IS 2610: D ata Structures

Elementary Data Structures

Jan 26, 2004

First-In First Out Queues

- An ADT that comprises two basic operations: insert (put) a new item, and delete (get) the item that was least recently used

```
typedef struct QUEUEnode* link;
struct QUEUEnode {Item item; link next;}
static link head;
link NEW(Item item, link next;}
    { link x = malloc(sizeof *x);
        x->item = item; x->next = next;
        return x;
    }
```


First-class ADT

- Clients use a single instance of STACK or QUEUE
- Only one object in a given program
- Could not declare variables or use it as an argument
- A first-class data type is one for which we can have potentially many different instances, and which can assign to variables whichcan declare to hold the instances

First-class data type - Complex numbers

- Complex numbers contains two parts
- $(a+b i)$ where $i^{2}=-1$;
a $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$

Typedef struct \{float r; float i;\} Complex;
Complex COMPLEXinit(float, float)
float Re(float, float);
float Im(float, float);
Complex COMPLEXmult(Complex, Complex)

```
Complex t, x, tx;
    t= COMPLEXInit(cos(r), sin(r))
    x = COMPLEXInit(?, ?)
    tx = COMPLEXmult(t, x)
```


First-class data type - Queues

```
typedef struct queue *Q;
void QUEUEdump(Q);
    Q QUEUEinit(int);
    int QUEUEempty(Q);
void QUEUEput(Q, Item);
Item QUEUEget(Q);
```

Q queues[M];
for (i=0; i<M; i++)
queues[i] = QUEUEinit(N);
printf("\%3d ", QUEUEget(queues[i]));

ADT

- ADTs are important software engineering tool
- Many algorithms serve as implementations for fundamental
- ADTs encaptulate the algorithms that we develop, so that we can use the same code for many different applications
- ADTs provide a convenient mechanism for our use in the process of developing and comparing the performance of algorithms.

Recursion and Trees

- Recursive algorithm is one that solves a problem by solving one or more smaller instances of the same problem
- Functions that call themselves
- Can only solve a base case Recursive function calls itself
- If not base case
- Break problem into smaller problem(s)
- Launch new copy of function to work on the smaller problem (recursive call/recursive step)
- Slowly converges towards base case
- Function makes call to itself inside the return statement
- Eventually base case gets solved
- Answer works way back up, solves entire problem

Example of recursion

- Factorial of $n: n!=n *(n-1) *(n-2)^{*} \ldots * 1$
- Recursive relationship ($n!=n^{*}(n-1)!$)
$5!=5 * 4!$
$4!=4 * 3!\ldots$
- Base case $(1!=0!=1)$
- Fibonacci number
- Base case: $F_{0}=F_{1}=1$

व $F_{n}=F_{n-1}+F_{n-2}$
int fibanacci(int n)\{
??; // Base Case
return ??;
\}

Euclid's algorithm

Greatest Common Divisor

- One of the oldest-known algorithm (over 2000 years)

Euclid's method for finding the greatest Common divisor
int gcd(intm, int n)\{
if $(\mathrm{n}==0)$ return m ; return $\operatorname{gcd}(\mathrm{n}, \mathrm{m} \% \mathrm{n})$;
\}

Algorithm for pre-fix expression

char *a; int i;
int eval()
\{ int $x=0$;
while (a[i] == ' ') i++;
if (a[i] == '+')
$\{i++$; return eval() +eval(); \} eval () 12 if ($\mathrm{a}[\mathrm{i}]={ }^{\prime}{ }^{*}$)
\{i++; return eval() * eval(); \}
while ($(a[i]>=' 0$ ') \&\& ($a[i]<=' 9 ')$)
$x=10 * x+\left(a[i++]-0^{\prime}\right) ;$
return x;
\}

Recursive vs. iterative solution

- In principle, a loop can be replaced by an equivalent recursive program
- Recursive program usually is more natural way to express computation
- Disadvantage
- Nested function calls -
- Use built in pushdown stack
- Depth will depend on input
- Hence programming environment has to maintain a stack that is proportional to the push down stack
- Space complexity could be high

Divide and Conquer

- Many recursive programs use recursive calls on two subsets of inputs (two halves usually)
- Divide the problem and solve them - divide and conquer paradigm
- Property 5.1: a recursive function that divides a problem size N intro two independent (nonempty) parts that it solves recursively calls itself less than N times
- Complexity: $T_{N}=T_{k}+T_{N-k}+1$

Find max- D ivide and Conquer


```
Item max(Item a[], int I, int r)
{ Item u, v;
    int m = (l+r)/2;
    if (I == r) return a[l];
    u = max(a,l,m);
    v=max(a,m+1,r);
    if (u > v) return u;
    else return v;
}
```


Dynamic programming

- When the sub-problems are not independent the situation may be complicated
- Time complexity can be very high
- Example
- Fibonacci number
- Base case: $F_{0}=F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}$
int fibanacci(int n)\{
if ($n=<1$) return 1 ; // Base case
return fibonacci($\mathrm{n}-1$) + fibonacci(n-2);

Recursion: Fibonacci Series

- Order of operations
- return
fibonacci($n-1$) + fibonacci(n - 2);
- Recursive function calls
- Each level of recursion doubles the number of function calls
- $30^{\text {th }}$ number $=2^{\wedge} 30 \sim$
 4 billion function calls
- Exponential complexity

Simpler Solution

- Linear!! $\mathrm{F}[0]=\mathrm{F}[1]=1$; For ($\mathrm{i}=2$; $\mathrm{i}<=\mathrm{N}$; $\mathrm{i}++$); $\mathrm{F}[0]=\mathrm{F}[\mathrm{i}-1]+\mathrm{F}[\mathrm{i}-2]$;
- We can evaluate any function by computing all the function values in order starting at the smallest, using previously computed values at each step to compute the current value
- Bottom-up Dynamic programming
- Applies to any recursive computation, provided that we can afford to save all the previously computed values
- Top-down
- Modify the recursive function to save the computed values and to allow checking these saved values
- Memoization

Dynamic Programming

- Top-down : save known values
- Bottom-up : pre-compute values
- Determining the order may be a challenge
- Top-down preferable
- It is a mechanical transformation of natural problem
- The order of computing the subproblems takes care of itself
int F (int i)
\{ int t;
if (knownF[i] != unknown) return knownF[i];
if $(i==0) t=0$;
if $(i==1) t=1$;
if $(\mathrm{i}>1) \mathrm{t}=\mathrm{F}(\mathrm{i}-1)+\mathrm{F}(\mathrm{i}-2)$; return knownF[i] = t;
- We may not need to compute answers to all the sub-problems

Dynamic programming

Knapsack problem

- Property: DP reduces the running times of a recursive function to be at most the time required to evaluate the function for all arguments less than or equal to the given argument
- Knapsack problem
- Given
- N types of items of varying size and value
- One knapsack (belongs to a thief!)
- Find: the combination of items that maximize the total value

Knapsack problem

Knapsack size: 17
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$
Item

Size

A B C D E

Val

3	4	7	8	9

```
int knap(int cap)
{ inti, space, max, t;
    for (i=0, max = 0;i<N;i++)
        if ((space = cap - items[i].size) >= 0)
            if ((t = knap(space) + items[i].val) > max)
                max = t;
    return max;
}
```

int knap(int M)
\{ int i, space, max, maxi, t;
if (maxKnown[M] != unknown) return maxKnown[M];
for $(i=0, \max =0 ; i<N ; i++)$
if $(($ space $=M$-items[i].size $)>=0)$
if $((\mathrm{t}=\mathrm{knap}(\mathrm{space})+$ items[i].val $)>\max)\{\max =\mathrm{t} ; \operatorname{maxi}=\mathrm{i} ;\}$
$\operatorname{maxK} \operatorname{nown}[\mathrm{M}]=\max ;$ itemKnown[M] = items[maxi];
return max; \}

Tree

- Trees are central to design and analysis algorithms
- Trees can be used to describe dynamic properties
- We build and use explicit data structures that are concrete realization of trees
General issues:
- Trees
- Rooted tree
- Ordered trees
- M-ary trees and binary trees

Tree

- Trees
- Non-empty collection of vertices and edges
- Vertex is a simple object (a.k.a. node)
- Edge is a connection between two nodes
- Path is a distinct vertices in which successive vertices are connected by edges
- There is precisely one path between (C) any two vertices
- Rooted tree: one node is designated as the root
- Forest
- Disjoint set of trees

D efinitions

- Binary tree is either an external node or an internal node connected to a pair of binary trees, which are called the left subtree and the right sub-tree of that node
- Struct node \{Item item; link left, link right; \}
- M-ary tree is either an external node or an internal node connected to an ordered sequence of M-trees that are also M-ary trees
- A tree (or ordered tree) is a node (called the root) connected to a set of disjoint trees. Such a sequence is called a forest.
- Arbitrary number of children
- One for linked list connecting to its sibling
- Other for connecting it to the sibling

Example general tree

Binary trees

- A binary tree with N internal nodes has $\mathrm{N}+1$ external nodes
- Proof by induction
- $N=0$ (no internal nodes) has one external node
- Hypothesis: holds for $N-1$
- $k, N-1-k$ internal nodes in left and right sub-trees (for k between 0 and $N-1$)
a $(k+1)+(N-1-k)=N+1$

Binary tree

- A binary tree with N internal nodes has 2 N links
- N-1 to internal nodes
- Each internal node except root has a unique parent
- Every edge connects to its parent
- $N+1$ to external nodes
- Level, height, path
- Level of a node is $1+$ level of parent (Root is at level 0)
- Height is the maximum of the levels of the tree's nodes
- Path length is the sum of the levels of all the tree's nodes
- Internal path length is the sum of the levels of all the internal nodes

Tree traversal (binary tree)

- Preorder
- Visit a node,
- Visit left subtree,
- Visit right subtree
- Inorder
- Visit left subtree,
- Visit a node,
- Visit right subtree
- Postorder
- Visit left subtree,

- Visit right subtree
- Visit a node

