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IS 2610: Data Structures

Elementary Data Structures

Jan 26, 2004

First-In First Out Queues

n An ADT that comprises two basic operations: 
insert (put) a new item, and delete (get) the 
item that was least recently used

void QUEUEinit(int); 
int QUEUEempty();

void QUEUEput(Item);
Item QUEUEget();

typedef struct QUEUEnode* link;
struct QUEUEnode {Item item; link next;}
static link head;
link NEW(Item item, link next;}

{ link x = malloc(sizeof *x);
x->item = item; x->next = next;
return x;

}
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First-class ADT

q Clients use a single instance of STACK or 
QUEUE

q Only one object in a given program
q Could not declare variables or use it as an 

argument 

n A first-class data type is one for which we can 
have potentially many different instances, 
and which can assign to variables whichcan
declare to hold the instances

First-class data type – Complex numbers

n Complex numbers contains two parts
q (a + bi) where i2 = -1;
q (a + bi) ( c + di) = (ac – bd) + (ad + bc)i

Typedef struct {float r; float i;} Complex;
Complex COMPLEXinit(float, float)

float Re(float, float);
float Im(float, float);

Complex COMPLEXmult(Complex, Complex)

Complex t, x, tx;
…

t = COMPLEXInit(cos(r), sin(r))
x = COMPLEXInit(?, ?)

tx = COMPLEXmult(t, x)
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First-class data type – Queues

void QUEUEinit(int); 
int QUEUEempty();

void QUEUEput(Item);
Item QUEUEget();

typedef struct queue *Q;

void QUEUEdump(Q); 
Q QUEUEinit(int); 

int QUEUEempty(Q);
void QUEUEput(Q, Item);
Item QUEUEget(Q);

Q queues[M];
for (i=0; i<M; i++)

queues[i ] = QUEUEinit(N);
.

printf(“%3d “, QUEUEget(queues[i ]));

ADT

n ADTs are important software engineering tool
q Many algorithms serve as implementations for 

fundamental 

n ADTs encaptulate the algorithms that we 
develop, so that we can use the same code 
for many different applications

n ADTs provide a convenient mechanism for 
our use in the process of developing and 
comparing the performance of algorithms.
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Recursion and Trees

n Recursive algorithm is one that solves a problem by 
solving one or more smaller instances of the same 
problem
q Functions that call themselves
q Can only solve a base case Recursive function calls itself

n If not base case
q Break problem into smaller problem(s)
q Launch new copy of function to work on the smaller 

problem (recursive call/recursive step)
q Slowly converges towards base case
q Function makes call to itself inside the return statement

q Eventually base case gets solved
q Answer works way back up, solves entire problem 

Example of recursion

n Factorial of n: n! = n*(n –1)*(n–2)*…*1
q Recursive relationship (n!=n*(n–1)!)

5! = 5 * 4!
4! = 4 * 3!…

q Base case (1! = 0! = 1)

n Fibonacci number
q Base case: F0 = F1 = 1
q Fn = Fn-1 + Fn-2

int factorial(int n){
if (n=< 1) return 1;     //Base case
return n*facorial(n-1);

}

int fibanacci(int n){
??; // Base Case
return ??;

}
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Euclid’s algorithm
Greatest Common Divisor
n One of the oldest-known algorithm (over 

2000 years)

Euclid’s method for finding the greatest
Common divisor

int gcd(intm, int n){
if (n==0) return m;
return gcd(n, m%n);

}

56 ) 76 ( 1
56
20 ) 56 ( 2

40
16 ) 20 ( 1

16
4 ) 16 ( 4

16
0

Algorithm for pre-fix expression

char *a; int i;
int eval()  

{ int x = 0;    
while (a[i] == ' ') i++;    
if (a[i] == '+')      

{ i++; return eval() + eval(); }    
if (a[i] == '*')      

{ i++; return eval() * eval(); }   
while ((a[i] >= '0') && (a[i] <= '9'))      

x = 10*x + (a[i++]-'0');     
return x;  

}

eval () * + 7 6 12
eval() + 7 6

eval () 7
eval () 6
return 13 = 7 + 6

eval () 12
return 12 * 13
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Recursive vs. iterative solution

n In principle, a loop can be replaced by an 
equivalent recursive program
q Recursive program usually is more natural way to 

express computation

n Disadvantage
q Nested function calls –
n Use built in pushdown stack
n Depth will depend on input
n Hence programming environment has to maintain a 

stack that is proportional to the push down stack
n Space complexity could be high

Divide and Conquer

n Many recursive programs use recursive calls 
on two subsets of inputs (two halves usually)
q Divide the problem and solve them – divide and 

conquer paradigm
q Property 5.1: a recursive function that divides a 

problem size N intro two independent (nonempty) 
parts that it solves recursively calls itself less than 
N times

q Complexity: TN = Tk + TN-k + 1
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Find max- Divide and Conquer

Item max(Item a[], int l, int r) 
{  Item u, v; 

int m = (l+r)/2; 
if (l == r) return a[l]; 
u = max(a, l, m); 
v = max(a, m+1, r); 
if (u > v) return u; 
else return v; 

} 
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Dynamic programming

n When the sub-problems are not independent 
the situation may be complicated
q Time complexity can be very high

n Example
q Fibonacci number
n Base case: F0 = F1 = 1
n Fn = Fn-1 + Fn-2

int fibanacci(int n){
if (n=<1) return 1; // Base case
return fibonacci(n-1) + fibonacci(n-2);

}
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Recursion: Fibonacci Series

n Order of operations
q return 

fibonacci( n - 1 ) + 
fibonacci( n - 2 );

n Recursive function 
calls
q Each level of recursion 

doubles the number of 
function calls
n 30th number = 2^30 ~ 

4 billion function calls

q Exponential complexity
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Simpler Solution

n Linear!!
n Observation
q We can evaluate any function by computing all the function 

values in order starting at the smallest, using previously 
computed values at each step to compute the current value
n Bottom-up Dynamic programming

q Applies to any recursive computation, provided that we can afford 
to save all the previously computed values

q Top-down
n Modify the recursive function to save the computed values 

and to allow checking these saved values
q Memoization

F[0] = F[1] = 1;
For (i = 2; i<=N; i++);

F[0] = F[i-1] + F[i-2];
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Dynamic Programming

n Top-down : save known values
n Bottom-up : pre-compute values
q Determining the order may be a 

challenge

n Top-down preferable
q It is a mechanical transformation of a 

natural problem
q The order of computing the sub-

problems takes care of itself
q We may not need to compute 

answers to all the sub-problems

int F(int i) 
{   int t; 

if (knownF[i] != unknown) 
return knownF[i]; 

if (i == 0) t = 0; 
if (i == 1) t = 1; 
if (i > 1) t = F(i-1) + F(i-2); 

return knownF[i] = t; 
} 

Dynamic programming
Knapsack problem
n Property: DP reduces the running times of a 

recursive function to be at most the time required to 
evaluate the function for all arguments less than or 
equal to the given argument

n Knapsack problem
q Given
n N types of items of varying size and value
n One knapsack (belongs to a thief!)

q Find: the combination of items that maximize the total value
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Knapsack problem

Knapsack size: 17

0   1   2    3    4
Item A  B   C    D   E
Size 3   4    7    8    9
Val 4   5  10  11  13

int knap(int cap) 
{  int i, space, max, t; 

for (i = 0, max = 0; i < N; i++) 
if ((space = cap - items[i].size) >= 0) 

if ((t = knap(space) + items[i].val) > max) 
max = t; 

return max; 
} 

int knap(int M) 
{  int i, space, max, maxi, t; 

if (maxKnown[M] != unknown) return maxKnown[M]; 
for (i = 0, max = 0; i < N; i++) 

if ((space = M-items[i].size) >= 0) 
if ((t = knap(space) + items[i].val) > max)  { max = t; maxi = i; }       

maxKnown[M] = max; itemKnown[M] = items[maxi]; 
return max; } 

Tree

n Trees are central to design and analysis 
algorithms
q Trees can be used to describe dynamic properties
q We build and use explicit data structures that are 

concrete realization of trees
General issues:
q Trees
q Rooted tree
q Ordered trees
q M-ary trees and binary trees
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Tree

n Trees
q Non-empty collection of vertices and 

edges
q Vertex is a simple object (a.k.a. node)
q Edge is a connection between two 

nodes
q Path is a distinct vertices in which 

successive vertices are connected by 
edges
n There is precisely one path between 

any two vertices
n Rooted tree: one node is designated 

as the root
n Forest

q Disjoint set of trees

A

B E

C D F I

G H

root

sibling

child

parent

Binary tree Leaves/terminal nodes

Definitions

n Binary tree is either an external node or an internal node 
connected to a pair of binary trees, which are called the left sub-
tree and the right sub-tree of that node
q Struct node {Item item; link left, link right;}

n M-ary tree is either an external node or an internal node 
connected to an ordered sequence of M-trees that are also M-ary
trees

n A tree (or ordered tree) is a node (called the root) connected to a 
set of disjoint trees. Such a sequence is called a forest. 
q Arbitrary number of children

n One for linked list connecting to its sibling
n Other for connecting it to the sibling
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Example general tree

Binary trees

n A binary tree with N internal nodes has N+ 1 
external nodes
q Proof by induction
q N = 0 (no internal nodes) has one external node
q Hypothesis: holds for N-1
q k, N -1 - k internal nodes in left and right sub-trees 

(for k between 0 and N-1)
q (k+1) + (N – 1 – k) = N + 1
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Binary tree

n A binary tree with N internal nodes has 2N links
q N-1 to internal nodes
n Each internal node except root has a unique parent
n Every edge connects to its parent

q N+1 to external nodes

n Level, height, path
q Level of a node is 1 + level of parent (Root is at level 0)
q Height is the maximum of the levels of the tree’s nodes
q Path length is the sum of the levels of all the tree’s nodes
q Internal path length is the sum of the levels of all the 

internal nodes

Tree traversal (binary tree)

n Preorder
q Visit a node, 
q Visit left subtree,
q Visit right subtree

n Inorder
q Visit left subtree,
q Visit a node, 
q Visit right subtree

n Postorder
q Visit left subtree,
q Visit right subtree
q Visit a node
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