Welcome to IS 2610

Introduction

Course Information

- Lecture:
- James B D Joshi
- Mondays: 3:00-5.50 PM
- One (two) 15 (10) minutes break(s)
- Office Hours: Wed 1:00-3:00PM/Appointment
- Pre-requisite
- one programming language

Course material

- Textbook
- Algorithm in C(Parts 1-5 Bundle)- Third Edition by Robert Sedgewick, (ISBN: 0-201-31452-1, 0-201-31663-3), Addison-Wesley
- References
- Introduction to Algorithms, Cormen, Leiserson, and Rivest, MIT Press/McGraw-Hill, Cambridge (Theory)
- Fundamentals of Data Structures by Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed Hardcoverl March 1992 / 0716782502
- The C Programming language, Kernigham \& Ritchie (Programming)
- Other material will be posted (URLs for tutorials)

Course outline

- Introduction to Data Structures and Analysis of Algorithms
- Analysis of Algorithms
- Elementary/Abstract data types
- Recursion and Trees
- Sorting Algorithms
- Selection, Insertion, Bubble, Shellsort
- Quicksort
- Mergesort
- Heapsort
- Radix sort
- Searching
- Symbol tables
- Balanced Trees
- Hashing
- Radix Search
- Graph Algorithms

Grading

- Quiz 10\% (in the beginning of the class; on previous lecture)
- Homework/Programming Assignments 40\% (typically every week)
- Midterm 25\%
- Comprehensive Final 25\%

Course Policy

- Your work MUST be your own
- Zero tolerance for cheating
- You get an F for the course if you cheat in anything however small - NO DISCUSSION
- Homework
- There will be penalty for late assignments (15\% each day)
- Ensure clarity in your answers - no credit will be given for vague answers
- Homework is primarily the GSA's responsibility
- Solutions/theory will be posted on the web
- Check webpage for everything!
- You are responsible for checking the webpage for updates

Overview

- Algorithm
- A problem-solving method suitable for implementation as a computer program
- Data structures
- Objects created to organize data used in computation
- Data structure exist as the by-product or end product of algorithms
- Understanding data structure is essential to understanding algorithms and hence to problem-solving
- Simple algorithms can give rise to complicated data-structures
- Complicated algorithms can use simple data structures

Why study D ata Structures (and algorithms)

- Using a computer?
- Solve computational problems?
- Want it to go faster?
- Ability to process more data?
- Technology vs. Performance/cost factor
- Technology can improve things by a constant factor
- Good algorithm design can do much better and may be cheaper
- Supercomputer cannot rescue a bad algorithm
- Data structures and algorithms as a field of study
- Old enough to have basics known
- New discoveries
- Burgeoning application areas
- Philosophical implications?

Simple example

- Algorithm and data structure to do matrix arithmetic
- Need a structure to store matrix values
- Use a two dimensional array: A [M, N]
- Algorithm to find the largest element

```
largest = A[0][0];
for (i=0; i < M; i++)
        for (i=0; i < N; i++)
            if (A[i][j]>largest) then
                                    largest= A[i][j];
```

How many times does the if statement gets executed?

Another example: Network Connectivity

- Network Connectivity
- Nodes at grid points
a Add connections between pairs of nodes
- Are A and B connected?

Network Connectivity

IN	OUT	Evidence
34	34	
49	49	
80	80	
23	23	
56	56	
29		$(2-3-4-9)$
59	59	
73	73	
48	48	
56		$(5-6)$
02		$(2-3-4-8-0)$
64	61	

Union-Find Abstraction

- What are the critical operations needed to support finding connectivity?
- N objects $-N$ can be very large
- Grid points
- FIND: test whether two objects are in same set
- Is A connected to B?
- UNION: merge two sets
- Add a connection
- Define Data Structure to store connectivity information and algorithms for UNION and FIND

Quick-Find algorithm

- Data Structure
- Use an array of integers - one corresponding to each object
for ($1=0 ; 1<N ; 1++$) $1 d[1]=1 ;$
- Initialize id[i] = i
- If p and q are connected they have the same id
- Algorithmic Operations
- FIND: to check if p and q are connected, check if they have the same id
- UNION: To merge components containing p and q, change all entries with id[p] to id[q]
- Complexity analysis:
- FIND: takes constant time
- UNION: takes time proportional to N

Quick-find

$\mathrm{p}-\mathrm{q}$	array entries
$3-4$	0124456789
$4-9$	0129956789
$8-0$	0129956709
$2-3$	0199956709
$5-6$	0199966709
$5-9$	0199999709
$7-3$	0199999909
$4-8$	0100000000
$6-1$	1111111111

Complete algorithm

```
#include <stdio.h>
#define N 10000
main()
{ int i, p, q, t, id[N];
    for (i = 0; i < N; i++) id[i] = i;
    while (scanf("d% %d\n", &p, &q) == 2
        {
            if (id[p] == id[q]) continue;
            for (pid = id[p], i = 0; i < N; i++)
                    if (id[i] == pid) id[i] = id[q];
            printf("s %d\n", p, q);
        }
}
```

- Complexity $(M \times N)$
- For each of M union operations we iterate for loop at N times

Quick-Union Algorithm

- Data Structure
- Use an array of integers - one corresponding to each object
- Initialize id[i] = i
- If p and q are connected they have same root
- Algorithmic Operations
- FIND: to check if p and a are connected, check if they have the same root

```
for (1=p; 1 !=1d[1]; 1=1d[1]) ;
if (1 == 1) // connected
```

- UNION: Set the id of the p's root to q's root 1d[1] = 1;
- Complexity analysis:
- FIND: takes time proportional to the depth of p and q in tree
- UNION: takes constant times

Complete algorithm

```
#include <stdio.h>
#define N 10000
main()
{ int i, p, q, t, id[N];
    for (i = 0; i < N; i++) id[i] = i;
    while (scanf("त% ᄋN\n". &n. &r) == ?
                for (1=p;1 !=1d[1]; 1 = 1d[1]);
1f (1 == j) // connected
1d[1] = 1;
printf("s %d\n", p, q);
}
```

Quick-Union		
		(1) (2) 8(8) © © 8
p-q	array entries	(1) (9) © © (1) 8
3-4	0124456789	(2) (8) (8)
4-9	0124956789	
8-0	0124956709	(3) 0^{6} (5)
2-3	0194956709	
5-6	0194966709	
5-9	0194969709	9888
7-3	0194969900	(1) 0°
4-8	0194969900	(3) (3) $0^{(3)}$
6-1	1194969900	

Complexity of Quick-Union

- Less computation for UNION and more computation for FIND
- Quick-Union does not have to go through the entire array for each input pair as does the Union-find
- Depends on the nature of the input
- Assume input 1-2, 2-3, 3-4,...
- Tree formed is linear!
- More improvements:
- Weighted Quick-Union
- Weighted Quick-Union with Path Compression

Analysis of algorithm

- Empirical analysis
- Implement the algorithm
- Input and other factors
- Actual data
- Random data (average-case behavior)
- Perverse data (worst-case behavior)
- Run empirical tests
- Mathematical analysis
- To compare different algorithms
- To predict performance in a new environment
- To set values of algorithm parameters

Growth of functions

- Algorithms have a primary parameter N that affects the running time most significantly
- N typically represents the size of the input- e.g., file size, no. of chars in a string; etc.
- Commonly encounterd running times are proportional to the following functions
- 1 :Represents a constant
- Log N :Logarithmic
- N :Linear time
- $N \log N$:Linearithmic(?)
- N^{2} :Quadratic
- N^{3} :Cubic
- $2^{N} \quad$:Exponential

Some common functions

$\lg N$	N	$N(\lg N)^{2}$	N^{2}	2^{N}		
3	3	10	33	110	100	1042
7	10	100	664	444	10000	$2^{10 \times 10}=1042^{10}$
10	32	1000	9966	99317	1000000	$?$
13	100	10000	132877	1765633	100000000	$?$
17	316	100000	1660964	27588016	10000000000	$?$
20	1000	1000000	19931569	397267426	1000000000000	

\qquad

Special functions and mathematical notations

- Floor function : $\lfloor x\rfloor$
- Largest integer less than or equal to x
- e.g., L5.16」 = ?
- Ceiling function: $\lceil x\rceil$
- Smallest integer greater than or equal to x
- e.g., $\lfloor 5.16\rfloor=$?
- Fibonacci: $F_{N}=F_{N-1}+F_{N-2}$; with $F_{0}=F_{1}=1$
- Find $F_{2}=$? $F_{4}=$?
- Harmonic: $H_{N}=1+1 / 2+1 / 3+\ldots+1 / \mathrm{N}$
- Factorial: N ! $=N .(N-1)$!
- $\log _{e} N=\ln N ; \log _{2} N=\lg N$

Big O-notation - Asymptotic expression

- $g(N)=O(f(N))(\operatorname{read} g(N)$ is said to be $O(f(N)))$ iff there exist constants c_{0} and N_{0} such that $0=g(N)$ $=c_{0} f(N)$ for all $N>N_{0}$
- Can $N^{2}=O(n)$?
- Can $2^{N}=O\left(N^{M}\right)$?

Big-O Notation

- Uses
- To bound the error that we make when we ignore small terms in mathematical formulas
- Allows us to focus on leading terms
- Example:
- $N^{2}+3 N+4=O\left(N^{2}\right)$, since $N^{2}+3 N+4\left\langle 2 N^{2}\right.$ for all $n>10$
- $N^{2}+N+N \lg N+\lg N+1=\mathrm{O}\left(N^{2}\right)$
- To bound the error that we make when we ignore parts of a program that contribute a small amount to the total being analyzed
- To allow us to classify algorithms according to the upper bounds on their total running times

$\Omega(f(\mathrm{n}))$ and $\Theta(\mathrm{f}(\mathrm{n}))$

- $g(N)=\Omega(f(N))(\operatorname{read} g(N)$ is said to be $\Omega(f(N)))$ iff there exist constants c_{0} and N_{0} such that $0=$ $g(N)=c_{0} f(N)$ for all $N>N_{0}$
- $g(N)=\Theta(f(N))(\operatorname{read} g(N)$ is said to be $\Omega(f(N)))$ iff there exist constants c_{0}, c_{1} and N_{0} such that $c_{1} f(N)$ $=g(N)=c_{1} f(N)$ for all $N>N_{0}$

Basic Recurrences

- Principle of recursive decomposition
a decomposition of problems into one or more smaller ones of the same type
- Use solutions for the sub-problems to get solution of the problem
- Example 1:
- Loops through a loop and eliminates one item
- $C_{N}=C_{N-1}+N$, for $N=2$ with $C_{1}=1$

$$
=C_{N-2}+(N-1)+N
$$

$$
=C_{N-3}+(N-2)+(N-1)+N
$$

$$
=1+2+\ldots+(N-2)+(N-1)+N=N(N+1) / 2
$$

- Therefore, $C_{N}=O\left(N^{2}\right)$

Basic Recurrences

- Recurrence relations
- Captures the dependence of the running time of an algorithm for an input of size N on its running time for small inputs
- Example 2:
- formula for recursive programs for that halves the input in one step
- $C_{N}=C_{N / 2}+1$, for $N=2$ with $C_{1}=1$; let $C_{N}=\lg N$, and $N=2^{n}$.
$=C_{N / 2}+1+1$
$=C_{N / 4}+1+1+1$
$=C_{N / N}+n=1+n$
- Therefore, $C_{N}=O(n)=O(\lg N)$

Basic Recurrences

- let $C_{N}=\lg N$, and $N=2^{n}$
- Show that $C_{N}=N \lg N$ for
- $C_{N}=2 C_{N / 2}+N$; for $N=2$ with $C_{1}=0$;

