr(a, b)

BB subject: subject: crcr((aa, , bb) has two parts) has two parts
crP(a, b) added to A, crC(a, b) added to B
A gets B/r:c if b/r:c in crP(a, b)
B gets A/r:c if a/r:c in crC(a, b)

INFSCI 2935: Introduction to Computer Security 12

NonNon--Distinct TypesDistinct Types

crcr((aa, , aa): who gets what?): who gets what?
self/r:c are tickets for creator
a/r:c tickets for the created

crcr((aa, , aa) = {) = { aa//rr::cc, , selfself//rr::cc | | rr::cc ∈∈ RR}}
crcr((aa, , aa) =) = crcrCC((aa, , bb))||crcrPP((aa, , bb)) is attenuating if:is attenuating if:

1. crC(a, b) ⊆ crP(a, b) and
2. a/r:c ∈ crP(a, b) ⇒ self/r:c ∈ crP(a, b)

A scheme is attenuating if, A scheme is attenuating if,
For all types a, cc(a, a) → cr(a, a) is attenuating

7

INFSCI 2935: Introduction to Computer Security 13

ExamplesExamples

OwnerOwner--based policybased policy
Users can create files: cc(user, file) holds
Creator can give itself any inert rights: cr(user, file) = {file/r:c| r ∈
RI}

TakeTake--Grant modelGrant model
A subject can create a subject or an object

cc(subject, subject) and cc(subject, object) hold
Subject can give itself any rights over the vertices it creates but
the subject does not give the created subject any rights
(although grant can be used later)

crC(a, b) = Ө; crP(a, b) = {sub/tc, sub/gc, sub/rc, sub/wc}
Hence,

cr(sub, sub) = {sub/tc, sub/gc, sub/rc, sub/wc} | Ө
cr(sub, obj) = {obj/tc, obj/gc, obj/rc, obj/wc} | Ө

INFSCI 2935: Introduction to Computer Security 14

Safety Analysis in SPMSafety Analysis in SPM

Idea: derive Idea: derive maximal statemaximal state where changes don’t where changes don’t
affect analysisaffect analysis

Indicates all the tickets that can be transferred from one
subject to another
Indicates what the maximum rights of a subject is in a
system

Theorems:Theorems:
A maximal state exists for every system
If parent gives child only rights parent has (conditions
somewhat more complex), can easily derive maximal
state
Safety: If the scheme is acyclic and attenuating, the
safety question is decidable

8

INFSCI 2935: Introduction to Computer Security 15

Typed Access Matrix ModelTyped Access Matrix Model

Finite set Finite set TT of types (of types (TSTS ⊆⊆ TT for subjects)for subjects)
Protection State: (Protection State: (SS, , OO, , ττ, , A)A)

τ :O T is a type function
Operations same as in HRU model except create adds type

ττ is child type is child type iffiff command create creates subject/object command create creates subject/object
of type of type ττ
If parent/child graph from all commands acyclic, then:If parent/child graph from all commands acyclic, then:

Safety is decidable
Safety is NP-Hard
Safety is polynomial if all commands limited to three
parameters

INFSCI 2935: Introduction to Computer Security 16

HRU HRU vsvs. SPM. SPM

SPM more abstract SPM more abstract
Analyses focus on limits of model, not details of
representation

HRU allows revocationHRU allows revocation
SPM has no equivalent to delete, destroy

HRU allows HRU allows multiparentmultiparent creates, SPM does notcreates, SPM does not
SPM cannot express multiparent creates easily, and not
at all if the parents are of different types because
can•create allows for only one type of creator
Suggests SPM is less expressive than HRU

9

INFSCI 2935: Introduction to Computer Security 17

Comparing ModelsComparing Models

Expressive PowerExpressive Power
HRU/Access Control Matrix subsumes Take-Grant
HRU subsumes Typed Access Control Matrix
SPM subsumes

Take-Grant
Multilevel security
Integrity models

What about SPM and HRU?What about SPM and HRU?
SPM has no revocation (delete/destroy)

HRU without delete/destroy (monotonic HRU)HRU without delete/destroy (monotonic HRU)
MTAM subsumes monotonic mono-operational HRU

INFSCI 2935: Introduction to Computer Security 18

Extended Schematic Protection ModelExtended Schematic Protection Model

Adds “joint create”: new node has multiple Adds “joint create”: new node has multiple
parentsparents

Allows more natural representation of sharing
between mutually suspicious parties

Create joint node for sharing

Monotonic ESPM and Monotonic HRU are Monotonic ESPM and Monotonic HRU are
equivalentequivalent

10

Courtesy of Professors
Chris Clifton & Matt Bishop

INFSCI 2935: Introduction of Computer Security 19

Security PoliciesSecurity Policies
OverviewOverview

INFSCI 2935: Introduction to Computer Security 20

Security PolicySecurity Policy

Defines what it means for a system to be Defines what it means for a system to be
securesecure
Formally: Partitions a system intoFormally: Partitions a system into

Set of secure (authorized) states
Set of non-secure (unauthorized) states

Secure system is one that Secure system is one that
Starts in authorized state
Cannot enter unauthorized state

11

INFSCI 2935: Introduction to Computer Security 21

Secure System Secure System -- ExampleExample

Is this Finite State Machine Secure?Is this Finite State Machine Secure?
A is start state ?
B is start state ?
C is start state ?
How can this be made secure if not?
Suppose A, B, and C are authorized states ?

A B C D

Unauthorized
states

Authorized
states

INFSCI 2935: Introduction to Computer Security 22

Additional Definitions:Additional Definitions:

Security breach: system enters an unauthorized stateSecurity breach: system enters an unauthorized state
Let Let XX be a set of entities, be a set of entities, II be information.be information.

I has confidentiality with respect to X if no member of X can
obtain information on I
I has integrity with respect to X if all members of X trust I

Trust I, its conveyance and protection (data integrity)
I maybe origin information or an identity (authentication)
I is a resource – its integrity implies it functions as it should
(assurance)

I has availability with respect to X if all members of X can
access I

Time limits (quality of service

12

INFSCI 2935: Introduction to Computer Security 23

Confidentiality PolicyConfidentiality Policy

Also known as Also known as information flowinformation flow
Transfer of rights
Transfer of information without transfer of rights
Temporal context

Model often depends on trustModel often depends on trust
Parts of system where information could flow
Trusted entity must participate to enable flow

Highly developed in Military/GovernmentHighly developed in Military/Government

INFSCI 2935: Introduction to Computer Security 24

Integrity PolicyIntegrity Policy

Defines how information can be alteredDefines how information can be altered
Entities allowed to alter data
Conditions under which data can be altered
Limits to change of data

Examples:Examples:
Purchase over $1000 requires signature
Check over $10,000 must be approved by one
person and cashed by another

Separation of duties : for preventing fraud
Highly developed in commercial worldHighly developed in commercial world

13

INFSCI 2935: Introduction to Computer Security 25

TransactionTransaction--oriented Integrityoriented Integrity

Begin in consistent stateBegin in consistent state
“Consistent” defined by specification

Perform series of actions (Perform series of actions (transactiontransaction))
Actions cannot be interrupted
If actions complete, system in consistent state
If actions do not complete, system reverts to
beginning (consistent) state

INFSCI 2935: Introduction to Computer Security 26

TrustTrust

Theories and mechanisms rest on some Theories and mechanisms rest on some
trust assumptionstrust assumptions
Administrator installs patchAdministrator installs patch

1. Trusts patch came from vendor, not tampered
with in transit

2. Trusts vendor tested patch thoroughly
3. Trusts vendor’s test environment corresponds

to local environment
4. Trusts patch is installed correctly

14

INFSCI 2935: Introduction to Computer Security 27

Trust in Formal VerificationTrust in Formal Verification

Formal verification provides a formal Formal verification provides a formal
mathematical proof that given input mathematical proof that given input ii, ,
program program PP produces output produces output o o as specifiedas specified
Suppose a securitySuppose a security--related program related program SS
formally verified to work with operating formally verified to work with operating
system system OO
What are the assumptions?What are the assumptions?

INFSCI 2935: Introduction to Computer Security 28

Trust in Formal MethodsTrust in Formal Methods

1.1. Proof has no errorsProof has no errors
Bugs in automated theorem provers

2.2. Preconditions hold in environment in which Preconditions hold in environment in which SS
is to be usedis to be used

3.3. SS transformed into executable transformed into executable SS’ whose ’ whose
actions follow source codeactions follow source code

Compiler bugs, linker/loader/library problems
4.4. Hardware executes S’ as intendedHardware executes S’ as intended

Hardware bugs

15

INFSCI 2935: Introduction to Computer Security 29

Security MechanismSecurity Mechanism

Policy describes what is allowedPolicy describes what is allowed
Mechanism Mechanism

Is an entity/procedure that enforces (part of)
policy

Example Policy: Students should not copy Example Policy: Students should not copy
homeworkhomework

Mechanism: Disallow access to files owned by
other users

Does mechanism enforce policy?Does mechanism enforce policy?

INFSCI 2935: Introduction to Computer Security 30

Security ModelSecurity Model

Security Policy: What is/isn’t authorizedSecurity Policy: What is/isn’t authorized
Problem: Policy specification often informalProblem: Policy specification often informal

Implicit vs. Explicit
Ambiguity

Security Model: Model that represents a Security Model: Model that represents a
particular policy (policies)particular policy (policies)

Model must be explicit, unambiguous
Abstract details for analysis
HRU result suggests that no single nontrivial analysis
can cover all policies, but restricting the class of security
policies sufficiently allows meaningful analysis

16

INFSCI 2935: Introduction to Computer Security 31

Common Mechanisms:Common Mechanisms:
Access ControlAccess Control

Discretionary Access Control (DAC)Discretionary Access Control (DAC)
Owner determines access rights
Typically identity-based access control: Owner specifies other
users who have access

Mandatory Access Control (MAC)Mandatory Access Control (MAC)
Rules specify granting of access
Also called rule-based access control

Originator Controlled Access Control (ORCON)Originator Controlled Access Control (ORCON)
Originator controls access
Originator need not be owner!

Role Based Access Control (RBAC)Role Based Access Control (RBAC)
Identity governed by role user assumes

INFSCI 2935: Introduction to Computer Security 32

Policy LanguagesPolicy Languages

HighHigh--level: Independent of mechanismslevel: Independent of mechanisms
Constraints expressed independent of enforcement
mechanism
Constraints restrict entities, actions
Constraints expressed unambiguously

Requires a precise language, usually a mathematical,
logical, or programming-like language

Example: Domain-Type Enforcement Language
Subjects partitioned into domains
Objects partitioned into types
Each domain has set of rights over each type

17

INFSCI 2935: Introduction to Computer Security 33

Example: Web BrowserExample: Web Browser

Goal: restrict actions of Java programs Goal: restrict actions of Java programs
that are downloaded and executed under that are downloaded and executed under
control of web browsercontrol of web browser
Language specific to Java programsLanguage specific to Java programs
Expresses constraints as conditions Expresses constraints as conditions
restricting invocation of entitiesrestricting invocation of entities

INFSCI 2935: Introduction to Computer Security 34

Expressing ConstraintsExpressing Constraints

Entities are classes, methodsEntities are classes, methods
Class: set of objects that an access constraint
constrains
Method: set of ways an operation can be invoked

OperationsOperations
Instantiation: s creates instance of class c: s ├ c
Invocation: s1 executes object s2: s1 |→ s2

Access constraintsAccess constraints
deny(s op x) when b
when b is true, subject s cannot perform op on
(subject or class) x; empty s means all subjects

18

INFSCI 2935: Introduction to Computer Security 35

Sample ConstraintsSample Constraints

Downloaded program cannot access password Downloaded program cannot access password
database file on UNIX systemdatabase file on UNIX system
Program’s class and methods for files:Program’s class and methods for files:
class File {

public file(String name);
public String getfilename();
public char read();
….

Constraint:Constraint:
deny(|→ file.read) when

(file.getfilename() == “/etc/passwd”)

INFSCI 2935: Introduction to Computer Security 36

Policy LanguagesPolicy Languages

LowLow--level: close to mechanismslevel: close to mechanisms
A set of inputs or arguments to commands that set,
or check, constraints on a system
Example: Tripwire: Flags what has changed

Configuration file specifies settings to be checked
History file keeps old (good) example

19

INFSCI 2935: Introduction to Computer Security 37

Secure, Precise MechanismsSecure, Precise Mechanisms

Can one devise a procedure for developing a Can one devise a procedure for developing a
mechanism that is both secure mechanism that is both secure andand precise?precise?

Consider confidentiality policies only here
Integrity policies produce same result

Program with multiple inputs and one output as Program with multiple inputs and one output as
an abstract functionan abstract function

Let p be a function p: I1 × ... × In → R. Then p is a
program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one
output r → R
Goal: determine if P can violate a security
requirement (confidentiality, integrity, etc.)

INFSCI 2935: Introduction to Computer Security 38

Programs and PostulatesPrograms and Postulates

ObservabilityObservability Postulate: Postulate:
the output of a function encodes all available information
about its inputs

Covert channels considered part of the output
Output may contain things not normally thought of as
part of function result

Example: authentication functionExample: authentication function
Inputs name, password; output Good or Bad
If name invalid, print Bad; else access database
Problem: time output of Bad, can determine if name
valid
This means timing is part of output

20

INFSCI 2935: Introduction to Computer Security 39

Protection MechanismProtection Mechanism

Let Let pp be a function be a function pp:: II11 ×× ×× IInn →→ RR. A . A
protection mechanism protection mechanism mm is a function is a function mm:: II11
×× ×× IInn →→ RR ∪∪ EE for which, when for which, when iikk ∈∈ IIkk, 1 , 1
≤ ≤ kk ≤ ≤ nn, either, either

m(i1, ..., in) = p(i1, ..., in) or
m(i1, ..., in) ∈ E.

EE is set of error outputsis set of error outputs
In above example, E = { “Password Database
Missing”, “Password Database Locked” }

INFSCI 2935: Introduction to Computer Security 40

Confidentiality PolicyConfidentiality Policy

Confidentiality policy for program Confidentiality policy for program pp says which says which
inputs can be revealedinputs can be revealed

Formally, for p: I1 × ... × In → R, it is a function c: I1 × ... ×
In → A, where A ⊆ I1 × ... × In
A is set of inputs available to observer

Security mechanism is function Security mechanism is function mm: : II11 ×× ×× IInn →→
R R ∪∪ EE

m secure iff ∃ m´: A → R ∪ E such that, for all ik ∈ Ik, 1 ≤
k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))
m returns values consistent with c

21

INFSCI 2935: Introduction to Computer Security 41

ExamplesExamples

cc((ii11, ..., , ..., iinn) =) = CC, a constant, a constant
Deny observer any information (output does not
vary with inputs)

cc((ii11, ..., , ..., iinn) = () = (ii11, ..., , ..., iinn), and), and mm´ = ´ = mm
Allow observer full access to information

cc((ii11, ..., , ..., iinn) =) = ii11
Allow observer information about first input but
no information about other inputs.

INFSCI 2935: Introduction to Computer Security 42

PrecisionPrecision

Security policy may be overSecurity policy may be over--restrictiverestrictive
Precision measures how over-restrictive

mm11, , mm22 distinct protection mechanisms for program distinct protection mechanisms for program pp
under policy under policy cc

m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in
- m2(i1, …, in) = p(i1, …, in) ⇒
- m1(i1, …, in) = p(i1, …, in
m1 more precise than m2 (m1~m2) if there is an input (i1´, …,
in´) such that
- m1(i1´, …, in´) = p(i1´, …, in´) and
- m2(i1´, …, in´) ≠ p(i1´, …, in´).

22

INFSCI 2935: Introduction to Computer Security 43

Combining MechanismsCombining Mechanisms

mm11, , mm22 protection mechanismsprotection mechanisms
mm3 3 == mm1 1 ∪∪ mm2 2 defined asdefined as

p(i1, …, in) when m1(i1, …, in) = p(i1, …, in) or
m2(i1, …, in) = p(i1, …, in)
else m1(i1, …, in)

Theorem: if Theorem: if mm11, , mm22 secure, then secure, then mm33 securesecure
m1 ∪ m2 secure
m1 ∪ m2 ≈ m1 and m1 ∪ m2 ≈ m2

Proof follows from the definitions

INFSCI 2935: Introduction to Computer Security 44

Modeling Secure/Precise:Modeling Secure/Precise:
Confidentiality Confidentiality –– existence theoremexistence theorem

Theorem: Given Theorem: Given pp and and cc, , ∃∃ a precise, secure a precise, secure
mechanism mechanism m*m* such that such that ∀∀ secure secure mm for for pp and and cc, ,
m*m* ≈≈ mm

Proof: Induction from previous theorem
Maximally precise mechanism
Ensures security
Minimizes number of denials of legitimate actions

There is no effective procedure that determines There is no effective procedure that determines
a maximally precise, secure mechanism for any a maximally precise, secure mechanism for any
policy and program.policy and program.

23

Courtesy of Professors
Chris Clifton & Matt Bishop

INFSCI 2935: Introduction of Computer Security 45

Confidentiality PoliciesConfidentiality Policies

INFSCI 2935: Introduction to Computer Security 46

Confidentiality PolicyConfidentiality Policy

Also known as information flow policyAlso known as information flow policy
Integrity is secondary objective
Eg. Military mission “date”

BellBell--LaPadulaLaPadula Model Model
Formally models military requirements

Information has sensitivity levels or classification
Subjects have clearance
Subjects with clearance are allowed access

Multi-level access control or mandatory access
control

24

INFSCI 2935: Introduction to Computer Security 47

BellBell--LaPadulaLaPadula: Basics: Basics

Mandatory access control Mandatory access control
Entities are assigned security levels
Subject has security clearance L(s) = ls
Object has security classification L(o) = lo
Simplest case: Security levels are arranged in
a linear order li < li+1

ExampleExample
Top secret > Secret > Confidential >Unclassified

INFSCI 2935: Introduction to Computer Security 48

““No Read Up”No Read Up”

Information is allowed to flow Information is allowed to flow upup, , not not downdown
Simple security property: Simple security property:

s can read o if and only if
lo ≤ ls and
s has read access to o

- Combines mandatory (security levels) and
discretionary (permission required)

- Prevents subjects from reading objects at
higher levels (No Read Up rule)

25

INFSCI 2935: Introduction to Computer Security 49

““No Write Down”No Write Down”

Information is allowed to flow Information is allowed to flow upup, , not not downdown
*property *property

s can write o if and only if
ls ≤ lo and
s has write access to o

- Combines mandatory (security levels) and
discretionary (permission required)

- Prevents subjects from writing to objects at
lower levels (No Write Down rule)

INFSCI 2935: Introduction to Computer Security 50

ExampleExample

objectobjectsubjectsubjectsecurity levelsecurity level

Telephone ListsTelephone Lists

Activity LogsActivity Logs

EE--Mail FilesMail Files

Personnel FilesPersonnel Files

UlaleyUlaleyUnclassifiedUnclassified

ClaireClaireConfidentialConfidential

SamuelSamuelSecretSecret

TamaraTamaraTop SecretTop Secret

• Tamara can read which objects? And write?
• Claire cannot read which objects? And write?
• Ulaley can read which objects? And write?

26

INFSCI 2935: Introduction to Computer Security 51

Access RulesAccess Rules

Secure system: Secure system:
One in which both the properties hold

Theorem: Let Theorem: Let ΣΣ be a system with secure be a system with secure
initial state initial state σσ00, , TT be a set of state be a set of state
transformationstransformations

If every element of T follows rules, every state
σi secure
Proof - induction

INFSCI 2935: Introduction to Computer Security 52

CategoriesCategories

Total order of classifications not flexible enoughTotal order of classifications not flexible enough
Alice cleared for missiles; Bob cleared for warheads; Both
cleared for targets

Solution: CategoriesSolution: Categories
Use set of compartments (from power set of compartments)
Enforce “need to know” principle
Security levels (security level, category set)

(Top Secret, {Nuc, Eur, Asi})
(Top Secret, {Nuc, Asi})

Combining with clearance:Combining with clearance:
(L,C) dominates (L’,C’) ⇔ L’ ≤ L and C’ ⊆ C
Induces lattice of security levels

27

INFSCI 2935: Introduction to Computer Security 53

Lattice of categoriesLattice of categories

{Nuc} {Eur} {Us}

{Nuc, Eur} {Nuc, Us} {Eur, Us}

{Nuc, Eur, Us}

{}

Examples of levelsExamples of levels
(Top Secret, {Nuc,Asi}) dom
(Secret, {Nuc})
(Secret, {Nuc, Eur}) dom
(Confidential, {Nuc,Eur})
(Top Secret, {Nuc}) ¬dom
(Confidential, {Eur})

BoundsBounds
Greatest lower,
Lowest upper
glb of {X, Nuc, Us} & {X,
Eur, Us}?
lub of {X, Nuc, Us} & {X,
Eur, Us}?

INFSCI 2935: Introduction to Computer Security 54

Access RulesAccess Rules

Simple Security ConditionSimple Security Condition: : SS can read can read OO if and if and
only ifonly if

S dominate O and
S has read access to O

**--PropertyProperty:: SS can write can write OO if and only ifif and only if
O dom S and
S has write access to O

Secure system: One with above propertiesSecure system: One with above properties
Theorem: Let Theorem: Let ΣΣ be a system with secure initial be a system with secure initial
state state σσ00, , TT be a set of state transformationsbe a set of state transformations

If every element of T follows rules, every state σi secure

28

INFSCI 2935: Introduction to Computer Security 55

Problem: No writeProblem: No write--downdown

Cleared subject can’t communicate to nonCleared subject can’t communicate to non--cleared cleared
subjectsubject
Any write from Any write from llii to to llkk, , ii > > kk, would violate *, would violate *--
propertyproperty

Subject at li can only write to li and above
Any read from Any read from llkk to to llii, , ii > > kk, would violate simple , would violate simple
security propertysecurity property

Subject at lk can only read from lk and below
Subject at level Subject at level i i can’t write something readable can’t write something readable
by subject at by subject at kk

Not very practical

INFSCI 2935: Introduction to Computer Security 56

Principle of TranquilityPrinciple of Tranquility

Should we change classification levels?Should we change classification levels?
Raising object’s security levelRaising object’s security level

Information once available to some subjects is no longer
available
Usually assumes information has already been accessed
Simple security property violated? Problem?

Lowering object’s security levelLowering object’s security level
Simple security property violated?
The declassification problem
Essentially, a “write down” violating *-property
Solution: define set of trusted subjects that sanitize or remove
sensitive information before security level is lowered

29

INFSCI 2935: Introduction to Computer Security 57

Types of TranquilityTypes of Tranquility

Strong TranquilityStrong Tranquility
The clearances of subjects, and the classifications of
objects, do not change during the lifetime of the system

Weak TranquilityWeak Tranquility
The clearances of subjects, and the classifications of
objects, do not change in a way that violates the simple
security condition or the *-property during the lifetime of
the system

INFSCI 2935: Introduction to Computer Security 58

ExampleExample

DG/UX SystemDG/UX System
Only a trusted user (security administrator) can
lower object’s security level
In general, process MAC labels cannot change

If a user wants a new MAC label, needs to initiate
new process
Cumbersome, so user can be designated as able to
change process MAC label within a specified range

