
IS 2610: Data Structures

Graph

April 5, 2004



Graph Terminology

n Graph : vertices + edges
n Induced subgraph of a subset of vertices
n Connected graph: a path between every pair
q Maximal connected: there is no path from this 

subgraph to an outside vertex



Representation

n Adjacency matrix
q V by v array
q Adv./disadvantages

n Adjacency list
q Linked list for each 

vertex
q Adv./disadvantages

typedef struct { int v; int w; } Edge;
Edge EDGE(int, int);

typedef  struct graph *Graph;
Graph    GRAPHinit(int);
void      GRAPHinsertE(Graph, Edge);
void      GRAPHremoveE(Graph, Edge);
int        GRAPHedges(Edge [], Graph G);

Graph    GRAPHcopy(Graph);
void      GRAPHdestroy(Graph);

typedef struct node *link;
struct node { int v; link next; };
struct graph { int V; int E; link *adj; };
Graph GRAPHinit(int V)

{ int v;
Graph G = malloc(sizeof *G);
G->V = V; G->E = 0;
G->adj = malloc(V*sizeof(link));
for (v = 0; v < V; v++) G->adj[v] = NULL;
return G;

}



Hamilton Path

n Hamilton path:
q Given two vertices, is there a simple path 

connecting them that visits every vertex in the 
graph exactly once?

n Worst case for finding Hamilton tour is 
exponential
q Assume one vertex isolated; and all v-1 vertices 

are connected
q (v-1)! Edges need to be checked



Euler Tour/Path

n Euler Path
q Is there a path connecting two vertices that uses each 

edge in the graph exactly once?
n Vertices may be visited multiple times

n Euler tour: Is there a cycle with each edges exactly 
once
q Bridges of konigsberg

n Properties: 
q A graph has a Euler tour iff it is connected and all the 

vertices are of even degree
q A graph has a Euler path iff it is connected and exactly two 

of its vertices are of odd degrees
n Complexity?



Graph Search

n Depth First Search

q V2 for adj matrix
q V+E for adj. list

q Graphs may not be 
connected

#define dfsR search
void dfsR(Graph G, Edge e)

{ int t, w = e.w;
pre[w] = cnt++; 
for (t = 0; t < G->V; t++)

if (G->adj[w][t] != 0) 
if (pre[t] == -1)

dfsR(G, EDGE(w, t)); 
}

void dfsR(Graph G, Edge e)
{ link t; int w = e.w;

pre[w] = cnt++; 
for (t = G->adj[w]; t != NULL; t = t-

>next)
if (pre[t->v] == -1) 

dfsR(G, EDGE(w, t->v)); 
} static int cnt, pre[maxV];

void GRAPHsearch(Graph G)
{ int v;

cnt = 0;
for (v = 0; v < G->V; v++) pre[v] = -1;
for (v = 0; v < G->V; v++)

if (pre[v] == -1) 
search(G, EDGE(v, v));

}



DFS for graph problems

n Cycle detection
q Back edges

n Simple path
n Simple connectivity

q The graph search function calls the recursive DFS function only 
once.

n Two way Euler tour
q Each edge visited exactly twice

n Spanning tree
q Given a connected graph with V vertices, find a set of V-1 edges 

that connects the vertices
n Any DFS is a spanning tree

n Two coloring, bipartiteness check



Separability and Connectivity

n Bridge
q An edge that, if removed, would separate a 

connected graph into two disjoint subgraphs.
q Edge-connected graph – has no bridges
n In a DFS tree, edge v-w is a bridge iff there are no back 

edges that connect a descendant of w to an ancestor of 
w

E R A

G S

T

E R A

G S

T



Separability and Connectivity

n Articulation point (separation/cut)
q Removal results in at least two disjoint 

subgraphs
n K-connected  - for each pair:

q At least k vertex disjoint paths 
q Indicates the number of vertices that need 

to be removed to disconnect a graph
q Biconnected : 2-connected

n removal of a vertex does not disconnect
n K-edge-connected  - for each pair:

q At least k edge disjoint paths 
q Indicates the number of edges that need to 

be removed to disconnect a graph

E R A

G S

T



BFS Search

n Instead of Stack
q Use a Queue

n Can be used to 
solve
q Connected 

components 
q Spanning tree
q Shortest paths

#define bfs search
void bfs(Graph G, Edge e)

{ int v, w;
QUEUEput(e);
while (!QUEUEempty())

if (pre[(e = QUEUEget()).w] == -1)
{

pre[e.w] = cnt++; st[e.w] = e.v;
for (v = 0; v < G->V; v++)

if (G->adj[e.w][v] == 1)
if (pre[v] == -1)

QUEUEput(EDGE(e.w, v)); 
}

}



Directed Graph

n Digraph: Vertices + directed edges
q In-degree: number of directed edge coming in
q Out-degree: number of directed edge going out
q DAG – no directed cycles
q Strongly connected 

n Every vertex is reachable from every other
q Not strongly connected : set of strong components

n Kernel K(D) of digraph D
q One vertex of K(D) corresponds to each strong component 

of D
q One edge in K(D) corresponds to each edge in D that 

connects vertices in different components
q K(D) is a DAG



Reachability and Transitive closure

n Transitive closure of 
a graph
q Same vertices + an 

edge from s to t in 
transitive closure if 
there is a directed 
path from s to t 

Warshall’s algorithm
q Complexity: V3

void GRAPHtc(Graph G)
{ int i, s, t;

G->tc = MATRIXint(G->V, G->V, 0);
for (s = 0; s < G->V; s++)

for (t = 0; t < G->V; t++)
G->tc[s][t] = G->adj[s][t];

for (s = 0; s < G->V; s++) G->tc[s][s] = 1;
for (i = 0; i < G->V; i++)

for (s = 0; s < G->V; s++)
if (G->tc[s][i] == 1)

for (t = 0; t < G->V; t++)
if (G->tc[i][t] == 1) G->tc[s][t] = 1; 

}

for (i = 0; i < G->V; i++)
for (s = 0; s < G->V; s++)

for (t = 0; t < G->V; t++)
if (A[s][i] && A[i][t] == 1) G->tc[s][t] = 1; 



Topological Sort

n Given a DAG
q Renumber vertices such that every directed edge 

points from a lower-numbered vertex to a higher-
number one

0

1

3

5 4

6

7

8

2
0

1

3

8 7

6

5

4

2

relabel



Topological Sort

n Process each vertex before processing the vertices 
it points

n Reverse topological sort 
q Scheduling applications
q Postorder numbering in DFS yields a reverse topological 

sort

1 2 3 8 7 6 4 50

rearrange



Topological Sort

// Reverse (adj list)

static int cnt0;
static int pre[maxV];
void DAGts(Dag D, int ts[])

{ int v; 
cnt0 = 0;
for (v = 0; v < D->V; v++) 

{ ts[v] = -1; pre[v] = -1; }
for (v = 0; v < D->V; v++)

if (pre[v] == -1) TSdfsR(D, v, ts);
}
void TSdfsR(Dag D, int v, int ts[])

{ link t; 
pre[v] = 0; 
for (t = D->adj[v]; t != NULL; t = t->next)

if (pre[t->v] == -1) TSdfsR(D, t->v, ts); 
ts[cnt0++] = v;

}

// Adj. matrix
void TSdfsR(Dag D, int v, int ts[])

{ int w;
pre[v] = 0; 
for (w = 0; w < D->V; w++)

if (D->adj[w][v] != 0) 
if (pre[w] == -1) TSdfsR(D, w, ts); 

ts[cnt0++] = v;
}



Minimum Spanning Tree

n Weighted graph 
q To incorporate this 

information into the 
graph, a weight, 
usually a positive 
integer, is attached 
to each arc 

q capacity, length, 
traversal time, or 
traversal cost. 



Minimum Spanning tree (MST)

n A spanning tree whose weight (the sum of 
the weights in its edges) is no larger than the 
weight of any other spanning tree

n Representation
q weighted graph using an adjacency matrix is 

straightforward – use an integer matrix
q In the adjacency list representation, the elements 

of the list now have two components, the node 
and the weight of the arc



MST

n A graph and its MST



MST

n A Cut
q A partition of the vertices into two disjoint sets
q Crossing edge is one that connects a vertex in one set with 

a vertex in the other
n Cut Property

q Given some cut in a graph, every minimal crossing edge 
belongs to some MST of the graph, and every MST 
contains a minimal crossing edge

N1 N2

X



Cut Property

n Proof: Suppose that on the contrary, there is no 
minimum spanning tree that contains X. Take any 
minimum spanning tree and add the arc X to it.

X

A cycle is formed
after adding X.

N1 N2

Y



Cycle Property

n Cycle property
q Given a graph G, consider the graph G’ defined 

by adding an edge e to G
q Adding e to an MST of G and deleting a maximal 

edge on the resulting cycle gives an MST of G’



Prim’s algorithm

n Prim’s algorithm
q Step 1: x ∈ V, Let A = {x}, B = V - {x}
q Step 2: Select (u, v) ∈ E, u ∈ A, v ∈ B such that (u, 

v) has the smallest weight between A and B
q Step 3: (u, v) is in the tree.  A = A ∪ {v}, B = B - {v}
q Step 4: If B = ∅, stop; otherwise, go to Step 2.

n time complexity:
q O(n2), n = |V|.



Prim’s Algorithm



Kruskal’s algorithm

n Step 1: Sort all 
edges

n Step 2: Add the 
next smallest 
weight edge to           
the forest if it will 
not cause a cycle.

n Step 3: Stop if we 
have n-1 edges.             
Otherwise, go to 
Step2.



Shortest Path

n The shortest path problem has several 
different forms:
q Given two nodes A and B, find the shortest path in 

the weighted graph from A to B.
q Given a node A, find the shortest path from A to 

every other node in the graph. (single-source 
shortest path problem)

q Find the shortest path between every pair of 
nodes in the graph. (all-pair shortest path 
problem)



Shortest Path

n Visit the nodes in order of their closeness; 
q visit A first, then visit the closest node to A, 
q then the next closest node to A, and so on.

n Dijkstra’s algorithm



Shortest path

To select the next node to visit, we must choose 
the node in the fringe that has the shortest path 
to A. The shortest path from the next closest 
node must immediately go to a visited node.

Visited nodes form a shortest 
path tree

Fringe node set


