IS 0020
 Program Design and Software Tools
 Introduction to C++ Programming
 Spring 2005
 Lecture 1
 Jan 6, 2005

- Lecture:
- James B D Joshi
- Tuesdays/Thursdays: 1:00-2:15 PM
- Office Hours: Wed 3:00-5:00PM/Appointment
- GSA: TBA
- Pre-requisite
- IS 0015 Data Structures and Programming Techniques
- Textbook
- C++ How to Program - Fourth Edition, by H. M. Deitel, P. J. Deitel, Prentice Hall, New Jersey, 2003, ISBN: 0-13038474.

Course Policy

- Your work MUST be your own
- Zero tolerance for cheating
- Discussing problems is encouraged, but each must present his own answers
- You get an F for the course if you cheat in anything however small - NO DISCUSSION
- Homework
- There will be penalty for late assignments (15\% each day)
- Ensure clarity in your answers - no credit will be given for vague answers
- Homework is primarily the GSA's responsibility
- Check webpage for everything!
- You are responsible for checking the webpage for updates

Basics of a Typical C++ Environment

- $\mathrm{C}++$ systems
- Program-development environment
- Language
- C++ Standard Library
- $\mathrm{C}++$ program names extensions
- .cpp
- .cxx
- .cc
- .C

A Simple Program: Printing a Line of Text - Standard output stream object - std: :cout - "Connected" to screen - << - Stream insertion operator - Value to right (right operand) inserted into output stream - Namespace - std: : specifies that entity belongs to "namespace" std - std: : removed through use of using statements - Escape characters: \} - Indicates "special" character output

```
// Fig. 1.2: fig01_02.cpp
// A first program in C++.
#include <iostream>
// function main begins program execution
int main()
{
    std::cout << "Welcome to C++!\n";
    return 0; // indicate that program ended successfully
    } // end function main
Welcome to C++!
```


\triangle
 ∇

fig01_02.cpp (1 of 1)
fig01_02.cpp output (1 of 1)

Decision Making: Equality and Relational Operators

- if structure
- Make decision based on truth or falsity of condition
- If condition met, body executed
- Else, body not executed
- Equality and relational operators
- Equality operators
- Same level of precedence
- Relational operators
- Same level of precedence
- Associate left to right

Standard algebraic equality operator or relational operator	C++ equality or relational operator	Example of C ++ condition	Meaning of C++ condition
Relational operators		$\mathbf{x}>\mathbf{y}$	\mathbf{x} is greater than \mathbf{y}
$>$	$>$	$\mathbf{x}<\mathbf{y}$	\mathbf{x} is less than \mathbf{y}
$<$	$<=$	\mathbf{x} is greater than or equal to \mathbf{y}	
\geq	$<=$	\mathbf{x}	\mathbf{x} is less than or equal to \mathbf{y}
\leq		$\mathbf{x}=\mathbf{y}$	
Equality operators		$\mathbf{x} \mathbf{!}=\mathbf{y}$	\mathbf{x} is not equal to \mathbf{y}
$=$	$\mathbf{=}$		
\neq			

Algorithms /pseudocode

- Computing problems
- Solved by executing a series of actions in a specific order
- Algorithm: a procedure determining
- Actions to be executed
- Order to be executed
- Example: recipe
- Program control
- Specifies the order in which statements are executed
- Pseudocode
- Artificial, informal language used to develop algorithms
- Similar to everyday English

Control Structures

- Flowchart
- Graphical representation of an algorithm
- Rectangle symbol (action symbol)
- Aval symbol type of action
• Beginning or end of a program, or a section of code (circles)
Exercise: Find greater of three numbers

© 2003 Prentice Hall, Inc. All rights reserved.

- Used as conditions in loops, if statements
- \&\& (logical AND)
- true if both conditions are true
if (gender $==1 \& \&$ age $>=65$) ++seniorFemales;
- || (logical OR)
- true if either of condition is true
if (semesterAverage $>=90$ || finalExam $>=90$) cout << "Student grade is A" << endl;

- Common error
- Does not typically cause syntax errors
- Aspects of problem
- Expressions that have a value can be used for decision
- Zero = false, nonzero = true
- Assignment statements produce a value (the value to be assigned)
if $==$ was replaced with $=$
if (payCode $=4$)
cout << "You get a bonus!" << endl;
What happens?

- Expressions that can appear on left side of equation
- Can be changed

$$
x=4 ;
$$

- Rvalues
- Only appear on right side of equation
- Constants, such as numbers (i.e. cannot write $\mathbf{4}=\mathbf{x}$;)
- Lvalues can be used as rvalues, but not vice versa

\int Structured-Programming Summary

- Structured programming
- Programs easier to understand, test, debug and modify
- Rules for structured programming
- Only use single-entry/single -exit control structures
- Rules

1) Begin with the "simplest flowchart"
2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence
3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else, switch, while, do/while or for)
4) Rules 2 and 3 can be applied in any order and multiple times

