IS 2935/TEL 2810 Introduction to Computer Security

Homework 1
Due Date: By Midnight September 10, 2004

1. [30 Points] Do the following problems from Chapter 1, Section 1.12: 1, 4, 7
2. [50 Points] Exercise on Propositional/Predicate logic \& Induction
3. Show that $\mathbf{p} \rightarrow \mathbf{q}$ is equivalent to $(\neg \mathbf{p}) \vee \mathbf{q}$ using truth table.
4. Do the following from Exercise 34.4 (page 956-957): 2(a), 2(b), 3, 4(a), 4(b)
5. [20 Points] Exercise on Lattice

Let S_{n} denote a set of all binary numbers containing n digits. For $a \in S_{n}$, we can write $a=a_{1} a_{2} \ldots . . a_{n}$ where $a_{i} \mathrm{~S}$ are binary digits. Let relation \lesssim be the "dominance" relation on S_{n}. For every $a, b \in S_{n}$ we say a is dominated by b (written as $a \lesssim b$) if $a_{i} \leq b_{i}$ for all $i=1$ to n (here \leq is the "less than or equal to" relation on binary digits, i.e., $0 \leq 0,0 \leq 1$, $1 \leq 1$)

For example $S_{1}=\{0,1\}$; Here $0 \leqq 1$. As a lattice diagram, it can be represented as

Similarly, $S_{2}=\{00,01,10,11\}$ (set of all binary numbers containing 2 digits). The lattice formed by \lesssim over S_{3} can be represented as

Does relation \lesssim over S_{3} form a total ordering or partial ordering? Represent the ordering diagrammatically (as above and as was done in class).

