Welcome to IS 2610

Introduction

Grading Quiz 10% (in the beginning of the class; on previous lecture) Homework/Programming Assignments 40% (typically every week) Midterm 25% Comprehensive Final 25%

Why study Data Structures (and algorithms)

- Using a computer?
 - Solve computational problems?
 - Want it to go faster?
 - Ability to process more data?
- Technology vs. Performance/cost factor
 - Technology can improve things by a constant factor
 - Good algorithm design can do much better and may be cheaper
 - Supercomputer cannot rescue a bad algorithm
- Data structures and algorithms as a field of study
 - Old enough to have basics known
 - New discoveries
 - Burgeoning application areas
 - Philosophical implications?

Quicl	k-find	
p-q	array entries	
3-4	0124456789	
4-9	0129956789	
8-0	0129956709	
2-3	0199956709	
5-6	0199966709	
5-9	0199999709	
7-3	019999909	
4-8	010000000	
6-1	111111111	

Complete algorithm

Quick-Union		000000000000000000000000000000000000000	
v			
			$\begin{array}{c} 0 @ 0 0 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
<u>p-d</u>	array entries	S	0.0.000
3-4	0124456789		
4-9	0124956789		0 <u>0</u> 000
8-0	0124956709		
2-3	0194956709		
5-6	0194966709	-	
5-9	0194969709		
7-3	0194969900	Ī	
4-8	0194969900		0000
6-1	1194969900		0 D
			0 0 0 0 0 0 0 0 0 0 0

Complexity of Quick-Union

- Less computation for UNION and more computation for FIND
- Quick-Union does not have to go through the entire array for each input pair as does the Union-find
- Depends on the nature of the input
 - □ Assume input 1-2, 2-3, 3-4,...
 - Tree formed is linear!
- More improvements:
 - Weighted Quick-Union
 - Weighted Quick-Union with Path Compression

Some common functions

lg N	N ^{0.5}	Ν	N lg N	N (Ig N) ²	N ²	2 ^N
3	3	10	33	110	100	1042
7	10	100	664	444	10000	2 ^{10x10} = 1042 ¹⁰
10	32	1000	9966	99317	1000000	?
13	100	10000	132877	1765633	10000000	?
17	316	100000	1660964	27588016	10000000000	?
20	1000	1000000	19931569	397267426	1000000000000	?

- Floor function : [x]
 Largest integer less than or equal to x
 e.g., [5.16] = ?
- Ceiling function: [x]
 Smallest integer greater than or equal to x
 e.g., [5.16] = ?
- Fibonacci: $F_N = F_{N-1} + F_{N-2}$; with $F_0 = F_1 = 1$ • Find $F_2 = ? F_4 = ?$
- Harmonic: $H_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$
- Factorial: *N*! = *N*.(*N*-1)!
- $log_e N = ln N; log_2 N = lg N$

Big-O Notation Uses To bound the error that we make when we ignore small terms in mathematical formulas Allows us to focus on leading terms Example: N² + 3N + 4 = O(N²), since N² + 3N + 4 < 2N² for all n > 10 N² + N + N lg N + lg N + 1 = O(N²) To bound the error that we make when we ignore parts of a program that contribute a small amount to the total being analyzed To allow us to classify algorithms according to the upper bounds on their total running times

Basic Recurrences

- let $C_N = lg N$, and $N = 2^n$
 - Show that $C_N = N lg N$ for
 - $C_N = 2C_{N/2} + N$; for N = 2 with $C_1 = 0$;