IS 2935/TEL 2810 Introduction to Computer Security

Homework 1 Due Date: By Midnight September 10, 2004

- 1. **[30 Points]** Do the following problems from Chapter 1, Section 1.12: 1, 4, 7
- 2. [50 Points] Exercise on Propositional/Predicate logic & Induction
 - 1. Show that $\mathbf{p} \rightarrow \mathbf{q}$ is equivalent to $(\neg \mathbf{p}) \lor \mathbf{q}$ using truth table.
 - 2. Do the following from Exercise 34.4 (page 956-957): 2(a), 2(b), 3, 4(a), 4(b)

3. [20 Points] Exercise on Lattice

Let S_n denote a set of all binary numbers containing *n* digits. For $a \in S_n$, we can write $a = a_1 a_2 \dots a_n$ where a_i s are binary digits. Let relation \leq be the "dominance" relation on S_n . For every $a, b \in S_n$ we say *a* is dominated by *b* (written as $a \leq b$) if $a_i \leq b_i$ for all i = 1 to *n* (here \leq is the "less than or equal to" relation on binary digits, i.e., $0 \leq 0, 0 \leq 1$, $1 \leq 1$)

For example $S_1 = \{0, 1\}$; Here $0 \le 1$. As a lattice diagram, it can be represented as

Similarly, $S_2 = \{00, 01, 10, 11\}$ (set of all binary numbers containing 2 digits). The lattice formed by \leq over S_3 can be represented as

Does relation \leq over S_3 form a *total* ordering or *partial* ordering? Represent the ordering diagrammatically (as above and as was done in class).