
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Preprocessing

Lecture 12

April 7, 2005

 2003 Prentice Hall, Inc. All rights reserved.

2

Preprocessing

• Preprocessing
– Occurs before program compiled

• Inclusion of external files
• Definition of symbolic constants
• Macros

• Conditional compilation
• Conditional execution pf preprocessing directive

– All directives begin with #
• Can only have whitespace before directives

– Directives not C++ statements
• Do not end with ;

2

 2003 Prentice Hall, Inc. All rights reserved.

3

The #include Preprocessor Directive

• #include directive
– Puts copy of file in place of directive
– Two forms

• #include <filename>
– For standard library header files
– Searches pre-designated directories

• #include "filename"
– Searches in current directory
– Normally used for programmer-defined files

• Usage
– Loading header files

• #include <iostream>
– Programs with multiple source files
– Header file

• Has common declarations and definitions
• Classes, structures, enumerations, function prototypes
• Extract commonality of multiple program files

 2003 Prentice Hall, Inc. All rights reserved.

4

The #define Preprocessor Directive: Symbolic
Constants
• #define

– Symbolic constants
• Constants represented as symbols
• When program compiled, all occurrences replaced

– Format
• #define identifier replacement-text
• #define PI 3.14159

– Everything to right of identifier replaces text
• #define PI=3.14159
• Replaces PI with "=3.14159"
• Probably an error

– Cannot redefine symbolic constants
• Advantage: Takes no memory
• Disadvantages

– Name not seen by debugger (only replacement text)
– Do not have specific data type

• const variables preferred

3

 2003 Prentice Hall, Inc. All rights reserved.

5

The #define Preprocessor Directive: Macros

• Macro
– Operation specified in #define
– Macro without arguments

• Treated like a symbolic constant

– Macro with arguments
• Arguments substituted for replacement text

• Macro expanded

– Performs a text substitution
• No data type checking

 2003 Prentice Hall, Inc. All rights reserved.

6

The #define Preprocessor Directive: Macros

• Example
#define CIRCLE_AREA(x) (PI * (x) * (x))
area = CIRCLE_AREA(4);

becomes
area = (3.14159 * (4) * (4));

• Use parentheses
– Without them,
#define CIRCLE_AREA(x) PI * x * x
area = CIRCLE_AREA(c + 2);

becomes
area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly

4

 2003 Prentice Hall, Inc. All rights reserved.

7

The #define Preprocessor Directive: Macros

• Multiple arguments
#define RECTANGLE_AREA(x, y) ((x) * (y))
rectArea = RECTANGLE_AREA(a + 4, b + 7);

becomes
rectArea = ((a + 4) * (b + 7));

• #undef
– Undefines symbolic constant or macro
– Can later be redefined

 2003 Prentice Hall, Inc. All rights reserved.

8

Conditional Compilation

• Control preprocessor directives and compilation
– Cannot evaluate cast expressions, sizeof, enumeration

constants
• Structure similar to if

#if !defined(NULL)
#define NULL 0

#endif
– Determines if symbolic constant NULL defined
– If NULL defined,

• defined(NULL) evaluates to 1
• #define statement skipped

– Otherwise
• #define statement used

– Every #if ends with #endif

5

 2003 Prentice Hall, Inc. All rights reserved.

9

Conditional Compilation

• Can use else
– #else
– #elif is "else if"

• Abbreviations
– #ifdef short for

• #if defined(name)
– #ifndef short for

• #if !defined(name)
• "Comment out" code

– Cannot use /* ... */ with C-style comments
• Cannot nest /* */

– Instead, use
#if 0
code commented out

#endif
– To enable code, change 0 to 1

 2003 Prentice Hall, Inc. All rights reserved.

10

Conditional Compilation

• Debugging
#define DEBUG 1
#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif
– Defining DEBUG enables code
– After code corrected

• Remove #define statement

• Debugging statements are now ignored

6

 2003 Prentice Hall, Inc. All rights reserved.

11

The #error and #pragma Preprocessor
Directives

• #error tokens
– Prints implementation-dependent message
– Tokens are groups of characters separated by spaces

• #error 1 - Out of range error has 6 tokens

– Compilation may stop (depends on compiler)

• #pragma tokens
– Actions depend on compiler
– May use compiler-specific options
– Unrecognized #pragmas are ignored

 2003 Prentice Hall, Inc. All rights reserved.

12

The # and ## Operators

• # operator
– Replacement text token converted to string with quotes
#define HELLO(x) cout << "Hello, " #x << endl;

– HELLO(JOHN) becomes
• cout << "Hello, " "John" << endl;
• Same as cout << "Hello, John" << endl;

• ## operator
– Concatenates two tokens

#define TOKENCONCAT(x, y) x ## y

– TOKENCONCAT(O, K) becomes
• OK

7

 2003 Prentice Hall, Inc. All rights reserved.

13

Line Numbers

• #line
– Renumbers subsequent code lines, starting with integer

• #line 100

– File name can be included
– #line 100 "file1.cpp"

• Next source code line is numbered 100
• For error purposes, file name is "file1.cpp"
• Can make syntax errors more meaningful
• Line numbers do not appear in source file

 2003 Prentice Hall, Inc. All rights reserved.

14

Predefined Symbolic Constants

• Five predefined symbolic constants
– Cannot be used in #define or #undef

 Symbolic constant
 Description

__LINE__ The line number of the current source code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd
yyyy" such as "Jan 19 2001").

__TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

8

 2003 Prentice Hall, Inc. All rights reserved.

15

Assertions

• assert is a macro
– Header <cassert>
– Tests value of an expression

• If 0 (false) prints error message, calls abort
– Terminates program, prints line number and file
– Good for checking for illegal values

• If 1 (true), program continues as normal

– assert(x <= 10);

• To remove assert statements
– No need to delete them manually
– #define NDEBUG

• All subsequent assert statements ignored

