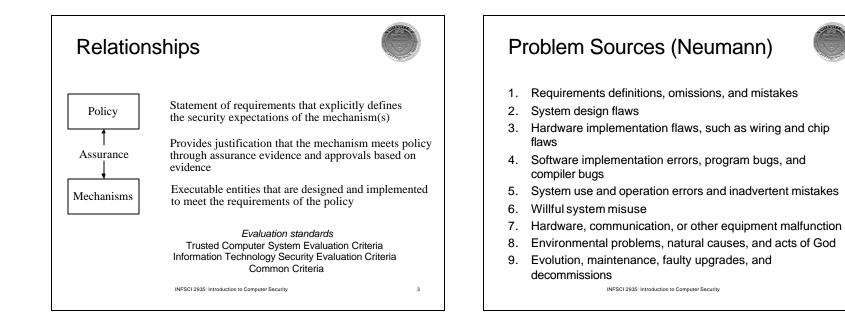
	Assurance & Evaluation		
Malici	ious code, Risk Managem	ent	
	Legal Issues		
	•		
	Lecture 10		
	Dec 9, 2004		
Courtesy of Professors Chris Clifton & Matt Bishop	INFSCI 2935: Introduction of Computer Security	1	


Trust

2

- *Trustworthy* entity has sufficient credible evidence leading one to believe that the system will meet a set of requirements
- *Trust* is a measure of trustworthiness relying on the evidence
- Assurance is confidence that an entity meets its security requirements based on evidence provided by the application of assurance techniques

O Formal methods, design analysis, testing etc.

Types of Assurance

- *Policy assurance* is evidence establishing security requirements in policy is complete, consistent, technically sound
- Design assurance is evidence establishing design sufficient to meet requirements of security policy
- Implementation assurance is evidence establishing implementation consistent with security requirements of security policy
- Operational assurance is evidence establishing system sustains the security policy requirements during installation, configuration, and day-to-day operation

INFSCI 2935: Introduction to Computer Security

5

Waterfall Life Cycle Model Requirements definition and System and analysis Implementation and unit software design Integration testing and system Operation testing and maintenance INFSCI 2935: Introduction to Computer Security 6

Other Models of Software Development

7

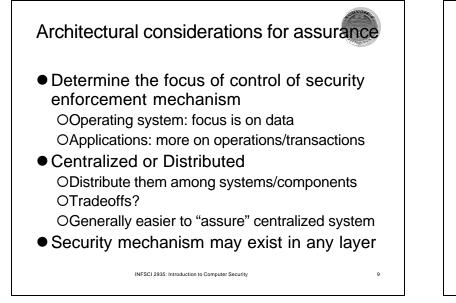
- Exploratory programming

 ODevelop working system quickly
 ONo requirements or design specification, so low assurance

 Protetyping (Similar to Exploratory)
- Prototyping (Similar to Exploratory)
 Objective is to establish system requirements
 OFuture iterations (after first) allow assurance techniques
- Formal transformation
 OCreate formal specification
 OVery conducive to assurance methods

INFSCI 2935: Introduction to Computer Security

Models


8

- System assembly from reusable components

 ODepends on whether components are trusted
 OMust assure connections, composition as well
 OVery complex, difficult to assure
 OThis is common approach to building secure and trusted systems

 Extreme programming

 ORapid prototyping and "best practices"
 OProject driven by business decisions
 - ORequirements open until project complete OComponents tested, integrated several times a day

Architectural considerations Example: Four layer architecture

10

- Application layer
 OTransaction control
- Services/middleware layer
 OSupport services for applications
 OEg., DBMS, Object reference brokers
- Operating system layer
 OMemory management, scheduling and process control
- Hardware OIncludes firmware

Trusted Computing Base (Security an integral part)

11

- Reference monitor (total mediation!)
 O Mediates all accesses to objects by subjects
- Reference validation mechanism must be-
 - 1. Tamperproof
 - 2. Never be bypassed
 - 3. Small enough to be subject to analysis and testing the completeness can be assured
- Security kernel
 - O Hardware + software implementing a RM

INFSCI 2935: Introduction to Computer Security

Trusted Computing Base

12

- TCB consists of all protection mechanisms within a computer system that are responsible for enforcing a security policy
- TCB monitors four basic interactions
 OProcess activation
 OExecution domain switching
 OMemory protection
 OI/O operation
- A unified TCB may be too large OCreate a security kernel

Techniques for Design Assurance

Modularity & Layering

O Well defined independent modules

O Simplifies and makes system more understandable

O Data hiding

O Easy to understand and analyze

 Different layers to capture different levels of abstraction
 O Subsystem (memory management, I/O subsystem, creditcard processing function)

O Subcomponent (I/O management, I/O drivers)

O Module: set of related functions and data structure

Use principles of secure design

INFSCI 2935: Introduction to Computer Security

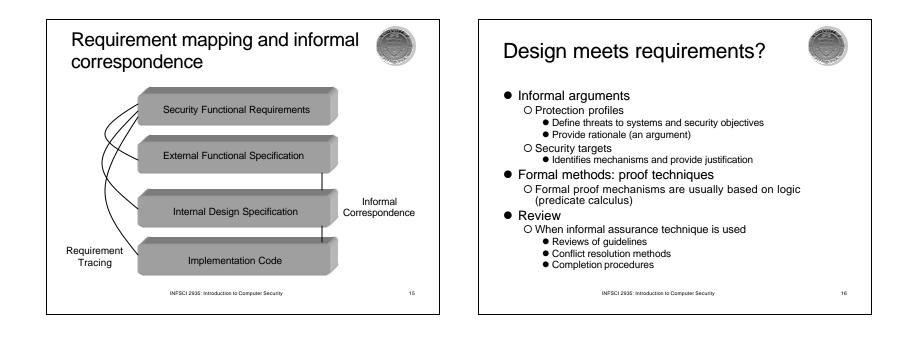
13

Design meets requirements?

14

• Techniques needed

OTo prevent requirements and functionality from being discarded, forgotten, or ignored at lower levels of design


• Requirements tracing

OProcess of identifying specific security requirements that are met by parts of a description

• Informal Correspondence

OProcess of showing that a specification is consistent with an adjacent level of specification

INFSCI 2935: Introduction to Computer Security

Implementation considerations for assurance

- Modularity with minimal interfaces
- Language choice
 - OC vs. Java

OJava

Configuration management tools

OControl of the refinement and modification of configuration items such as source code, documentation etc.

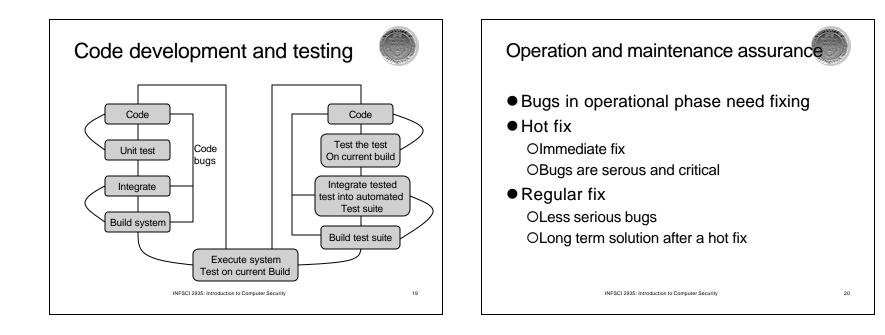
INFSCI 2935: Introduction to Computer Security

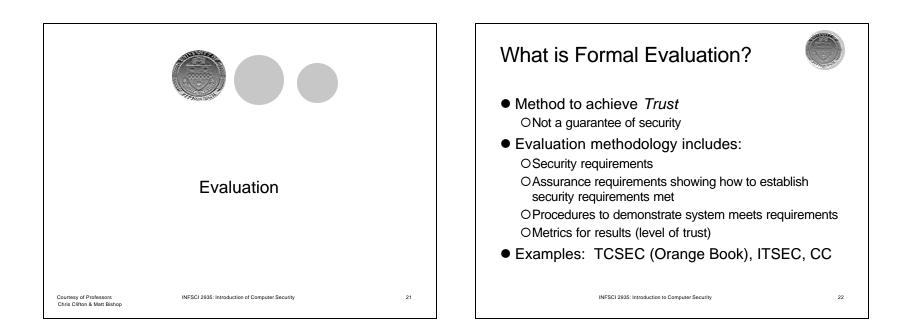
17

Implementation meets Design?

18

Security testing


O Functional testing (FT) (black box testing)


- Testing of an entity to determine how well it meets its specification
- O Structural testing (ST) (white box testing)
 - Testing based on an analysis of the code to develop test cases

Testing occurs at different times

O Unit testing (usually ST): testing a code module before integration

- O System testing (FT): on integrated modules
- O Security testing: product security
 - Security functional testing (against security issues)
 - Security structural testing (security implementation)
 - Security requirements testing

Formal Evaluation: Why?

Organizations require assurance
 ODefense

OTelephone / Utilities

O"Mission Critical" systems

- Formal verification of entire systems not feasible
- Instead, organizations develop formal evaluation methodologies

OProducts passing evaluation are trusted

ORequired to do business with the organization

INFSCI 2935: Introduction to Computer Security

23

TCSEC: The Original

24

- Trusted Computer System Evaluation Criteria
 OU.S. Government security evaluation criteria
 OUsed for evaluating commercial products
- Policy model based on Bell-LaPadula
- Enforcement: Reference Validation Mechanism OEvery reference checked by compact, analyzable body of code
- Emphasis on Confidentiality
- Metric: Seven trust levels: OD, C1, C2, B1, B2, B3, A1 OD is "tried but failed"

TCSEC Class Assurances

• C1: Discretionary Protection

Oldentification

- OAuthentication
- ODiscretionary access control
- C2: Controlled Access Protection Object reuse and auditing
- B1: Labeled security protection
 OMandatory access control on limited set of objects
 OInformal model of the security policy

INFSCI 2935: Introduction to Computer Security

25

TCSEC Class Assurances (continued)

- B2: Structured Protections

 Trusted path for login
 Principle of Least Privilege
 Formal model of Security Policy
 Covert channel analysis
 Configuration management

 B3: Security Domains

 Full reference validation mechanism
 Constraints on code development process
 Documentation, testing requirements
- A1: Verified Protection

 Formal methods for analysis, verification
 Trusted distribution

INFSCI 2935: Introduction to Computer Security

TCSEC: Evaluation process

- Three phases
 ODesign analysis
 Review of design based on documentation
 OTest analysis
 OFinal Review
- Trained independent evaluation
 OResults presented to Technical Review Board
 OMust approve before next phase starts
- Ratings Maintenance Program ODetermines when updates trigger new evaluation

INFSCI 2935: Introduction to Computer Security

27

TCSEC: Problems

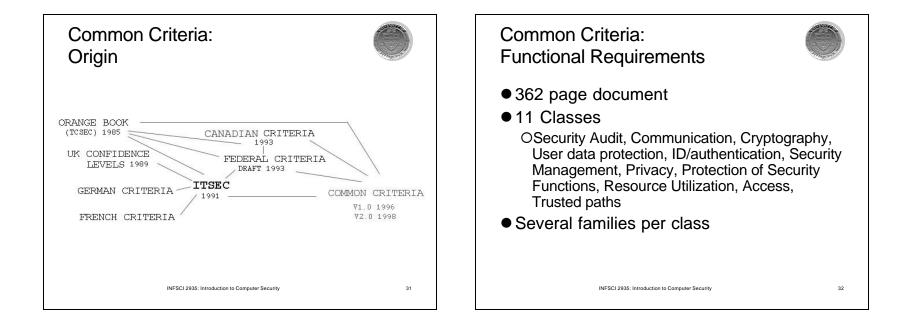
28

- Based heavily on confidentiality ODid not address integrity, availability
- Tied security and functionality
- Base TCSEC geared to operating systems
 OTNI: Trusted Network Interpretation
 OTDI: Trusted Database management System Interpretation

Later Standards

29

- CTCPEC Canada
- ITSEC European Standard
 OLevels correspond to strength of evaluation
 OIncludes code evaluation, development methodology requirements
 OKnown vulnerability analysis
- CISR: Commercial outgrowth of TCSEC
- FC: Modernization of TCSEC
- FIPS 140: Cryptographic module validation
- Common Criteria: International Standard


INFSCI 2935: Introduction to Computer Security

Replaced TCSEC, ITSEC
 CC Documents

 Functional requirements
 Assurance requirements

- O Evaluation Assurance Levels (EAL)
- 2. CC Evaluation Methodology
 - O Detailed evaluation guidelines for each EAL
- 3. National Scheme (Country specific)

INFSCI 2935: Introduction to Computer Security

Common Criteria: Assurance Requirements

33

- 216 page document
- 10 Classes
 - OProtection Profile Evaluation, Security Target Evaluation
 - OConfiguration management, Delivery and operation, Development, Guidance, Life cycle, Tests, Vulnerability assessment

OMaintenance

• Several families per class

INFSCI 2935: Introduction to Computer Security

Common Criteria: Evaluation Assurance Levels

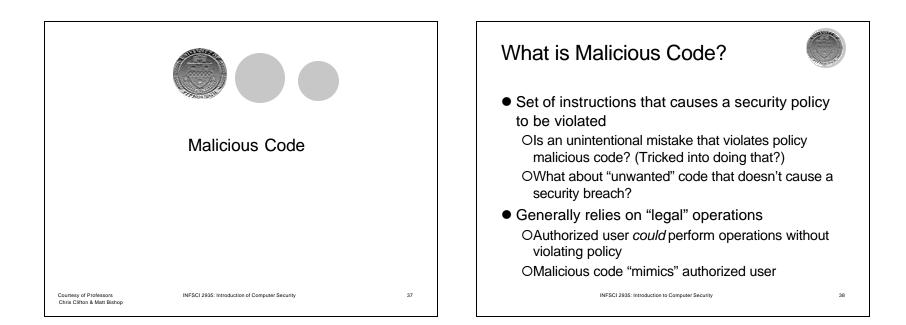
- 1. Functionally tested
- 2. Structurally tested
- 3. Methodically tested and checked
- 4. Methodically designed, tested, and reviewed
- 5. Semi-formally designed and tested
- 6. Semi-formally verified design and tested
- 7. Formally verified design and tested

INFSCI 2935: Introduction to Computer Security

Common Criteria: Evaluation Process

- National Authority authorizes evaluators
 OU.S.: NIST accredits commercial organizations
 OFee charged for evaluation
- Team of four to six evaluators
 ODevelop work plan and clear with NIST
 OEvaluate Protection Profile first
 Olf successful, can evaluate Security Target

INFSCI 2935: Introduction to Computer Security


35

Common Criteria: Status

- About 80 registered products
 OOnly one at level 5

 (Java Smart Card)
 OSeveral OS at 4
 - OLikely many more not registered
- New versions appearing on regular basis

INFSCI 2935: Introduction to Computer Security

Types of Malicious Code

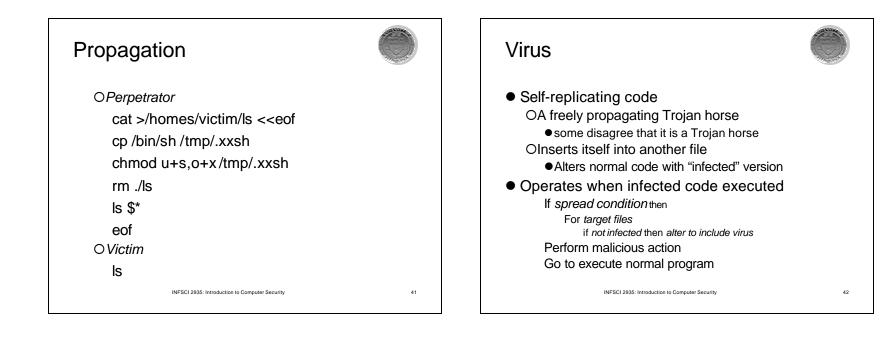
- Trojan Horse OTrick user into executing malicious code
- Virus

OReplicates and inserts itself into fixed set of files

• Worm

OCopies itself from computer to computer

INFSCI 2935: Introduction to Computer Security


39

Trojan Horse

40

- Program with an overt (expected) and covert (unexpected) effect
 OAppears normal/expected
 OCovert effect violates security policy
 User tricked into executing Trojan horse
- User tricked into executing I rojan horse
 OExpects (and sees) overt behavior
 OCovert effect performed with user's authorization
- Trojan horse may replicate
 Ocreate copy on execution
 Ospread to other users/systems

Virus Types

- Boot Sector Infectors (The Brain Virus)
 O Propagate by altering boot disk creation
 - Less common with few boots off floppies
- Executable infector (The Jerusalem Virus, Friday 13th, not 1987)
 - O Malicious code placed at beginning of legitimate program (.COM .EXE files)
 - O Runs when application run
 - O Application then runs normally
- Multipartite virus : boot sector + executable infector

INFSCI 2935: Introduction to Computer Security

43

Virus Types/Properties

44

- Terminate and Stay Resident O Stays active in memory after application complete
- Stealth (an executable infector) • Conceal Infection
 - Trap read to provide disinfected file
 - Let execute call an "infected file"
- Encrypted virus
 - Prevents "signature" to detect virus
 - [Deciphering routine, Enciphered virus code, Deciphering Key]
- Polymorphism
 - Change virus code to something equivalent each time it propagates

Worms

- Replicates from one computer to another OSelf-replicating: No user action required
 - OVirus: User performs "normal" action
 - OTrojan horse: User tricked into performing action
- Communicates/spreads using standard protocols

INFSCI 2935: Introduction to Computer Security

45

We can't detect it: Now what? Detection

46

- Signature-based antivirus

 Look for known patterns in malicious code
 Always a battle with the attacker
 Great business model!
- Checksum (file integrity, e.g. Tripwire)
 O Maintain record of "good" version of file
 Compute signature blocks
 O Check to see if changed
- Validate action against specification
 O Including intermediate results/actions
 - O N-version programming: independent programs
 - A fault-tolerance approach (diversity)

Detection

Proof-carrying code

OCode includes proof of correctness OAt execution, verify proof against code • If code modified, proof will fail

Statistical Methods

OHigh/low number of files read/written OUnusual amount of data transferred OAbnormal usage of CPU time

INFSCI 2935: Introduction to Computer Security

47

Defense

48

- Clear distinction between data and executable
 - OVirus must write to program
 - Write only allowed to data
 - OMust execute to spread/act
 - Data not allowed to execute
 - OAuditable action required to change data to executable

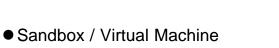
Defense

Information Flow

OMalicious code usurps authority of user OLimit information flow between users

• If A talks to B, B can no longer talk to C OLimits spread of virus

OProblem: Tracking information flow

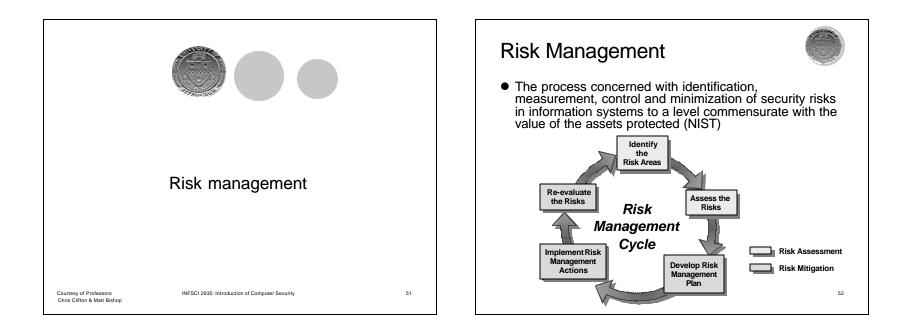

• Least Privilege

OPrograms run with minimal needed privilege OExample: Limit file types accessible by a program

INFSCI 2935: Introduction to Computer Security

49

Defense



ORun in protected area

OLibraries / system calls replaced with limited privilege set

Use Multi-Level Security Mechanisms
 OPlace programs at lowest level
 ODon't allow users to operate at that level
 OPrevents writes by malicious code

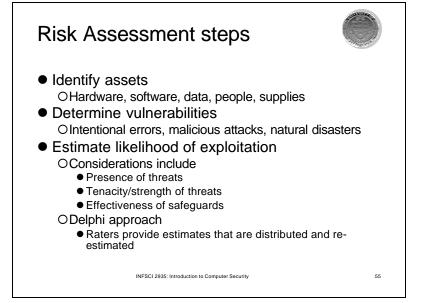
INFSCI 2935: Introduction to Computer Security

Risk

• The *likelihood* that a particular *threat* using a specific *attack*, will exploit a particular *vulnerability* of a system that results in an undesirable *consequence* (NIST)

O*likelihood* of the threat occurring is the estimation of the probability that a threat will succeed in achieving an undesirable event

INFSCI 2935: Introduction to Computer Security


53

Risk Assessment/Analysis

54

- A process of analyzing *threats* to and *vulnerabilities* of an information system and the *potential impact* the loss of information or capabilities of a system would have
 - O List the threats and vulnerabilities
 - O List possible control and their cost
 - O Do cost-benefit analysis
 - Is cost of control more than the expected cost of loss?
- The resulting analysis is used as a basis for identifying appropriate and cost-effective counter-measures
 O Leads to proper security plan

Risk Assessment steps (2)

56

- Compute expected annual loss OPhysical assets can be estimated OData protection for legal reasons
- Survey applicable (new) controls
 Olf the risks of unauthorized access is too high, access control hardware, software and procedures need to be re-evaluated
- Project annual savings of control

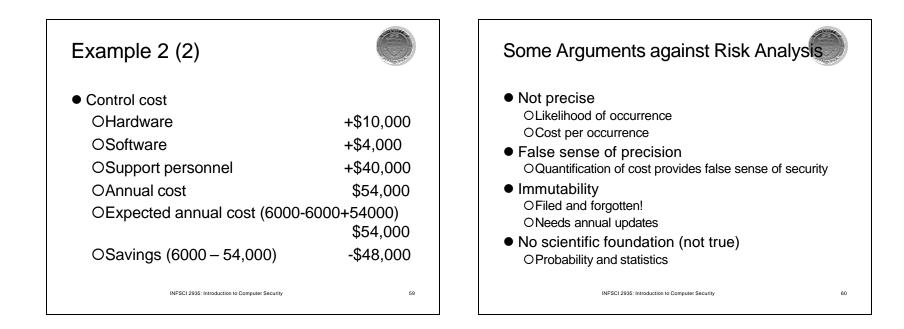
Example 1

• Risks:

Odisclosure of company confidential information, Ocomputation based on incorrect data

- Cost to correct data: \$1,000,000
 - @ 10%liklihood per year: \$100,000
 Effectiveness of access control sw:60%: -\$60.000
 - Effectiveness of access control sw:60%: -\$60,000
 Cost of access control software: +\$25,000
 - Expected annual costs due to loss and controls:
 - \$100,000 \$60,000 + \$25,000 = \$65,000
 - Savings:
 - \$100,000 \$65,000 = \$35,000

INFSCI 2935: Introduction to Computer Security


57

Example 2

• Risk:

OAccess to unauthorized data and programs				
●100,000 @ 2% likelihood per year:	\$2,000			
OUnauthorized use of computing facility				
●10,000 @ 40% likelihood per year:	\$4,000			
OExpected annual loss:	\$6,000			
OEffectiveness of network control: 100%	-\$6,000			

INFSCI 2935: Introduction to Computer Security

		Laws and Security	
		 Federal and state laws affect privacy and secrecy ORights of individuals to keep information private 	e
Legal and Ethical Issues		 Laws regulate the use, development and ownership of data and programs OPatent laws, trade secrets 	
		 Laws affect actions that can be taken to protect secrecy, integrity and availability 	
Courtesy of Professors INFSCI 2935: Introduction of Computer Security Chris Clifton & Matt Bishop	61	INFSCI 2935: Introduction to Computer Security	62

ODesigned to protect *expression* of ideas OGives an author exclusive rights to make copies of the *expression* and sell them to public

- Intellectual property (copyright law of 1978)
 OCopyright must apply to an original work
 Olt must be done in a tangible medium of expression
- Originality of work Oldeas may be public domain
- Copyrighted object is subjected to fair use

INFSCI 2935: Introduction to Computer Security

63

Copyright infringement

64

- Olnvolves copying
- ONot independent work
 - Two people can have copyright for identically the same thing
- Copyrights for computer programs
 - OCopyright law was amended in 1980 to include explicit definition of software
 - OProgram code is protected not the algorithm

OControls rights to copy and distribute

Patent

- Protects innovations
 - OApplies to results of science, technology and engineering
 - **OProtects new innovations**
 - Device or process to carry out an idea, not idea itself
 - OExcludes newly discovered laws of nature
 - ●2+2 = 4

INFSCI 2935: Introduction to Computer Security

65

Patent

66

• Requirements of novelty

Olf two build the same innovations, patent is granted to the first inventor, regardless of who filed first Olnvention should be truly novel and unique OObject patented must be non-obvious

• Patent Office registers patents

OEven if someone independently invents the same thing, without knowledge of the existing patent

• Patent on computer objects

OPO has not encouraged patents for software – as they are seen as representation of an algorithm

Trade Secret

- Information must be kept secret
 - Olf someone discovers the secret independently, then there is no infringement trade secret rights are gone
 - O Reverse-engineering can be used to attack trade secrets
- Computer trade secret
 - O Design idea kept secret
 - OExecutable distributed but program design remain hidden

INFSCI 2935: Introduction to Computer Security

67

Comparison

	Copyright	Patent	Trade secret
Protects	Expression of idea	Invention	Secret information
Object made public	Yes: intention is to promote	Design filed at patent office	No
Requirement to distribute	Yes	No	No
Ease of filing	Very easy, do-it- yourself	Very complicated; specialist lawyer suggested	No filing
Duration	Life of human originator or 75 years of company	19 years	Indefinite
Legal protection	Sue if copy sold	Sue if invention copied	Sue if secret improperly obtained
Examples	Object code, documentation	Hardware	Source code

Computer crime

69

- Hard to predict for the following reason
 - OLow computer literacy among lawyers, police agents, jurors, etc.
 - OTangible evidence like fingerprints and physical clues may not exist
 - OForms of asset different
 - •Is computer time an asset?
 - OJuveniles
 - Many involve juveniles

INFSCI 2935: Introduction to Computer Security

Computer Crime related laws

70

- Freedom of information act OProvides public access to information collected by the executive branch of the federal government
- Privacy act of 1974 OPersonal data collected by government is protected
- Fair credit reporting act OApplies to private industries – e.g., credit bureaus
- Cryptography and law
 OFrance: no encryption allowed (to control terrorism)
 OUS, UK, Canada, Germany:
 - Control on export of cryptography; but they are published!

Ethics

- An objectively defined standard of right and wrong
- Often idealistic principles
- In a given situation several ethical issues may be present
- Different from law

INFSCI 2935: Introduction to Computer Security

71

Law vs Ethics

Law

- Described by formal written documents
- Interpreted by courts
- Established by legislatures representing all people
- Applicable to everyone
- Priority determined by laws if two laws conflict
- Court is final arbiter for right
- Enforceable by police and courts

Ethics

- Described by unwritten principles
- Interpreted by each individual
 - Presented by philosophers, religions, professional groups
 - Personal choice
 - Priority determined by an individual if two principles conflict
 - No external arbiter
 - Limited enforcement

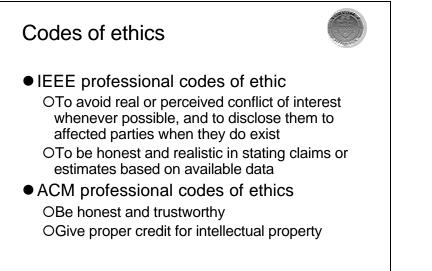
Ethical reasoning

OConsequence-based

 $\bullet \mathsf{Based}$ on the good that results from an action

ORule-based

•Based on the certain prima facie duties of people


	Consequence-based	Rule-based
Individual	Based on consequences to individual	Based on rules acquired by the individual from religion, experience, analysis
Universal	Based on consequences to all of society	Based on universal rules, evident to everyone

INFSCI 2935: Introduction to Computer Security

73

Ethics Example

- Privacy of electronic data
 - O"gentlemen do not read others' mail" but not everyone is a gentleman!
 - OEthical question: when is it justifiable to access data not belonging to you
 - •One approach: Protection is user's responsibility
 - Another: supervisors have access to those supervised
 - •Another: justifiably compelling situation

INFSCI 2935: Introduction to Computer Security