IS 2610: Data Structures

Recursion, Divide and conquer Dynamic programming,

Feb 2, 2004

Recursion and Trees

- Recursive algorithm is one that solves a problem by solving one or more smaller instances of the same problem
 - Functions that call themselves
 - Can only solve a base case Recursive function calls itself
- If not base case
 - Break problem into smaller problem(s)
 - Launch new copy of function to work on the smaller problem (recursive call/recursive step)
 - Slowly converges towards base case
 - □ Function makes call to itself inside the return statement
 - Eventually base case gets solved
 - □ Answer works way back up, solves entire problem

Algorithm for pre-fix expression

Recursive vs. iterative solution

- In principle, a loop can be replaced by an equivalent recursive program
 - Recursive program usually is more natural way to express computation
- Disadvantage
 - Nested function calls
 - Use built in pushdown stack
 - Depth will depend on input
 - Hence programming environment has to maintain a stack that is proportional to the push down stack
 - Space complexity could be high

Divide and Conquer

- Many recursive programs use recursive calls on two subsets of inputs (two halves usually)
 - Divide the problem and solve them divide and conquer paradigm
 - Property 5.1: a recursive function that divides a problem size N intro two independent (nonempty) parts that it solves recursively calls itself less than N times
 - Complexity: $T_N = T_k + T_{N-k} + 1$

Find max- Divide and Conquer


```
Item max(Item a[], int l, int r)
{ Item u, v;
    int m = (l+r)/2;
    if (l == r) return a[l];
    u = max(a, l, m);
    v = max(a, m+1, r);
    if (u > v) return u;
    else return v;
}
```

Dynamic programming

- When the sub-problems are not independent the situation may be complicated
 - Time complexity can be very high
- Example
 - Fibonacci number
 - Base case: $F_0 = F_1 = 1$

$$\bullet \quad F_n = F_{n-1} + F_{n-2}$$

int fibanacci(int n){
 if (n=<1) return 1; // Base case
 return fibonacci(n-1) + fibonacci(n-2);</pre>

Recursion: Fibonacci Series

Order of operations

- 🗆 return
 - fibonacci(n 1) +
 fibonacci(n 2);
- Recursive function calls
 - Each level of recursion doubles the number of function calls
 - 30th number = 2^30 ~
 4 billion function calls
 - Exponential complexity

Simpler Solution

- Linear!!
- Observation

F[0] = F[1] = 1; For (i = 2; i<=N; i++); F[0] = F[i-1] + F[i-2];

- We can evaluate any function by computing all the function values in order starting at the smallest, using previously computed values at each step to compute the current value
 - Bottom-up Dynamic programming
 - Applies to any recursive computation, *provided* that we can afford to save all the previously computed values
- Top-down
 - Modify the recursive function to save the computed values and to allow checking these saved values
 - Memoization

Dynamic Programming

- Top-down : save known values
- Bottom-up : pre-compute values
 - Determining the order may be a challenge
- Top-down preferable
 - It is a mechanical transformation of natural problem
 - The order of computing the subproblems takes care of itself
 - We may not need to compute answers to all the sub-problems

```
int F(int i)
{    int t;
    if (knownF[i] != unknown)
        return knownF[i];
    if (i == 0) t = 0;
    if (i == 1) t = 1;
    if (i > 1) t = F(i-1) + F(i-2);
        return knownF[i] = t;
}
```

Dynamic programming Knapsack problem

- Property: DP reduces the running times of a recursive function to be at most the time required to evaluate the function for all arguments less than or equal to the given argument
- Knapsack problem
 - Given
 - N types of items of varying size and value
 - One knapsack (belongs to a thief!)
 - Find: the combination of items that maximize the total value

Knapsack problem

Knapsack size: 17

	0	1	2	3	4
Item	А	В	С	D	Е
Size	3	4	7	8	9
Val	4	5	10	11	13

```
int knap(int cap)
{ int i, space, max, t;
for (i = 0, max = 0; i < N; i++)
if ((space = cap - items[i].size) >= 0)
if ((t = knap(space) + items[i].val) > max)
max = t;
return max;
```

```
int knap(int M)
{ int i, space, max, maxi, t;
    if (maxKnown[M] != unknown) return maxKnown[M];
    for (i = 0, max = 0; i < N; i++)
        if ((space = M-items[i].size) >= 0)
            if ((t = knap(space) + items[i].val) > max) { max = t; maxi = i; }
        maxKnown[M] = max; itemKnown[M] = items[maxi];
return max; }
```

Tree

- Trees are central to design and analysis of algorithms
 - □ Trees can be used to describe dynamic properties
 - We build and use explicit data structures that are concrete realization of trees
 - General issues:
 - □ Trees
 - Rooted tree
 - Ordered trees
 - M-ary trees and binary trees

Tree

Definitions

 Binary tree is either an external node or an internal node connected to a pair of binary trees, which are called the left subtree and the right sub-tree of that node

Struct node {Item item; link left, link right;}

- M-ary tree is either an external node or an internal node connected to an ordered sequence of M-trees that are also M-ary trees
- A tree (or ordered tree) is a node (called the root) connected to a set of disjoint trees. Such a sequence is called a forest.
 - □ Arbitrary number of children
 - One for linked list connecting to its sibling
 - Other for connecting it to the sibling

Example general tree

Binary trees

- A binary tree with N internal nodes has N+ 1 external nodes
 - Proof by induction
 - \square N = 0 (no internal nodes) has one external node
 - □ Hypothesis: holds for *N*-1
 - □ k, N -1 k internal nodes in left and right sub-trees (for k between 0 and N-1)

$$\Box (k+1) + (N-1-k) = N+1$$

Binary tree

- A binary tree with N internal nodes has 2N links
 - □ N-1 to internal nodes
 - Each internal node except root has a unique parent
 - Every edge connects to its parent
 - \square N+1 to external nodes
- Level, height, path
 - □ Level of a node is 1 + level of parent (Root is at level 0)
 - Height is the maximum of the levels of the tree's nodes
 - Path length is the sum of the levels of all the tree's nodes
 - Internal path length is the sum of the levels of all the internal nodes

Examples

- Level of D ?
- Height of tree?
- Internal length?
- External length?
- Height of tree?
- Internal length?
- External length?

Binary Tree

- External path length of any binary tree with N internodes is 2N greater than the internal path length
- The height of a binary tree with N internal nodes is at least 1g N and at most N-1
 - \square Worst case is a degenerate tree: *N*-1
 - □ Best case: balanced tree with 2^i nodes at level *i*.
 - Hence for height: $2^{h-1} < N+1 = 2^h hence h$ is the height

Binary Tree

- Internal path length of a binary tree with N internal nodes is at least N lg (N/4) and at most N(N-1)/2
 - Worst case : N(N-1)/2
 - □ Best case: (*N*+1) external nodes at height no more than $\lfloor lg N \rfloor$
 - $(N+1) \lfloor lg N \rfloor 2N < N \lg (N/4)$

Tree traversal (binary tree)

Preorder

- Visit a node,
- Visit left subtree,
- visit right subtree

Inorder

- Visit left subtree,
- Visit a node,
- visit right subtree

Postorder

- Visit left subtree,
- Visit right subtree
- visit a node

Recursive/Nonrecursive Preorder

```
void traverse(link h, void (*visit)(link))
ł
  If (h == NULL) return;
  (*visit)(h);
 traverse(h->l, visit);
 traverse(h->r, visit);
                                       void traverse(link h, void (*visit)(link))
                                         STACKinit(max);
                                         STACKpush(h);
                                        while (!STACKempty())
                                             (*visit)(h = STACKpop());
                                             if (h->r != NULL) STACKpush(h->r);
                                             if (h->I != NULL) STACKpush(h->I);
```

Recursive binary tree algorithms

- Exercise on recursive algorithms:
 - Counting nodes
 - Finding height

Sorting Algorithms

Selection sort

- Find smallest element and put in the first place
- Find next smallest and put in second place

••••

□ Try out ! Complexity ? Recursive?

Bubble sort

- Move through the elements exchanging adjacent pairs if the first one is larger than the second
- □ Try out ! Complexity ?

Insertion sort

"People" method

26315

#define less(A, B) (key(A) < key(B))
#define exch(A, B) { Item t = A; A = B; B = t; }
#define compexch(A, B) if (less(B, A)) exch(A, B)</pre>

```
void insertion(Item a[], int I, int r) {
    int i;
    for (i = l+1; i <= r; i++)
        compexch(a[I], a[i]);
    for (i = l+2; i <= r; i++) {
        int j = i; Item v = a[i];
        while (less(v, a[j-1])) {
            a[j] = a[j-1]; j--;
        }
        a[j] = v;
    }
</pre>
```