
1

IS 2610: Data Structures

Elementary Data Structures

Jan 12, 2004

Data Type

n Is a set of values and a collection of
operations on those values.
q Inbuilt data types
n Int
n Float
n Character

q New Data types
n Define values to operate (arguments of a function)
n Define operation (function definition)

2

Sample function definition

#include <stdio.h>
int lg(int);
main() {

int i, N;
for (i = 1, N = 10; i <= 6; i++, N *= 10)

printf(“%7d %2d %9d\n, N, lg(i), N*lg(N))
}
Int lg(int N){

int i;
for (i = 0;N > 0; i++, N/= 2);
return i;

}

Data Structure

n Goal is to build data structures that allow us
to handle collections of data
q What operations need to be performed?
q How to implement these operations?

n Simplest way to organize data in C
q Arrays
q Structures

3

Software Engineering practice

n Interface (header file)
q Defines data structures
q Declare functions to be used to manipulate the

data structure

n Implementation (separate c file)
q Of the functions declared in Interface

n Client (main application program)
q Program that uses the functions declared in the

Interface to work at a higher level of abstraction

Arrays

n Most fundamental data structure
q Fixed collection of same-type data

q Access is made by using an index
q Contiguously stored

n Direct correspondence with memory systems
n Entire memory can be considered as an array of memory locations,

with memory addresses corresponding to the array indices

n In C array definition
q int A1[N]; int A2[N][M]; char str[50];

n A1[4]? A1[i] = *(A1+i)?

n Suppose you have to pass huge array as an argument?

4

Array

n Dynamic Memory Allocation
#define N 1000 #include <stdlib.h>
main() { main(int argc, char* argv) {

int i, a[N]; int i, N = atoi(argv[1]);
… int *a = malloc(N*sizeof(int);

} if (a==NULL) Insufficient memory

n Sieve of Eratosthenes
#define N 20
main() {

int i, j, a[N];
for (i = 1; i<N; i++) a[i]=1;
for (i = 2; i<N; i++)

if (a[i])
for (j = i; i*j<N; j++) a[i*j] = 0;

for (j = 2; j<N; j++)
if (a[i]) printf (“%4d \n“, i);

}

Finding primes
1 indicates prime
0 indicates nonprime

Linked List

n A set of items where each item is part of a
node that also contains a link to a node
q Self referent structures
q Cyclic structures possible
q C code

typedef struct node *link;
struct node {char ch; link next;}
link h = malloc(sizeof *h);

NULL

h

a e g m

note that h->next
denotes the 2nd node
and h->ch denotes
The value “a”

5

List traversal

n Print each element of the list

q Use while loop
q Use for loop
q Inverting a list?

NULL

h

a e g m

Linked Lists

n Insert operation

n Delete Operation

n Exchange Operation

NULL

a e g m

f

h

t

NULL

a e g m
h

x

a e g m

t1 t2

h

x

(delete after x)

(t after x)

(exchange nodes after t1 and t2)

h

6

Doubly Linked List

typedef struct node *link;
struct node {char ch; link prev; link next;}
link h = malloc(sizeof *h);

f

t
(insert t after x)

mgca

e
x

(delete after h)

a

h

String

n Variable length array of characters
q Has a starting point and a string-termination

character (‘\0’) at the end
n Array based implementation in C
n Array of characters different from string – associated

with length
q String length may change

q Many applications involve processing textual data
q Computers provide access to bytes of memory

that correspond directly to characters of strings

7

Common String functions

n strlen(a)
for(i=0; a[i] != 0; i++); return i;

n strcpy(a, b)
for(i=0; (a[i] = b[i]) != 0; i++); while (*a++ = *b++);

n strcmp(a, b)
for(i=0; (a[i] == b[i]) != 0; i++);

if (a[i] == 0) return 0;
return a[i] – b[i]

n strcat(a, b)
strcpy(a+strlen(a), b)

Abstraction

n Layers of abstraction
q Abstract model of a bit with binary 0-1 values
q Abstract model of a machine from from dynamic properties of the

values of a certain set of bits
q Abstract model of a programming language that we realize by

controlling the machine with a machine –language program
q Abstract notion of algorithm implemented in C

n Abstract data types
q Develop abstract mechanisms for certain computational tasks at

a higher level
n New layer of abstraction

q Define objects we want to manipulate
n Represent data in data structures

q Define operations that we perform on them
n Implement the algorithm

8

Abstract Data Type

n A data type that is access only through an interface
n Refer to a program that uses ADT as a client and

program that specifies the data type as an
implementation
q Interface is opaque – clients cannot see implementation
q Benefits of ADTs
n Provide an effective mechanism for organizing large software

systems
n Provide ways to limit the size and complexity of interface

between algorithms and associated data structures and
programs that use the algorithms and data structures

n ADTs interface defines a precise means of communication

Pushdown Stack ADT

n An ADT that comprises two basic operations:
insert (push) a new item, and delete (pop) the
item that was most recently inserted
q Last in- first out (LIFO Queue)

push

pop

9

Pushdown-stack ADT interfaces

n Use in evaluation of arithmetic expression
q Infix expression (customary way)
n Operator comes between the operands
n 4 + 5 is written as 4 5 +

q Postfix expression
n Operator comes after the operands
n 4 + 5 is written as 4 5 +

q Postfix expression
n Operator comes after the operands
n 4 + 5 is written as 4 5 +

n Interfaces: Client may use the four operations
q store in STACK.h

void STACKinit(int);
int STACKempty();

void STACKpush(Item);
Item STACKpop();

Postfix notation

n What is the postfix for the following infix
q 6 + 5 * 9 ?

n What is the infix for the following postfix
q 5 9 8 + 4 6 * * 7 + * ?
q 5 9 8 – 7 1 - * + 7 * ?

n Note parentheses are not necessary in
postfix

10

Postfix notation and Pushdown Stack

Input sequence
q 5 9 8 – 7 1 – * + 7 *
= 5 (9 – 8) (7 – 1) * + 7 *
= 5 ((9 – 8) * (7 – 1)) + 7 *
= (5 + ((9 – 8) * (7 – 1))) 7 *
= (5 + ((9 – 8) * (7 – 1))) * 7

5

9

8

push 5
push 9
push 8

Input is a number

Input is an operator

5

1

push 8
push 9
eval 17
push 17

5

7

1

1

5

6

1

5

6

11 11

7

77

Stack Implementation (Array)

void STACKinit(int);
int STACKempty();

void STACKpush(Item);
Item STACKpop();

static Item *s;
static int N;

void STACKinit(int maxN)
{s = malloc(maxN*sizeof(Item)); N = 0;}

int STACKempty()
{return N==0;}

void STACKpush(Item item)
{s[N++] = item;}

Item STACKpop()
{ return s[--N];}

11

Stack Implementation (Linked-list)

n Assume auxiliary function

n Write the functions

void STACKinit(int);
int STACKempty();

void STACKpush(Item);
Item STACKpop();

typedef struct STACKnode* link;
struct STACKnode {Item item; link next;}
static link head;
link NEW(Item item, link next;}

{ link x = malloc(sizeof *x);
x->item = item; x->next = next;
return x;

}

First-In First Out Queues

n An ADT that comprises two basic operations:
insert (put) a new item, and delete (get) the
item that was least recently used

void QUEUEinit(int);
int QUEUEempty();

void QUEUEput(Item);
Item QUEUEget();

typedef struct QUEUEnode* link;
struct QUEUEnode {Item item; link next;}
static link head;
link NEW(Item item, link next;}

{ link x = malloc(sizeof *x);
x->item = item; x->next = next;
return x;

}

12

First-class ADT

q Clients use a single instance of STACK or
QUEUE

q Only one object in a given program
q Could not declare variables or use it as an

argument

n A first-class data type is one for which we can
have potentially many different instances,
and which can assign to variables whichcan
declare to hold the instances

First-class data type – Complex numbers

n Complex numbers contains two parts
q (a + bi) where i2 = -1;
q (a + bi) (c + di) = (ac – bd) + (ad + bc)i

Typedef struct {float r; float i;} Complex;
Complex COMPLEXinit(float, float)

float Re(float, float);
float Im(float, float);

Complex COMPLEXmult(Complex, Complex)

Complex t, x, tx;
…

t = COMPLEXInit(cos(r), sin(r))
x = COMPLEXInit(?, ?)

tx = COMPLEXInit(t, x)

13

First-class data type – Queues

void QUEUEinit(int);
int QUEUEempty();

void QUEUEput(Item);
Item QUEUEget();

typedef struct queue *Q;

void QUEUEdump(Q);
Q QUEUEinit(int);

int QUEUEempty(Q);
void QUEUEput(Q, Item);
Item QUEUEget(Q);

Q queues[M];
for (i=0; i<M; i++)

queues[i] = QUEUEinit(N);
.

printf(“%3d “, QUEUEget(queues[i]));

Recursion and Trees

n Recursive algorithm is one that solves a
problem by solving one or more smaller
instances of the same problem
q Recursive function calls itself
q Factorial?
q Fibonacci numbers?

Euclid’s method for finding the greatest
Common divisor

int gcd(intm, int n){
if (n==0) return m;
return gcd(n, m%n);

}

14

Tree traversal (binary tree)

n Preorder
q Visit a node,
q Visit left subtree,
q Visit right subtree

n Inorder
q Visit left subtree,
q Visit a node,
q Visit right subtree

n Postorder
q Visit left subtree,
q Visit right subtree
q Visit a node

A

B E

C D F I

G H

