
P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14

Formal Foundations for Hybrid Hierarchies
in GTRBAC

JAMES B. D. JOSHI

University of Pittsburgh

ELISA BERTINO

Purdue University

ARIF GHAFOOR

Purdue University

and

YUE ZHANG

University of Pittsburgh

A role hierarchy defines permission acquisition and role-activation semantics through role–role

relationships. It can be utilized for efficiently and effectively structuring functional roles of an or-

ganization having related access-control needs. The focus of this paper is the analysis of hybrid role

hierarchies in the context of the generalized temporal role-based access control (GTRBAC) model

that allows specification of a comprehensive set of temporal constraints on role, user-role, and role-

permission assignments. We introduce the notion of uniquely activable set (UAS) associated with

a role hierarchy that indicates the access capabilities of a user resulting from his membership to a

role in the hierarchy. Identifying such a role set is essential, while making an authorization decision

about whether or not a user should be allowed to activate a particular combination of roles in a

single session. We formally show how UAS can be determined for a hybrid hierarchy. Furthermore,

within a hybrid hierarchy, various hierarchical relations may be derived between an arbitrary pair

of roles. We present a set of inference rules that can be used to generate all the possible derived rela-

tions that can be inferred from a specified set of hierarchical relations and show that it is sound and

complete. We also present an analysis of hierarchy transformations with respect to role addition,

deletion, and partitioning, and show how various cases of these transformations allow the original

permission acquisition and role-activation semantics to be managed. The formal results presented

here provide a basis for developing efficient security administration and management tools.

James Joshi’s work has been supported by the U.S. National Science Foundation award IIS 0545912.

Authors’ addresses: James B. D. Joshi, School of Information Sciences, University of Pittsburgh,

Pennsylvania 15260; Elisa Bertino, Research Director of CERIAS, Department of Computer Science

and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana

47907; Arif Ghafoor, School of Electrical and Computer Engineering, Purdue University, West

Lafayette, Indiana 47907; Yue Zhang, Department of Computer Science, University of Pittsburgh,

Pennsylvania 15260.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1094-9224/2007/11-ART14 $5.00 DOI 10.1145/1284680.1284682 http://doi.acm.org/

10.1145/1284680.1284682

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:2 • J. B. D. Joshi et al.

Categories and Subject Descriptors: ... [...]: ...[AQ1]

General Terms: Derived Hierarchy, Hierarchy Transformation

Additional Key Words and Phrases: Role-based access control, hybrid hierarchy, GTRBAC

ACM Reference Format:
Joshi, J. B. D., Bertino, E., Ghafoor, A., and Zhang, Y. 2007. Formal foundations for hybrid hierar-

chies in GTRBAC. ACM Trans. Inform. Syst. Secur. 10, 4, Article 14 (Nov. 2007), 39 pages. DOI =
10.1145/1284680.1284682 http://doi.acm.org/ 10.1145/1284680.1284682

1. INTRODUCTION

Role-based access control (RBAC) has emerged as a promising alternative to tra-
ditional discretionary and mandatory access-control (DAC and MAC) models,
which have inherent limitations [Giuri 1995, 1996; Joshi et al. 2001a; Nyan-[AQ2]
chama and Osborn 1999; Osborn et al. 2000; Sandhu et al. 1996; Koch et al.
2002]. Several beneficial features, such as policy neutrality, support for least
privilege and efficient access, control management are associated with RBAC
models [Ferraiolo et al. 1993; Joshi et al. 2001b; Sandhu et al. 1996]. Such
features make RBAC better suited for handling access-control requirements of
diverse organizations. RBAC models have also been found suitable for address-
ing security issues in the Internet environment [Barkley et al. 1997; Joshi et al.
2001a; Park et al. 2001] and show promise for newer heterogeneous multido-[AQ2]
main environments that raise serious concerns related to access control across[AQ2]
multiple domains [Biskup et al. 1998; Joshi et al. 2001b].

An essential part of an RBAC model is the notion of a role hierarchy. Role hi-
erarchies play a crucial role in authorization management and administration
[Moffett 1998; Sandhu et al. 1996, 1998; Jaeger and Tidswell 2001] and in the
succinct RBAC representations of DAC and MAC policies [Osborn et al. 2000].
When two roles are hierarchically related, one is called the senior and the other
the junior. In the most commonly accepted RBAC96 family of models [Sandhu
et al. 1996], a senior and its junior roles are related by an inheritance relation
that has two semantic parts: permission-inheritance (also called permission-
usage [Sandhu 1998]) and role-activation semantics. Permission-inheritance
semantics allows a senior role to inherit all the permissions assigned to its
junior roles, whereas the role-activation semantics allows all the users as-
signed to a senior role to activate its junior roles. The RBAC96 models use
the combined hierarchy semantics that allows both the permission-inheritance
and the role-activation semantics. This significantly reduces assignment over-
head, as the permissions need only be assigned to junior roles [Sandhu 1998;
Moffett 1998]. Sandhu showed that, under the combined hierarchy semantics,
certain separation-of-duty (SoD) constraints cannot be defined on hierarchi-
cally related roles, thus, restricting its effectiveness in supporting a broader
set of fine-grained constraints and, in particular, in representing MAC policies
[Sandhu 1998]. To address such shortcomings of RBAC96, Sandhu has proposed
the ER-RBAC96 model that incorporates a distinction between a usage hierar-
chy that applies only the permission-inheritance semantics and an activation
hierarchy that uses the combined hierarchy semantics [Sandhu 1998]. Later,

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:3

Joshi et al. have established a clear distinction between the three role hierar-
chies: permission-inheritance-only hierarchy (I hierarchy), activation-only hi-
erarchy (A hierarchy), and the combined permission-inheritance and activation
hierarchy (IA hierarchy) [Joshi et al. 2002]. The need for different semantics for
hierarchical relations has also been recognized by Moffet et al. in Moffett [1998]
and Moffett and Lupu [1999]. In particular, they have identified the need for
three types of organizational hierarchies: is a, activity, and supervision, in or-
der to address the needs of control principles in an organization, such as SoD,
decentralization of control and supervision and review. Use of a combined hier-
archy semantics has been found to limit a hierarchy in achieving these orga-
nizational control goals and, hence, to address such control requirements, it is
desirable to configure a hybrid role hierarchy that allows different hierarchical
relations among roles [Joshi et al. 2002]. Such a hybrid hierarchy is provided
as part of the recently proposed generalized temporal RBAC (GTRBAC) model
and it is able to support a variety of combinations of inheritance and activation
semantics [Joshi et al. 2005b].

Another relevant functionality in access control is that of time-constraining
accesses to resources for controlling time-sensitive activities in an applica-
tion, for instance, in a workflow management system (WFMS) [Bertino and
Ferrari 1999], where various workflow tasks, each having some timing con-
straints, need to be executed in some order. Bertino et al.’s temporal RBAC
model (TRBAC) provided the first framework for modeling time-constrained
access policies [Bertino et al. 2001]. The GTRBAC model extends the TRBAC
model and incorporates a set of language constructs for specifying a large set of
periodicity and duration constraints, including those on role enabling, user-role
and role-permission assignments, and role activations. An important issue in
the GTRBAC model is the interplay between the temporal constraints and role
hierarchies, which has been first addressed in Joshi et al. [2002]. Accordingly,
Joshi et al. identify various subtypes of the I, A, and IA hierarchies that capture
temporal semantics of a hierarchy in presence of temporal constraints on roles.
In the presence of a hybrid hierarchy containing multiple hierarchy types, a
user may be able to activate different sets of junior roles in a session. Sets of
roles that can be activated or permissions that can be acquired by a user at
a particular time indicate the overall access capabilities of the user. From the
perspective of the principle of least privilege, it may be necessary to ensure that
such activable sets of roles do not result in granting users unnecessary access
capabilities. Determining such sets can become very complex in the presence of
a hybrid hierarchy. Furthermore, it is essential to know what indirect relations
may exist between roles that are not directly related so that when modifications
are made to the hierarchy, original relations can be maintained, if at all possi-
ble. For example, consider the relatively simple hybrid hierarchy of Figure 1.
Here, determining the sets of roles that can be activated in a single session by
a user assigned only to role r3 is not straightforward. Similarly, when we delete
the role s1, we need to make sure that the original relations between r3 and t1,
r3 and s2, or r3 and x1 are retained.

Flexible models, like GTRBAC, need formal tools for an efficient security
administration and management. In this paper, we present a formal basis for

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:4 • J. B. D. Joshi et al.

Fig. 1. An example hybrid hierarchy.

analyzing hybrid hierarchies in GTRBAC. The contributions of this paper in-
clude the following:

� We define the notion of uniquely activable set (UAS) of a hierarchy that can
be used by security administrators for determining access capabilities that a
user can obtain from a role hierarchy in a single session. We show formally
how such a set can be determined in a hybrid role hierarchy.

� We introduce a set of inference rules that allows inferring the hierarchical
relationships between an arbitrary pair of roles that are not directly related
and show that it is sound and complete.

� We develop a set of hierarchy transformation algorithms to assist in admin-
istering role hierarchies when the roles are added, deleted, or modified.

The paper is organized as follows. In Section 2, we present an overview the
GTRBAC model. In Section 3, we introduce the three basic hierarchical rela-
tions that can exist on a set of roles followed by their subtypes. In Section 4, we
introduce the notion of UAS and present a formal technique for characterizing
it. In Section 5, we introduce a set of inference rules for inferring derived rela-
tions between an arbitrary pair of roles. In Section 6, we introduce hierarchy
transformation algorithms. Related work is discussed in Section 7. Conclusions
and future work are presented in Section 8. The proofs for the theorems pre-
sented in this paper are available in the techical report version of the paper at
https://www.cerias.purdue.edu/ with the same title.

2. GENERALIZED TEMPORAL ACCESS CONTROL MODEL (GTRBAC)

The GTRBAC model introduces the separate notion of role enabling and role ac-
tivation, and provides constraints and event expressions associated with both.
An enabled role indicates that a valid user can activate it, whereas an activated
role indicates that at least one user has activated it. The GTRBAC model allows
the specification of the following set of constraints:

1. Temporal constraints on role enabling/disabling: These constraints allow
the specification of intervals and durations in which a role is enabled. When

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:5

Table I. Constraint Expressions

Constraint

Categories Constraints Expression

Periodicity

constraint

User-role assignment (I, P, pr:assignU /deassignU r to u)

Role enabling (I, P, pr:enable/disable r)

Role-permission assignment (I, P, pr:assignP /deassignP p to r)

Duration

constraints

User-role assignment ([(I, P)|D], DU , pr:assignU /deassignU r to u)

Role enabling ([(I, P)|D], DR , pr:enable/disable r)

Role-permission assignment ([(I, P)|D], DP , pr:assignP /deassignP p to r)

Duration

constraints

on Role

activation

Total active role

duration

Per-role ([(I, P)|D], Dactive, [Ddefault], pr:activeR total r)

Per-user role ([(I, P)|D], Duactive, u, pr:activeUR total r)

Max role

duration per

activation

Per-role ([(I, P)|D], Dmax, pr activeR max r)

Per-user role ([(I, P)|D], Dumax, u, pr activeUR max r)

Cardinality

constraint

on role

activation

Total no. of

activations

Per Role ([(I, P)|D], Nactive, [Ndefault], pr:activeR n r)

Per-user role ([(I, P)|D], Nuactive, u, pr:activeUR n r)

Max. no. of

concurrent

activations

Per-role ([(I, P)|D], Nmax, [Ndefault], pr:activeR con r)

Per-user role ([(I, P)|D], Numax, u, pr:activeUR con r)

Trigger E1, . . . , En, C1, . . . , Ck → pr : E after �t
Constraint

enabling

pr:enable/disable c where c ∈ {(D, Dx , pr : E), (C), (D, C)})

Run-time

requests

Users’ activation request (s : (de)activate r for u after �t))

(pr:assignU /de-assignU r to u after �t)

Administrator’s run-time (pr:enable/disable r after �t)

request (pr:assignP /de-assignP p to r after �t)

(pr:enable/disable c after �t)

a role is enabled, the permissions assigned to it can be acquired by a user by
activating it. When a duration constraint is specified, the enabling/disabling
of a role is initiated by a constraint-enabling event that results from the
firing of a trigger or through an administrator-initiated run-time event.

2. Temporal constraints on user-role and role-permission assignments: These
constraints allow specifying intervals and durations in which a user or a
permission is assigned to a role.

3. Activation constraints: These constraints allow specification of restrictions
on the activation of a role. These include, for example, specifying the total
duration for which a user may activate a role or the number of concurrent
activations of a role at a particular time.

4. Run-time events: A set of run-time events allows an administrator to dynam-
ically initiate GTRBAC events or enable duration or activation constraints.
Another set of run-time events allow users to request activation or deacti-
vation of a role.

5. Constraint-enabling expressions: The GTRBAC model includes events that
enable or disable duration and role-activation constraints mentioned earlier.

6. Triggers: The GTRBAC triggers allow expressing dependencies among
events.

Table I summarizes the constraint types and expressions of the GTRBAC
model. The periodic expression used in the constraint expressions is of the form

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:6 • J. B. D. Joshi et al.

Table II. An Example GTRBAC Access Policy for a Medical Information System

a. (DayTime, enable DayDoctor), (NightTime, enable NightDoctor),

(AllTime, pr1: disable NurseInTraining), pr2 > pr1

((M, W, F), assignU Adams to DayDoctor)

1 b. ((T, Th, S, Su), assignU Bill to DayDoctor);

(M, W, F), assignU Alice to NightDoctor)

((T, Th, S, Su), assignU Ben to NightDoctor)

c. ([10 AM, 3 PM], assignU Carol to DayDoctor)

2 a. (assignU Ami to NurseInTraining); (assignU Elizabeth to DayNurse)

b. c1 = (6 hr, 2 hr, pr2: enable NurseInTraining)

a. (enable DayNurse → enable c1)

b. (activate DayNurse for Elizabeth → enable NurseInTraining after 10 min)

3 c. (enable NightDoctor → enable NightNurse after 10 min);

(disable NightDoctor → disable NightNurse after 10 min)

d. (enable DayDoctor → enable DayNurse after 10 min);

(disable DayDoctor → disable DayNurse after 10 min)

(I, P), where P is an expression denoting an infinite set of periodic intervals and
I = [begin, end] is a time interval denoting the lower and upper bounds that
are imposed on instants in P. The function Sol (I, P) is used to denote all the
time instants in (I, P). D expresses the duration specified for a constraint. In
the duration and role-activation constraint expressions, Dx and Nx indicate
the duration and cardinality values. If the subscript x starts with u, then it
is a per-user-role constraint otherwise it is a per-role constraint. For instance,
Dactive indicates the duration for which the specified role can be active, whereas,
Duactive indicates the duration for which the specified user may activate the
specified role. The following example illustrates the specification of a GTRBAC
policy. For more details on the GTRBAC model, we refer the readers to Joshi
et al. [2005b].

Example 1. Table II contains the GTRBAC policy for a hospital. The pe-
riodicity constraint 1a specifies the enabling times of DayDoctor and Night-
Doctor roles. For simplicity, we use DayTime and NightTime instead of their
(I, P) forms. The periodicity constraint 1b allows the DayDoctor role to be
assigned to Adams on Mondays, Wednesdays, and Fridays, and to Bill on Tues-
days, Thursdays, Saturdays, and Sundays. Similarly, Alice and Ben are as-
signed to the NightDoctor role on the different days of the week. Furthermore,
the assignment in 1c allows Carol to assume the DayDoctor role everyday
between 10 AM and 3 PM. In 2a, Ami and Elizabeth are assigned to roles Nur-
seInTraining and DayNurse respectively, with no temporal restriction, i.e.,
the assignment is valid at all times. 2b specifies a duration constraint of 2 hr
on the enabling time of the NurseInTraining role, but this constraint is valid
for only 6 hr after the constraint c1 has been enabled. Because of this, Ami will
be able to activate the NurseInTraining role, at most, for 2 hr whenever con-
straint c1 is enabled. In row 3, we have a set of triggers. Trigger 3a indicates that
constraint c1 is enabled when the DayNurse is enabled, which means, now, the
NurseInTraining role, can be enabled for, at most, 2 hr within the next 6 hr
(Note that after the next 6 hr, the NurseInTraining role can be enabled for
any duration of time). Trigger 3b indicates that 10 min after Elizabeth activates

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:7

Table III. Various Status Predicates

Predicate Meaning

enabled(r, t) Role r is enabled at time t
u assigned(u, r, t) User u is assigned to role r at time t
p assigned(p, r, t) Permission p is assigned to role r at time t
can activate(u, r, t) User u can activate role r at time t
can acquire(u, p, t) User u can acquire permission p at time t
can be acquired(p, r, t) Permission p can be acquired through role r at time t
active(u, r, s, t) Role r is active in user u’s session s at time t
acquires(u, p, s, t) User u acquires permission p in session s at time t

the DayNurse role, the NurseInTraining role is enabled. This shows that a
nurse in training will have access to the system only if Elizabeth is present in
the system, that is, she may be acting as a training supervisor. The remaining
triggers in row 3 show that the DayNurse and NightNurse roles are enabled
(disabled) 10 min after the DayDoctor and NightDoctor roles are enabled
(disabled).

3. HYBRID ROLE HIERARCHIES

In an earlier work, we have introduced the following three hierarchy
types, mentioned earlier: permission-inheritance-only hierarchy (I hierarchy),
role-activation-only hierarchy (A hierarchy), and the combined permission-
inheritance-activation hierarchy (IA hierarchy) [Joshi et al. 2002]. Table III
shows the notation for various predicates used in the definitions of these hi-
erarchies. Predicates enabled(r, t), assigned(u, r, t) and assigned(p, r, t) re-
fer to the status of roles, user-role and role-permission assignments at time
t. Predicate can activate(u, r, t) indicates that user u can activate role r at
time t. This implies that user u is implicitly or explicitly assigned to role r.
active(u, r, s, t) indicates that role r is active in user u’s session s at time t
whereas, acquires(u, p, s, t) implies that u acquires permission p at time t in
session s. The axioms below capture the key relationships among these predi-
cates and precisely identify the permission-acquisition and role-activation se-
mantics allowed in the GTRBAC model [Joshi et al. 2002].

AXIOMS. If r ∈ Roles, u ∈ Users, p ∈ Permissions, s ∈ Sessions, and time
instant t ≥ 0, the following implications hold:

1. p assigned(p, r, t) → can be acquired(p, r, t)

2. u assigned(u, r, t) → can activate(u, r, t)

3. can activate(u, r, t) ∧ can be acquired(p, r, t) → can acquire(u, p, t)

4. active(u, r, s, t) ∧ can be acquired(p, r, t) → acquires(u, p, s, t)

Axiom (1) states that if a permission is assigned to a role, then it can be
acquired through that role. Axiom (2) states that all users assigned to a role
can activate that role. Axiom (3) states that if a user u can activate a role r,
then all the permissions that can be acquired through r can be acquired by
u. Similarly, axiom (4) states that if there is a user session in which a user u
has activated a role r then u acquires all the permissions that can be acquired

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:8 • J. B. D. Joshi et al.

through role r. We note that axioms (1) and (2) indicate that the semantics for
the permission-acquisition and role-activation is governed by explicit user-role
and role-permission assignments.

3.1 Formal Definitions of Temporal Role Hierarchies

Semantically, the use of a role hierarchy is to extend the possibility of
permission-acquisition and role-activation semantics beyond the explicit as-
signments as indicated by the definitions below [Joshi et al. 2002]. The GTR-
BAC model’s constraint enabling/disabling expressions can be used to specify
when a hierarchical relation can be enabled/disabled. Hence, if h is a hierar-
chical relation, we write “enable/disable h” to enable/disable the relation. This
allows administrators to dynamically change, if needed, the hierarchical rela-
tionships on a set of roles through periodicity or duration constraints, run-time
requests and triggers. The following definitions do not consider the enabling
times of the hierarchically related roles and, hence, the hierarchies are termed
unrestricted.

Definition 3.1 (Unrestricted I Hierarchy [Joshi et al. 2002]). Let x and y
be roles such that (x ≥i y), that is, x has a permission inheritance-only re-
lation over y at time t. Then the following holds:

∀p, (x ≥i y) ∧ can be acquired (p, y , t) → can be acquired (p, x, t) (c1)

Definition 3.2 (Unrestricted A Hierarchy [Joshi et al. 2002]). Let x and y
be roles such that (x ≥a y), that is, x has an activation-only relation over y
at time t. Then the following holds:

∀u, (x ≥a y) ∧ can activate(u, x, t) → can activate(u, y , t) (c2)

Definition 3.3 (Unrestricted IA Hierarchy). Let x and y be roles such that
(x ≥ y), that is, x has a general inheritance relation over y at time t. Then the
following holds:

∀p, ∀u, ((x ≥ y) ∧ can be acquired (p, y , t) → can be acquired (p, x, t))
∧ ((x ≥ y) ∧ can activate(u, x, t) → can activate(u, y , t)) (c3)

In the definitions above, x is said to be a senior of y and, conversely, y is
said to be a junior of x. Thus, if (x ≥i y), the permissions that can be acquired
through x, include all the permissions assigned to x (by axiom (1)) and all the
permissions that can be acquired through role y (by c1). Condition c2 states that
if user u can activate role x, and x has A-relation over y , then u can also activate
role y , even if u is not explicitly assigned to y . The IA is the most common form of
hierarchy. On a given set of roles, various inheritance relations may be defined.
Therefore, we require that the following consistency property be satisfied in a
role hierarchy in order to ensure that the senior–junior relationship between
two roles in one type of hierarchy is not reversed in another. Note that all three
hierarchies are transitive.

PROPERTY 1 (CONSISTENCY OF HIERARCHIES [JOSHI ET AL. 2005A]). Let 〈 f1〉,
〈 f2〉 ∈ {≥i, ≥a, ≥}. Let x and y be two distinct roles such that (x〈 f1〉 y); then the
condition ¬(y〈 f2〉x) must hold.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:9

Fig. 2. Enabling intervals of software engineer and programmer roles.

Table IV. Inheritance Semantics for the Weakly and Strongly Restricted Hierarchiesa

Interval τ → τ = τ1 τ = τ2

↓ Hierarchy Type r1 disabled, r2 enabled r1 enabled, r2 disabled

I hierarchy Iw No inheritance in τ Permission-inheritance in τ

Is No inheritance in τ No inheritance in τ

A hierarchy Aw Activation-inheritance in τ No inheritance in τ

As No inheritance in τ No inheritance in τ

I A hierarchy IAw Activation-inheritance in τ Permission-inheritance in τ

IAs No inheritance in τ No inheritance in τ

aNote: w means weakly-restricted and s means strongly-restricted.

In what follows, we will always assume that hierarchies are consistent. When
we consider the enabling times of hierarchically related roles, we obtain weakly
restricted and strongly restricted forms of the hierarchies. Their meaning is
exemplified in Figure 2, in which roles—Software Engineer and Programmer—
are hierarchically related. Of those two roles, only one is enabled in intervals
τ1 and τ2. In a strongly restricted hierarchy, inheritance is not allowed in these
intervals. This is because, in this type of hierarchy, both roles must be enabled
for inheritance to take place. By contrast, in a weakly restricted hierarchy, in-
heritance may be allowed in these intervals. Table IV shows the inheritance
properties of weakly restricted and strongly restricted hierarchies in τ1 and τ2,
when r1 is senior of r2.

When activation-time restrictions are to be enforced in GTRBAC, different
hierarchy types may need to be considered depending upon whether the con-
straint is user- or permission-centric [Joshi et al. 2002]. An activation constraint
is user-centric if it is designed to control different aspects of users in the system
through role activations, for example, to control the number of users activating
a role. An activation constraint is permission-centric if it is aimed at control-
ling distribution of the permissions through role activations. [Joshi et al. 2002].
show that an I or IA hierarchy is appropriate when an activation constraint is
user-centric, whereas an A hierarchy is appropriate when the activation con-
straint is permission centric.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:10 • J. B. D. Joshi et al.

Fig. 3. Hierarchy examples.

3.2 Examples of Temporal Role Hierarchies

We illustrate with the examples 3.1 and 3.2 that refers to Figure 3 the practical
uses of the various kinds of hierarchies.

Example 3.1. Consider the hierarchy in Figure 3(a). Here, we see that the
SeniorSecurityAdmin role is enabled only in interval (8 PM, 11 PM). Neither of
its junior roles is enabled in the entire interval (8 PM, 11 PM). The Iw relation
allows a user who activates the SeniorSecurityAdmin role to acquire all the
permissions of its junior roles. This may be desirable if SeniorSecurityAdmin
role is designed to perform special security operations for checking and main-
tenance. In such a case, it is reasonable to think that the user assigned to the
SeniorSecurityAdmin role will need all the administrative privileges of the ju-
nior roles. The temporal restrictions on SecurityAdmin1 and SecurityAdmin2
constrain the users assigned to them to carry out corresponding system ad-
ministration activities only in the specified intervals. However, here, the user
assigned to SeniorSecurityAdmin cannot assume the role of the junior roles
SecurityAdmin1 and SecurityAdmin2. To remove this limitation, we can use
the I Aw hierarchy instead. The hierarchy in Figure 3b, on the other hand, is
of type I. The senior role is the PartTimeDoctor role, which has two intervals
in which it can be enabled, (3 PM, 6 PM) and (7 AM, 10 AM). If a user activates
the PartTimeDoctor role in the first interval, according to the Is relation, he
essentially gets all the privileges of the DayDoctor role, as the NightDoctor role
is disabled at that time. Now, consider the second interval. We see that it over-
laps with the enabling times of the two junior roles. Hence, if the user activates
the PartTimeDoctor role in the second interval, he acquires the privileges of
only the NightDoctor role in the subinterval (7 AM, 9 AM) and that of only the
DayDoctor role in the subinterval (9 AM, 10 AM). Thus, we see that the two dif-
ferent semantics of an inheritance hierarchy can be used to achieve different

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:11

needs. Again, a part-time doctor cannot work as a DayDoctor or a NightDoctor,
although he can acquire the permissions assigned to them. If a user is also to be
allowed to use the junior roles, we can use I As hierarchy instead. Now, consider
Figure 3c. Here we see that there is no interval in which the GeneralDoctor role
can be enabled. However, since the activation hierarchy is of type Aw, any user
assigned to the GeneralDoctor role can activate either of the junior roles when
they are enabled. In effect, any user assigned to the GeneralDoctor role can
activate both the DayDoctor and the NightDoctor roles whenever they are en-
abled. Figure 3d illustrates the use of an activation hierarchy of type As. Here,
a supervising doctor can assume the SupervisorDoctor role in intervals (10 AM,
12 noon) and (7 AM, 9 AM). In the first interval, the supervisor will be able to
acquire all the privileges of the DayDoctor role by activating it in the second
interval, he will be able to acquire all the privileges of the NightDoctor role
by activating it along with the SupervisorDoctor role. The SupervisorDoctor
role may simply contain some extra privileges that are required for the super-
vision task during daytime or nighttime. [Moffett 1998]. has identified such a
supervision-review capability as an important organizational control principle.

Example 3.2. Consider the following requirements for a programming
project. A software tool is used for the programming task. The project leader
mainly supervises the programming tasks. Only the programmers do the cod-
ing. The project leader can only look at the tasks the programmers have car-
ried out on a weekly basis, say on Fridays. Figure 3e depicts the hierarchy
that can be generated for achieving the goal. Role TaskR contains the read-only
permissions whereas role TaskW contains all the write/modify permissions re-
lated to the programming task. The Project Leader role becomes the senior of
Programmer role only on Fridays. Note that the users assigned to the Project
Leader can acquire permissions of TaskR but not of TaskW.

4. UNIQUELY ACTIVABLE SET OF A HIERARCHY

In this section, we introduce the notion of UAS and present a formal approach
for characterizing it for a hierarchy. The UAS associated with a role in a hier-
archy is essentially the set of role sets that can be activated by a user assigned
only to that role. In a hierarchy that allows coexistence of the multiple hier-
archy types, the permission-inheritance and role-activation semantics can be
complex, thus making administration and management of large hierarchies
difficult. The UAS gives the role combinations that can be activated by a user
in a single session and thus helps in determining the granularity of permis-
sion sets that can be acquired by users through a role in the hierarchy. Thus,
UAS is mainly relevant from the perspective of the principle of least privilege.
Here, we first determine the UAS characteristics of a monotype hierarchy with
only one type of hierarchical relation over the roles, followed by that of a hy-
brid linear path and then formalize results for the more general role hierarchy.
The approach to determining the UAS presented in this section is algorith-
mic in nature. A mathematical (declarative) way of establishing the UAS is
presented in Appendix C. We then introduce the notion of acquisition equiva-
lence to characterize equivalent hierarchies in order to address the usefulness

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:12 • J. B. D. Joshi et al.

of a hybrid hierarchy. Here onward we will only use the unrestricted forms of
hierarchies.

4.1 Computing Uniquely Activable Set of a Hierarchy

We represent by
⊔

(H) the UAS associated with a user assigned to the senior-
most role of a hierarchy H. For a given role set X = {x1, x2, . . ., xn} and a set of
hierarchy relations [f] ⊆ {≥i, ≥a, ≥}, we represent a general hierarchy H over X
as (X, [f]). If [f] = {〈 f 〉} is a singleton set with hierarchy relation 〈 f 〉, then we call
H a monotype hierarchy and write (X, 〈 f 〉), else we call H a hybrid hierarchy.
Furthermore, H is a linear path over X if (X, [f]) is an ordered sequence of
relations x1〈 f12〉x2〈 f23〉x3 . . . xn−1〈 f (n−1)n〉xn, where 〈 fi j 〉 ∈ [f]. We represent a
monotype linear path as L = (X, 〈 f 〉) and a hybrid linear path as Lh = (X , [f]).
We use LH to represent either L or Lh. H represents any hierarchy. For H =
〈X , [f]〉, Role(H) = X . In this paper, we assume that (a) the set of permissions
assigned to each role in Roles(H) is distinct, and (b) hierarchy H has only one
senior-most role, indicated by SH .

The results can be easily extended to deal with a general hierarchy. We use JH

to denote the set of junior-most roles of H. We use notation P(r) to refer to the set
of permissions that are available through r(P (r) = {p|can be acquired(r, p)}).
Similarly, given a set X of roles, we use P(X) to denote

⋃
r∈X P (r). We formally

define the UAS of a hierarchy as follows.

Definition 4.1 (Uniquely Activable Set of a Hierarchy H). Let H = (X, [f])
be a hierarchy. Then, the UAS for a user u assigned only to role SH ,

⊔
(H),

is the maximal set of role sets Y1, Y2, . . ., Ym , such that

1. for each i ∈ {1, 2, . . ., m}, Ø ⊂ Yi ⊆ X , and all roles in each Yi can be activated
in a single session of u,

2. for all pairs i, j ∈ {1, 2, . . ., m} and i = j , P (Yi) = P (Y j), and,

3. for each Z ⊆ X such that Z /∈ ⊔
(H), if P (Yi) = P (Z) for some i, then

(|Yi| < |Z |) (where |A| denotes the cardinality of set A).

Note that each element Yi is a subset of X. Condition (2) indicates that
each role set of

⊔
(H) is unique in terms of the permissions that are avail-

able through its roles. Condition (3) considers the possibility of different role
sets associated with the same set of permissions. In such a case,

⊔
(H) con-

tains the role set that has the least number of roles. Conditions (2) and
(3) prevent a pair of senior and junior roles, e.g., of an IA hierarchy, to
be in a role set of

⊔
(H). For instance, if relation (x≥ y) is in H, then the

set {x} and not {x, y} will be in
⊔

(H), as P (x) = P ({x, y}). The
⊔

(H) val-
ues for I, A, and IA hierarchy can differ significantly because of the differ-
ence in permission-inheritance and role-activation semantics associated with
them.

As a hybrid linear path may have different types of hierarchical relations,
it can be decomposed into a set of monotype linear paths. The following defi-
nition formalizes the notion of monotype decomposition of a hybrid linear path
(MDHP).

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:13

We denote the senior- and the junior-most roles of a hybrid linear path Lh
as SLh and JLh, respectively.

Definition 4.2 (Monotype Decomposition of Hybrid Path—MDHP). Let
Lh = (X , [f]) be a hybrid linear path over role set X. Then Lh can be decom-
posed into an ordered set Lh = (L1, L2, . . . , Ln) with X = X 1

⋃
X 2

⋃
..

⋃
X n,

such that Li = (X i, 〈 fi〉) is a monotype linear path, and the following conditions
hold:

(1) for all i ∈ {1, . . ., n − 1}, (i) 〈 fi〉 = 〈 fi+1〉, and (ii) X i
⋂

X i+1 = {JLi } =
{SL(i+1)

}, and

(2) for all i ∈ {1, . . ., n} and (i + 1 < j ≤ n) or (1 ≤ j < i − 1), X i
⋂

X j = φ,

Here, (L1, L2, . . ., Ln) is minimal MDHP. Lh can also be written as (L1, Lh′),
(Lh′′, Ln), or (Lhx , Lhy), each of which is a decomposition of Lh.

It is easy to see that SLh = SL1
, and JLh = JLn . As indicated by definition

4.2, we can break a hybrid linear path into an ordered set of monotype lin-
ear paths. Such an MDHP of a hybrid path allows us to use the UAS of the
monotype linear paths to determine the UAS of a hybrid linear path. Note that
the minimal MDHP consists of monotype linear paths that are maximal in the
sense that combining any consecutive pair of component linear paths will give a
component hybrid linear path, as indicated by part (1) of the definition. Exam-
ple 4.1 illustrates the decomposition of a hybrid linear path into its monotype
components.

Example 4.1. Consider the role hierarchy of Figure 4a. The complete
MDHP of the hybrid linear path is (L1, L2, L3, L4, L5, L6), as shown in
Figure 4c. We note that if L4 is split into L4,1 = ({4, 5}, IA-type) and L4,2 =
({5, 6}, IA type), then L1, L2, L3, L4,1, L4,2, L5, L6 is not a MDHP, as L4,1 and
L4,2 do not satisfy part (1) of definition 4.2.

In this paper, we also use functions subL(LH) and subU (LH) that re-
turn the lower and upper parts of a linear path LH. That is, if LH
has x1〈 f12〉x2〈 f23〉x3 · · · xn−1〈 f(n−1)n〉xn, where 〈 fi(i+1)〉 ∈ {≥i, ≥a, ≥} and
(L1, L2, . . ., Ln) is its MDHP, then,

� subL(LH) = x2〈 f23〉x3 · · · xn−1〈 f(n−1)n〉xn = (subL(L1), L2, . . . , Ln)
� subU (LH) = x1〈 f12〉x2〈 f 23〉x3 · · · 〈 fn−2〉xn−1 = (L1, L2, . . . , subU (Ln))
� For L = (x〈 f 〉 y), subL(L) = subU (L) = Ø

Here, subL(LH) and subU (LH) return the lower and the upper subpaths
of LH. subL(x〈 f 〉 y) = subU (x〈 f 〉 y) = Ø indicates that path (x〈 f 〉 y) has no
subpaths.

Because of the different activation semantics associated with each hierarchy
type, UAS associated with each type is also different. The following theorem
formally characterizes the UAS of a monotype hierarchy, H:

THEOREM 4.4. Let H = (X, 〈 f 〉) be a monotype linear hierarchy defined over
role set X = {x1, x2, . . ., xn} with 〈 f 〉 ∈ {≥i, ≥a, ≥}, then

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:14 • J. B. D. Joshi et al.

Fig. 4. Complete horizontal partition of a hybrid linear path.

⊔
(H) =

⎧⎪⎨
⎪⎩

{SH} if (〈 f 〉 = ≥i)

{2X \Ø} if (〈 f 〉 = ≥a)

{{x1}, {x2}, . . ., {xn}} if (〈 f 〉 = ≥)

The theorem states that if H is an I hierarchy,
⊔

(H) contains the senior-most
role only. If H is an A hierarchy,

⊔
(H) contains the power set of the role set X

without the empty element, i.e., the senior-most role can activate every com-
bination of the roles in the hierarchy. Similarly, if H is an IA hierarchy,

⊔
(H)

contains set elements containing individual roles of the hierarchy. The proof
for the theorem follows directly from the transitive properties of the hierarchi-
cal relations and the permission-inheritance-only and/or role-activation-only
semantics of the three hierarchies. The following example illustrates the use of
the results of Theorem 4.1.

Example 4.2. Consider the monotype hierarchies of Figure 3. For each of
the monotype hierarchies in Figures 3a and 3b, the corresponding UAS only
contain the set with the senior-most role of the hierarchy, as each of them has
the senior-most role related to its junior(s) by I -relation(s). For hierarchies in
Figures 3c and 3d, assuming unrestricted forms in both the cases, instead of
the restricted forms indicated in the figures, the UASs are as follows:

Hierarchy of Figure 3c: Here,
⊔

(H)= {{GeneralDoctor}, {DayDoctor}, {NightDoctor}, {GeneralDoctor,
DayDoctor}, {GeneralDoctor,NightDoctor}, {GeneralDoctor,
DayDoctor,NightDoctor}, {DayDoctor,NightDoctor}}.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:15

However, GeneralDoctor is never enabled.
If we do not consider temporal constraints, the UAS of hierarchy in Figure 3d is:

⊔
(H)= {{SupervisorDoctor}, {DayDoctor}, {NightDoctor},

{SupervisorDoctor,DayDoctor}, {SupervisorDoctor,NightDoctor},
{SupervisorDoctor,DayDoctor,NightDoctor}, {DayDoctor,}.
{NightDoctor}}.

Next, we present a formal basis for characterizing
⊔

(H) for a hybrid linear
path. We first present the results for a hybrid linear path consisting of only
two monotype linear components in the following lemma and then use it to
characterize arbitrary hybrid linear paths.

LEMMA 4.1. Let Lh = (L1, L2) be a hybrid linear path such that
L1 = (X 1, 〈 f 〉) and L2 = (X 2, 〈 f2〉), where X = {x1, x2, . . ., xn} = X 1

⋃
X 2, and

〈 f1〉 = 〈 f2〉. Then for a user u assigned only to SL1
, we have:

⊔
(Lh) =

⎧⎪⎨
⎪⎩

⊔
(L1) if ≥i ∈ {〈 f1〉, 〈 f2〉}

⊔
(LU

1)
⋃ ⊔

(L2)
⋃

(
⊔

(LU
1)

⊗ ⊔
(L2)) if (〈 f1〉, 〈 f2〉) = (≥a , ≥)

⊔
(L1)

⋃ ⊔
(LL

2)
⋃

(
⊔

(L1)
⊗ ⊔

(LL
2)) if (〈 f1〉, 〈 f2〉) = (≥, ≥a)

where, LL
2 = subL(L2), LU

2 = subU (L2) and A
⊗

B = {{x ⋃
y} | x ∈ A and

y ∈ B}.
Note that in the computation involving

⊔
(Lh), the components on the right

side are disjoint with respect to each other and, hence, | ⊔(Lh)| is simply the sum
of the cardinalities of the components on the right side. Theorem 4.2 determines
the

⊔
(H) for an arbitrary hybrid linear path.

THEOREM 4.2. Let Lh = (L1, LH2) be a hybrid linear path such that L1 =
(X 1, 〈 f1〉), LH2 is a linear path over X 2, where X 1 and X 2 are role sets, and
X = X 1

⋃
X 2. Furthermore, let LH2 = (Lx , LH ′), where Lx = (X x , 〈 f x〉) over

role set X x such that 〈 f x〉 = 〈 f1〉 and LH′ is a linear path, possibly empty. Then,
we have the following:

1. if 〈 f1〉 = ≥i then
⊔

(Lh) = ⊔
(L1)

2. if 〈 f1〉 = ≥a then
⊔

(Lh) =
{ ⊔

(L1) if (〈 f x〉 = ≥i)
⊔

(LU
1)

⋃ ⊔
(LH2)

⋃
(
⊔

(LU
1)

⊗ ⊔
(LH2)) if (〈 f x〉 = ≥)

3. if 〈 f1〉 = ≥ then

⊔
(Lh) =

{ ⊔
(L1) if (〈 f x〉 = ≥i)

⊔
(L1)

⋃ ⊔
(LHL

2)
⋃

(
⊔

(L1)
⊗ ⊔

(LHL
2)) if (〈 f x〉 = ≥a)

The next example illustrates the use of the above theorem and refers to
Figure 5. We note that to compute

⊔
(H) for the hierarchy in case (c), we need

to first compute for cases (a) and (b).

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:16 • J. B. D. Joshi et al.

Fig. 5. Computing UAS for a hybrid linear hierarchy

Case a. Here L1 has r3 ≥ r2, and L2 has r2 ≥a r1, i.e. (〈 f1〉, 〈 f2〉) = (≥, ≥a).
Therefore, by lemma 4.1, we have,

⊔
(Lh) = ⊔ (

L1

) ⋃ ⊔ (
LL

2

) ⋃ (⊔ (
L1

) ⊗ ⊔ (
LL

2

))
= {{r2}, {r3}}

⋃{{r1}}
⋃

({{r2}, {r3}}
⊗{{r1}})

= {{r1}, {r2}, {r3}, {{r1}, {r2}}, {r1, r3}}

Case b. Here L1 has r5 ≥a r4 ≥a r3, and LH2 is the hierarchy in (a). Now, we
apply Theorem 4.2. As 〈 f1〉 = ≥a, case (2) of the theorem applies. Thus,

⊔
(Lh) = ⊔ (

LU
1

) ⋃ ⊔ (
LH2

) ⋃ ⊔ (
LU

1

) ⊗ ⊔
(LH2)

= {{r4}, {r5}, {r4, r5}}
⋃ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}}

⋃
({{r4}, {r5},

{r4, r5}}
⊗ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}})

= {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r4}, {r5}, {r4, r5}, {r1, r4}, {r1, r5},
{r1, r4, r5}, {r2, r4}, {r2, r5}, {r2, r4, r5}, {r3, r4}, {r3, r5}, {r3, r4, r5},
{r1, r2, r4}, {r1, r2, r5}, {r1, r2, r4, r5}, {r1, r3, r4}, {r1, r3, r5}, {r1, r3, r4, r5}}

Case c. Here L1 = r7 ≥ r6 ≥ r5, and LH2 is the hierarchy in (a). Again, we
apply Theorem 4.2. Computation can be carried out similarly using:

⊔
(Lh) = ⊔

(L1)
⋃ ⊔ (

LHL
2

) ⋃ ⊔
(L1)

⊗ ⊔ (
LHL

2

)
= {{r5}, {r6}, {r7}}

⋃ {{r1}, {r2}, {r3}, {r1, r2}, {r1, r3}, {r4}, {r1, r4},
{r2, r4}, {r3, r4}, {r1, r2, r4}, {r1, r3, r4}}

⋃
({{r5}, {r6}, {r7}}

⊗ {{r1}, {r2},
{r3}, {r1, r2}, {r1, r3}, {r4}, {r1, r4}, {r2, r4}, {r3, r4},{r1, r2, r4}, {r1, r3, r4}})

= {{r5}, {r6}, {r7}, {r1}, {r2},{r3}, {r1, r2}, {r1, r3}, {r4}, {r1, r4}, {r2, r4},
{r3, r4}, {r1, r2, r4}, {r1, r3, r4}, {r1, r5}, {r2, r5}, {r3, r5}, {r1, r2, r5},
{r1, r3, r5}, {r4, r5}, {r1, r4, r5}, {r2, r4, r5}, {r3, r4, r5}, {r1, r2, r4, r5},

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:17

{r1, r3, r4, r5}, {r1, r6}, {r2, r6}, {r3, r6}, {r1, r2, r6}, {r1, r3, r6}, {r4, r6},
{r1, r4, r6}, {r2, r4, r6}, {r3, r4, r6}, {r1, r2, r4, r6}, {r1, r3, r4, r6}, {r1, r7},
{r2, r7}, {r3, r7}, {r1, r2, r7}, {r1, r3, r7}, {r4, r7}, {r1, r4, r7}, {r2, r4, r7},
{r3, r4, r7}, {r1, r2, r4, r7}, {r1, r3, r4, r7}}

We note that each hierarchical structure can be broken down into a list of
linear paths. We refer to such a decomposition of hierarchy as linear path decom-
position of hybrid hierarchy (LPDHH). In the following, we consider a general
hierarchy rooted at a role and represent it using a set of linear components in
LPDHH.

Definition 4.3 (Linear Path Decomposition of Hybrid Hierarchy —LPDHH).
Let H = (X , [f]) be a hierarchy over role set X rooted at role SH with relation
set [f] ⊆ {≥i, ≥a, ≥}. We say that H is an ordered set of linear paths (hybrid
or monotype), that is, H = (LH1, LH2, . . ., LHm), where LHi is a linear path
over X i, if, for i, j ∈ {1, 2, . . ., m}, i = j and LHi is a linear path over X i, and
the following conditions hold

1. SLHi = SH ; JLHi ∈ JH , (note JLHi is a role, JH is a role set)

2. X i = X j ; X = ⋃m
i=1 X i

3. for all J ∈ JH , there exists no linear path LH = ({SH , xπ1
, xπ2

, . . ., xπi , J},
[f ′]), where [f ′] ⊆ [f] and {xπ1

, xπ2
, . . ., xπi } ⊆ X \{SH , J}, such that LH /∈

{LH1, LH2, . . . , LHm}.
We say that LH1, LH2, . . ., LHm is the complete LPDHH of H. H can also be

written as (LH1, H ′), (H ′′, LHm), (Hx , Hy), etc., each of which is a decomposition
of H.

Based on the notion of LPDHH of a general hybrid hierarchy, the follow-
ing theorem shows how we can formally determine

⊔
(H) of a general hybrid

hierarchy that is not a simple linear path.

THEOREM 4.3. Let H = (X, [f]) = (LH1, H1) be a nonempty and nonlinear
hierarchy. Then,

⊔
(H) = I\C, where

� I = ⊔
(LH1)

⋃ ⊔
(H1)

⋃ ⊔
(LH1)\B

⊗ ⊔
(H1)\B

� B = (
⊔

(LH1) � ⊔
(H1)), where A � B = {S, T |S ∈ A, T ∈ B and S

⋂
T = φ}

� C = {Z |Z ∈ I, and ∃ x, y ∈ Z , x≥ y}.
The theorem determines

⊔
(H) of a general hierarchy that has at least one

role having multiple juniors, hence, making it different from the linear paths.
The computation is based on the partitioning of the hierarchy into two com-
ponents, in which one is a linear component and the other is the remaining
part of the hierarchy. This allows us to compute

⊔
(H) recursively once we

have the linear components. The following example illustrates the working of
Theorem 4.3.

Example 4.3. Consider the hierarchy in Figure 6. The linear components
of the hierarchy are shown in a–d. Each component’s

⊔
(LH) computed using

Theorem 4.2 is shown below, based on which we compute the UAS of the entire

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:18 • J. B. D. Joshi et al.

Fig. 6. Computing UAS for a general hierarchy.

hierarchy. We will write H12 to mean the hierarchy formed by components L1

and Lh2, H13 to mean the hierarchy formed by components L1, Lh2 and Lh3,
and H14 to mean the overall hierarchy. First, we get

⊔
(L1) = {{r3}, {r2}, {r1}}

⊔
(Lh2) = {{t1}, {r2}, {r3}, {t1, r2}, {t1, r3}}

⊔
(Lh3) = {{r3}, {s1}, {t1}, {s1, r3},{r3, t1}}

⊔
(Lh4) = {{r3}, {s1}, {s2}, {s3} , {r3, s1},{r3, s2}, {r3, s3}, {s1, s2},

{s1, s3}, {r3, s1, s2}, {r3, s1, s3}}
Step 1: Consider components L1 and Lh2.

Here, B = ⊔
(L1) � ⊔

(Lh2) = {{r3}, {r2},{t1, r2}, {t1, r3}}.
Therefore,

⊔
(L1)\B

⊗ ⊔
(Lh2)\B = {{r1}}

⊗ {{t1}} = {{r1, t1}}.
Note that C is empty. Thus,

⊔
(H12) = I\ C = I

= {{r3},{r2}, {r1}, {t1}, {r1, t1}, {r3, t1},{t1, r2}}.

Step 2: Consider component H12 (result from Step 1) and Lh3.
Here, B = ⊔

(H12) � ⊔
(Lh3) = {{r3}, {t1}, {r1, t1}, {r2, t1}, {r3, t1}, {r3, s1}}.

Therefore,
⊔

(H12)\B
⊗ ⊔

(Lh3)\B={{r2}, {r1}}
⊗ {{s1}}

= {{r1, s1}, {r2, s1}}.
Hence, I = {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {r3, t1}, {t1, r2}, {s1}, {r2, s1},

{r1, s1}, {r3, s1}}
Thus,

⊔
(H13) = I\C = {{r3}, {r2}, {r1}, {t1}, {r1, t1}, {t1, r2}, {s1}, {r2, s1},

{r1, s1}, {r3, s1}} (C is empty)

Step 3: Consider component H13 (result from Step 2) and Lh4.
Here, B = ⊔

(H13) � ⊔
(Lh4) = {{r3}, {s1}, {r1, s1}, {r2, s1}, {r3,s2}, {r3, s3},

{s1,s2}, {r3, s1, s2}, {r3, s1, s3}, {r3, s1}, {s1, s3}}.
Therefore,

⊔
(H13)\B

⊗ ⊔
(Lh4)\B

= {{r2}, {r1}, {t1}, {r1, t1}, {t1, r2}}
⊗

({{s2, s3}})
ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:19

= {{r2, s2} {r1, s2}, {t1, s2}, {r1, t1, s2}, {t1, r2, s2}, {r2, s3} {r1, s3}, {t1, s3},
{r1, t1, s3}, {t1, r2, s3}}.

Hence,
⊔

(H14) = I\C = {{r3}, {s1}, {s2}, {s3}, {r3, s1}, {r3, s2}, {r3, s3}, {s1, s2},
{s1, s3}, {r3, s1, s2}, {r3, s1, s3}}

⋃ {{r3}, {r2}, {r1}, {t1}, {r1, t1},
{t1, r2}, {s1}, {r2, s1}, {r1, s1}, {r3, s1}}

⋃ {{r2, s2} {r1, s2}, {t1, s2},
{r1, t1, s2}, {t1, r2, s2}, {r2, s3} {r1, s3}, {t1, s3}, {r1, t1, s3}, {t1, r2, s3}}

= {{r3}, {s1}, {s2}, {s3}, {r3, s1}, {r3, s2}, {r3, s3}, {s1, s2}, {s1, s3}, {r3, s1, s2},
{r3, s1, s3}, {r2}, {r1}, {t1}, {r1, t1}, {t1, r2}, {r2, s1}, {r1, s1},
{r2, s2} {r1, s2}, {t1, s2}, {t1, s3}, {t2, r2}, {r1, t1, s2}, {t1, r2, s2},
{t1, r1, s3}, {t1, r2, s3}, {s3, r3}, {s3, r1}}.

Based on the theorems, a recursive algorithm can be easily constructed.

4.2 Acquisition Equivalent Hierarchies

An important issue is whether or not we can use a hierarchy of one type to
achieve what a hierarchy of another type allows. To address such an issue, we
need an appropriate notion of equivalence between different hierarchies, as
they may be structurally and semantically different. We note that, central to
the use of hierarchies in a GTRBAC system is the efficient and fine-grained
management of permissions acquired by users assigned to the various roles in
the hierarchy. A notion of the equivalence between two hierarchies can be es-
tablished if we show that the maximum set of permissions that can be acquired
by a user in the two hierarchies is the same. The significance of using the maxi-
mum set of permissions is that within the equivalent hierarchies, the users can
have the same set of accesses, even though, within each hierarchy, the users
may have to activate a different set of roles. Here, we introduce the notion of
acquisition-equivalence between two hierarchies. We say that two hierarchies
are acquisition-equivalent if they allow the same maximum set of permissions
to be acquired by a user assigned to the senior-most role. We use Pmax(H) to refer
to the maximum set of permissions that a user can acquire through the senior-
most role of the hierarchy H in a session. The notion of acquisition-equivalence
is formally defined as follows:

Definition 4.4 (Acquisition Equivalence or AC-Equivalence of Two Hierar-
chies). Let H1 and H2 be two hierarchies over role set Roles. We then say that
H1 and H2 are acquisition-equivalent or AC-equivalent (written as H1 =AC H2),
if Pmax(H1) = Pmax(H2). Furthermore, H1 =AC H2 and H2 =AC H3, then
H1 =AC H3.

The following theorem provides the formal characteristics of an AC-
equivalent set of hierarchies.

THEOREM 4.11 (AC-EQUIVALENT HIERARCHIES). Let H1 = (X , [f1]) =
(LH1, LH2, . . ., LHn) and H2 = (X , 〈 f2〉) be two hierarchies over the role set X.
If, for roles x, y ∈ X and a relation 〈 f 〉 ∈ [f1], the condition (x〈 f 〉 y) ∈ H1 ←→
(x〈 f2〉 y) ∈ H2) holds, then H1 =AC H2 (i.e. H1 and H2 are AC-equivalent) pro-
vided the following holds

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:20 • J. B. D. Joshi et al.

� for all i ∈ {1, 2, . . ., n}, and for hierarchies LH’, LHmid , LH”, each possibly
empty, the following is satisfied for 〈 f x〉 = ≥i and 〈 f y 〉 = ≥a

¬∃Lx , L y such that LHi = (LH ′, Lx , LHmid , L y , LH ′′),

The condition LHi = (LH ′, Lx , LHmid , L y , L′′) implies that in the linear com-
ponent LHi, there is an I relation that precedes (not necessarily immediately,
as LHmid may not be empty) an A relation. All hierarchies that do not have such
a component are AC-equivalent to a monotype hierarchy of the same structure.
As a consequence, first, the theorem implies that any two monotype hierarchies
are AC-equivalent, as the condition LHmid = (LH ′, Lx , LHmid , L y , L′′) cannot
occur in a monotype hierarchy. For example, consider a monotype I hierarchy
H1. Now construct an A hierarchy H2 such that it contains the same roles that
are in H1, and for each I relation between a pair of roles in H1, H2 has an A
relation. The theorem indicates that H1 =AC H2. This is because all the permis-
sions that can be used by a user assigned to the senior-most role of H1, can also
be used by a user assigned to the senior-most role of H2. The only difference
between the two is that the users may have to activate a different set of roles
from the

⊔
(H)s of the two hierarchies to do that.

Furthermore, the theorem indicates that every hierarchy that does not con-
tain a linear component shown above is AC-equivalent to a monotype hierarchy
of the same structure and, hence, to each other. This is because if an I relation
precedes an A relation in the hierarchy then the permissions associated with
the roles below the A hierarchy cannot be acquired by any user assigned to the
senior-most role, hence, reducing the permissions that can be acquired. The sig-
nificance of this result is that in systems where the principle of least privilege
is not of much concern, any monotype hierarchy can be used instead of a more
complex hybrid hierarchy.

5. DERIVED RELATIONS IN A HIERARCHY

In a hierarchy where all the three types of hierarchies can coexist, a hierarchical
relation between a pair of roles that are not directly related may be derived.
From the axioms and the hierarchy definitions presented in Section 3, it is
easy to see that the three hierarchy types are transitive. For instance, if (x ≥
y) and (y ≥ z) then it implies (x ≥ z). However, in a hybrid hierarchy, the
derived relation between an arbitrary pair of roles can have partial transitivity
or special hierarchical semantics. For instance, if (x ≥i y) and (y ≥ z) then
it implies (x ≥i z) i.e., transitivity exists only with respect to the permission-
inheritance semantics. Similarly, assume (x ≥a y) and (y ≥i z). Here it appears
that x and z are not hierarchically related because (1) if a user u assigned to x
activates x, he does not acquire z’s permissions, and (2) u cannot activate z to
acquire its permissions. Note, however, that u can activate y and acquire all the
permissions that can be acquired through z. We call this special derived type a
conditioned derived relation, written as (x[A](B)〈 f 〉 y), and, defined as follows:

Definition 5.1 (Conditioned-Derived Relation). Let H be a role hierarchy, x,
y ∈ Roles (H) and A, B ⊆ Roles (H). Then (x[A](B)〈 f 〉 y) is called a conditioned
Derived Relation (also read as the derived relation (x〈 f 〉 y) is conditioned on

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:21

Fig. 7. A hierarchy for a medical department.

roles in A and B′′), if, for all a ∈ A and b ∈ B, the following holds:

(x ≥a a) ∧ (a〈 f 〉 y) ∧ ((x = b) ∨ (x ≥a b)) ∧ (b ≥a y)

where 〈 f 〉 ∈ {≥i, ≥}, |A| > 0, |B| ≥ 0, and (b ≥a y) is a direct relation.

Here, the condition indicates that x is related to each a ∈ A directly or
through a derived A relation, whereas each a is related to y by the 〈 f 〉 relation.
This implies that a permission that can be acquired through role y can be
acquired by a user assigned to role x without activating y, but by activating any
of the roles in A. We note that B may be empty, in which case, the conditioned
derived relation is simply written as (x[A]〈 f 〉 y). If B is not empty, then for
each b ∈ B, there is an A path from x to y through b. If C = A ∩ B then, for
all c ∈ C, both (c ≥i y) and (c ≥a y) hold and, hence, (c ≥ y). It is possible
that (x[A]({x})〈 f 〉 y), which means (x[A]〈 f 〉 y) holds and (x ≥a y) is a direct
relation. As we shall see, it is not necessary that each hierarchical path from
x to each a ∈ A contain only A relations; it is only required that a user who is
assigned to, or can activate, x can also activate a. This, however, implies that
derived/direct relation between x and a is not an I-relation. Furthermore, we
note that in (x[A](B)〈 f 〉 y), 〈 f 〉 is either ≥i or ≥.

Example 5.1. Consider the hierarchy of Figure 7, representing a medical
department. PD can be enabled for 3 hr only. SD’s relation to DD and ND are as
discussed in Figure 7. N can be I-inherited by DD and ND. ED is enabled at all
times. The A relation between ED and N allows a user assigned to ED to explicitly
act as a nurse besides inheriting N’s permissions through DD or ND. Assume
that the HD role represents the head doctor of the medical department, which
is enabled at all times. HD can act as the supervisor role of doctors. Two of the
conditioned-derived relations are as follows.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:22 • J. B. D. Joshi et al.

1. (SD[{DD, ND}] ≥i N): This is because users assigned to SD can acquire permis-
sions of N only by activating DD or ND.

2. (HD[{DD, ND, ED}]({ED}) ≥i N): This is because users assigned to HD can acquire
permissions of N by activating SD, ND, or ED. Furthermore, the users can
directly activate N (because of the A path through ED).

5.1 The Inference Rules

We now introduce the inference rules that allow derivation of indirect rela-
tions between roles from a set of explicitly specified hierarchical relations.
Such derived relations can be used to determine the permissions that can
be acquired through the activation of a role in a hierarchy by a user. We use
ISen(y) = {x| (x ≥a y) is a direct relation} to denote the set of the immediate
A seniors of role y. The inference rules are as follows.

Definition 5.2 (Inference Rules). Let H be a role hierarchy, x, y , z ∈
Roles(H), and A, A1, A2, B1, B2 ⊆ Roles(H). Then the inference rules for deriv-
ing indirect relations are as shown in Table V.

R1 is a trivial case of transitivity using a single hierarchy type. Thus, if 〈 f 〉
is ≥a, then from the two relations (x ≥a y) and (y ≥a z), relation (x ≥a z) is
inferred. R2 applies to all the pairs with direct or derived relations. This can
result in a conditioned-derived relation of the form (x[A]〈 f 〉z). R3 deals with
each of the cases in which an unconditioned relation follows a conditioned-
derived relation.

In a hierarchy, there may be more than one hierarchical path between roles
that are not directly related. Such a situation arises when there are multi-
ple hierarchical paths between a given pair of roles. R4 deals with such cases.
Rule R4.1 is a trivial case in which both the hierarchical paths are the same
unconditioned relation (derived or direct). Rule R4.2 captures all the possible
combinations of two different unconditioned relations between the same pair.
Similarly, rule R4.3 captures all the possible combinations of two different hi-
erarchical relations between the same pair of roles in which one is an uncon-
ditioned-derived relation. Last, R4.4 captures all the possible combinations of
two different hierarchical conditioned-derived relations between a pair of roles.
Table VI illustrates the application of these rules to determine the derived re-
lations for the hierarchy in Figure 7.

5.2 Soundness and Completeness of the Inference Rules

In this section, we show that the set of inference rules introduced above is

[AQ3]

sound and complete, using the notion of authorization consistent hierarchies,
which is defined below. In the definition, we use predicate can activate(u, r, H) to
mean that u can activate role r in role hierarchy H. Similarly, we use predicate
can be acquired(p, r, H) to mean that permission p can be acquired through
role r using permission-inheritance semantics in hierarchy H. Let UAH(H) and
PAH(H) be sets of all the user-role and role-permission assignments related to
the roles in Roles(H).

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:23

Table V. The Inference Rules

Rule Case Inference rule

R1 (Monotype hierarchy)

(x〈 f 〉 y) ∧ (y〈 f 〉z) → (x〈 f 〉z) for all 〈 f 〉 ∈ {≥i, ≥a, ≥}
(Hybrid hierarchy with unconditioned relations)

R2 1 (x〈 f1〉 y) ∧ (y〈 f2〉z) → (x≥i z) for all 〈 f1〉, 〈 f2〉 ∈ {≥i, ≥}
such that 〈 f1〉 = 〈 f2〉

2 (x≥ y) ∧ (y≥az) → (x≥a z)

3 (x≥a y) ∧ (x〈 f 〉 y) → (x[{ y}]〈 f 〉 z) for 〈 f 〉 ∈ {≥i, ≥}
(Hybrid hierarchy with one unconditioned-derived relation)

for 〈 f 〉 ∈ {≥i, ≥a, ≥} such that 〈 f1〉 = 〈 f2〉
1 a. (x[A](B) ≥i y) ∧ (y ≥i z) → (x[A ∪ C] ≥i z), where

C = { y} i f |B| > 0, else C = φ

b. (x[A](B) ≥i y) ∧ (y≥z) → (x[A ∪ C](C) ≥i z), where

C = { y} if |B| > 0, else C = φ

R3 for 〈 f 〉 ∈ {≥i, ≥a, ≥} such that 〈 f1〉 = 〈 f2〉
2 a. (x[A](B) ≥ y) ∧ (y ≥i z) → (x[A ∪ C] ≥i z), where

C = { y} i f |B| > 0, else C = φ

b. (x[A](B) ≥ y) ∧ (y ≥ z) → (x[A ∪ C](C) ≥ z)

where C = { y} i f |B| > 0, else C = φ

3 (x[A](B) ≥ y) ∧ (y ≥a z) → (x ≥a z)

(Hierarchy with multiple paths between two roles; subscripts

indicate the path number)

1 (x〈 f 〉 y)1 ∧ (x〈 f 〉 y)2 → (x〈 f 〉 y) for all 〈 f 〉 ∈ {≥i, ≥a, ≥}
2 (x〈 f1〉 y)1 ∧ (x〈 f2〉 y)2 → (x≥ y) for all 〈 f1〉, 〈 f2〉 ∈ {≥i, ≥a, ≥}

such that 〈 f1〉 = 〈 f2〉
for all 〈 f 〉, 〈 f1〉, 〈 f2〉 ∈ {≥i, ≥} such that 〈 f1〉 = 〈 f2〉

3 (x[A](B) ≥i y)1 ∧ (x ≥i y)2 → (x ≥i y) if B = φ

a. (x[A](B) ≥i y)1 ∧ (x ≥i y)2 → (x ≥ y) if |B| > 0

(x[A](B) ≥ y)1 ∧ (x ≥ y)2 → (x ≥ y)

R4 b. (x[A](B)〈 f 〉 y)1 ∧ (x ≥a y)2 → (x[A](ISen(y))〈 f 〉 y)

c. (x[A](B)〈 f1〉 y)1 ∧ (x〈 f2〉 y)2 → (x≥ y)

for all 〈 f 〉, 〈 f1〉, 〈 f2 ∈ {≥i, ≥} such that 〈 f1〉 = 〈 f2〉
4 a. (x[A1](B1)〈 f 〉 y)1 ∧ (x[A2](B2)〈 f 〉 y)2 → (x[A1 ∪ A2]

(B1 ∪ B2)〈 f 〉 y)

b. (x[A1](B1)〈 f1〉 y)1 ∧ (x[A2](B2)〈 f2〉 y)2 → (x[A1 ∪ A2]

(A ∪ B1 ∪ B2)≥i y)

such that A = A1 i f 〈 f1〉 = ≥ else A = A2

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:24 • J. B. D. Joshi et al.

Table VI. Application of Inference Rules over the Hierarchy of Figure 7

Rule Applied Derived Relations

R1 (PD ≥i N), (HD ≥a N)

1 (ED ≥ ND) ∧ (ND ≥i N) implies (ED ≥i N)

2 (HD ≥ SD) ∧ (SD ≥a DD) implies (HD ≥a DD)

R2 (SD ≥a DD) ∧ (DD ≥i N) implies (SD[{DD}] ≥i N)

3 (HD ≥a ED) ∧ (ED ≥ ND) implies (HD[{ED}] ≥ ND)

(HD ≥a DD) ∧ (DD ≥ N) implies (HD[{DD}] ≥ ND)

R3 2a (HD[{ED}] ≥ DD) ∧ (DD ≥i N) implies (HD[{ED}] ≥i N)

(HD[{ED}] ≥ DD) ∧ (ND ≥i N) implies (HD[{ED}] ≥i N)

1 (ED ≥i N) (one through DD, another through ND)

2 (ED ≥i N)∧(ED ≥a N) implies (ED ≥ N)

R4 3b (HD[{ED}] ≥i N) ∧ (ED ≥a N) implies HD{ED} ≥i N)

which is the same as (HD[{ED}] ≥ N)

4a (HD[{DD}] ≥i N) ∧ (HD[{ND}] ≥i N) implies HD[{DD, ND}] ≥i N)

4b (HD[{DD,ND}] ≥i N) ∧ (HD[{ED}] ≥ N) implies HD[{DD, ND, ED}] ≥i N)

Definition 5.3 (Authorization-Consistent Hierarchies). Let H1 and H2 be
two hierarchies such that Roles(H1) = Roles(H2), UAH (H1) = UAH (H2) and
PAH (H1) = PAH (H2). Then, we say that H1 and H2 are authorization consistent
(written as H1 ≈ H2) if, for all r ∈ Roles (H1), the following conditions hold:

1. ∀u ∈ Users, can activate (u, r, H1) ←→ can activate (u, r, H2),
2. ∀p ∈ Permissions, can be acquired (p, r, H1) ←→ can be acquired (p, r, H2).

Here, we note that the two hierarchies considered have the same set of roles,
user-role assignments and role-permission assignments. Condition (1) implies
that if a user u can activate a role r in Roles(H1), then he can activate it even if
H1 is replaced by H2 (and vice versa). Similarly, the second condition says that
the set of permissions that can be acquired through a role under H1 is also the
same set of permissions that can be acquired through that role in H2 for any
given user. This signifies that if two hierarchies are authorization consistent
then a user assigned to a role can activate exactly the same set of roles and
acquire the same set of permissions under the two hierarchies. This means the
permission-inheritance and role-activation semantics in the two hierarchies are
the same, even if the sets of hierarchical relations in the two hierarchies are
different. Figure 8 depicts an example of the notion of authorization consistency.
Here, the hierarchy relation h1 in H2 can be inferred from the hierarchical
relations (r1 ≥i r3) and (r3 ≥ r5), whereas, h2 can be inferred from the two
hierarchical paths from role r1 to r4. Hence, H2 adds no new access capability
compared to H1. However, h3 in H3 cannot be inferred from the hierarchical
relations (r1 ≥i r3) and (r3 ≥ r5). In H3, a user assigned to r1 can also activate
r5, which is not possible in H1 or H2. Hence, (H1 � H3), and (H2 � H3). We
use this notion of authorization consistency between two hierarchies to show
that the set of rules presented above is sound, i.e., each new derived relation
that can be deduced from a given set of hierarchical relations using the rules

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:25

Fig. 8. Example of AC-equivalence; H1 ≈ H2, H1 � H3 and H2 � H3.

produces the same inheritance and activation semantics that is already present
in the original hierarchy. Within a hierarchy H, we use hxz to represent (x〈 f 〉z)
for 〈 f 〉 ∈ {≥i, ≥a, ≥} or (x[A](B)〈 f 〉z) for 〈 f 〉 ∈ {≥i, ≥a}, where x, z ∈ Roles(H)
and A,B ⊆ Roles(H). The following theorem formally states this result.

THEOREM 5.5 (SOUNDNESS OF RULES R1–R4). Given a role hierarchy H, if a
new hierarchical relation hxz is derived from hierarchical relations in H as per
rules R1–R4, and H ′ = H ∪ {hxz}, then H and H′ are authorization consistent,
i.e., H ≈ H ′.

The theorem implies that the new relations derived using the rules do not
allow a role to inherit more (or less) permissions than was allowed to it before the
derived relation is added. Similarly, the new derived relation does not allow a
user to be able to activate more (or less) number of roles than that was allowed
before the derived relation is introduced. Next, we present the completeness
theorem for the rules R1–R4. We write H[R1–R4] � hx,z to indicate that the
relations in H can logically derive relation hx,z using rules R1–R4.

THEOREM 5.2 (COMPLETENESS OF RULES R1–R4). Given a role hierarchy H,
rules R1–R4 are complete; That is, if ¬H[R1–R4] � hx,z , for any pair of roles
x, z ∈ Roles(H), then H� H ∪ {hx,z}, i.e., the hierarchies H and H′ = H ∪ {hx,z}
are not authorization consistent.

The theorem indicates that if a relation, say 〈 f 〉, between any two roles, say
x and z, of Roles(H) cannot be derived from the hierarchical relations in H,
then any role hierarchy containing such a relation is not authorization consis-
tent with H. In other words, we can take every pair of roles (x, z) of Roles(H)
and every possible hierarchical relations between them, including conditioned
derived relations and extend H by adding it to get H′. If we get H ≈ H’′, the
theorem implies that the rules R1–R4 will derive it. Hence, this shows that
the rules are complete. Using the transitivity of the hierarchical relations and
considering all the cases of the rules, we can easily construct the proofs. The
proofs for both the theorems are provided in Appendix B.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:26 • J. B. D. Joshi et al.

Table VII. Criteria for Hierarchy Transformations

Criteria

1 C1 ∀ u ∈ Users, r ∈ Roles(Ho)

can activate (u,r,t,Ho) ↔ can activate(u,r,t,Hn)

C2 ∀p ∈ P(Roles(Ho)), r ∈ Roles(Ho),

2 can be acquired (p,r,t,Ho) ↔ can be acquired (p,r,t,Hn)

C2r C2 is not Satisfied and (s ≥i r ≥a j) ∈ Hn

6. HIERARCHY-TRANSFORMATION ALGORITHMS

In an organization, policies evolve with time, affecting the existing role hierar-
chies. New roles may need to be added and old ones may need to be deleted or
modified. Permission sets of existing roles or their temporal properties may need
to be altered. Making such changes may require restructuring the hierarchies
to avoid undesirable situations. In this section, we analyze transformations of a
role hierarchy when a role is added, modified, or deleted that best maintain the
permission-inheritance and role-activation semantics of the original hierarchy.

6.1 Role Addition

Typically, a new role is added to an existing hierarchy to distribute a set of new
permissions among the already existing roles in the hierarchy. Before we add
a new role to a hierarchy, we need to properly identify the existing sets of roles
that can be its seniors and juniors based on the permission-distribution require-
ments. Furthermore, we need to consider the existing constraints on and/or
among roles in the hierarchy to determine possible new relations between the
existing roles and the new role. While preexisting hierarchical semantics may
need to be maintained, the permission-acquisition and role-activation seman-
tics of the original hierarchy may need to be relaxed to allow some desirable
changes.

Let r be the new role to be added in the original hierarchy Ho. Suppose r is to
be added between roles s and j, and (s〈 f 〉 j) ∈ Ho. By adding the new role, assume
we obtain the new hierarchy Hn. That is, Hn= (Ho ∪ {(s〈 f1〉r), (r〈 f2〉 j)})\(s〈 f 〉 j)
for some hierarchy relations 〈 f1〉 and 〈 f2〉.

In general, when a new role is added, we require that the original permission-
acquisition and/or role-activation semantics of the hierarchy is maintained.
These requirements can be represented as the conditional criteria, shown in
Table VII, that should be valid after the transformation has been made.

When a new role r is added between two hierarchically related roles s and
j, a crucial issue is the effect it has on the original relationship between s and
j. Based on the hierarchical relations introduced between s and r and between
r and j, there could be various derived relations between s and j. We introduce
three criteria that capture all the possible changes in the semantics of the re-
lationship between s and j in the new hierarchy Hn compared to the relation
they had in the original hierarchy Ho, as shown in Table IX (see later). Here,[AQ4]
criterion C1 indicates that the activation-inheritance semantics is maintained
between s and j after adding the new role r. In other words, C1 is said to be

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:27

Table VIII. Scenarios for Hierarchy Transformations

Scenarios for role addition (r is newly added role)

S1 No extra constraint is added with respect to the new role r;

S2 A permission-centric activation constraint is added for the new role r

S3 A user-centric activation constraint is added for the new role r;

S4 (s, r) is considered to be in DSoD

S5 (r, j) is considered to be in DSoD

satisfied if there is activation-inheritance semantics applied between s and j in
both Ho and Hn (e.g., row a1 in Table IX), or in neither Ho nor Hn (e.g., row b4
in Table IX). If only one of Ho and Hn, has the activation-inheritance semantics
between s and j (e.g., row a4 and b1 in Table IX), then C1 is not satisfied. Sim-
ilarly, C2 guarantees that the permission-inheritance semantics is maintained
between s and j after adding the new role. That is, C2 is satisfied if there is
permission-inheritance semantics between s and j in both Ho and Hn (e.g., row
b4 in Table IX), or in neither Ho nor Hn (e.g., row a1 in Table IX). If, however,
only one of Ho and Hn has the permission-inheritance semantics between the
two roles s and j (e.g., row a4 and b1 in Table IX), then C2 is not satisfied. If
C2 is not satisfied, it doesn’t necessarily mean that the permission-inheritance
semantics is completely lost. For instance, a conditioned-derived relation could
exist between s and j after the new role has been added. Criterion C2r captures
such cases. Note that because one of the three hierarchy relations exist between
s and j in Ho, a user assigned to s can always acquire the permissions of j in Ho

— through the use of either the inheritance or the activation semantics. One
special case is when in Hn, we have s ≥i r and r ≥a j (e.g., row a5, b5, and c5 in
Table IX), where the original relation between s and j will be completely lost.

When a new role is added, various new constraints related to the new role
may need to be added as well. We consider the five scenarios (S1 through S5),
shown in Table VIII to capture such new constraints associated with r. Whether
or not we can allow these constraints to be specified on the new role r depends on
the hierarchical relation that r has with s and/or j in Hn, as shown in the right
part of Table IX. Here,

√
means the corresponding constraint can be introduced

for r and × means that the corresponding constraint cannot be supported for r.
S1 indicates a scenario where no extra constraint is added. If we want to add
a permission-centric activation constraint to r (S2), we require that s≥ar ∈ Hn

[Joshi et al. 2002]; if we want to add a user-centric activation constraint to r
(S3), we require that s ≥i r ∈ Hn or s ≥ r ∈ Hn [Joshi et al. 2002]. Note that
DSoD constraints can be defined among roles related by A hierarchy [Joshi et al.
2002]. Thus, S4 is applicable if s ≥a r ∈ Hn and S5 is supported if r ≥a j ∈ Hn.

6.2 Role Deletion

When a role is deleted from a hierarchy, the crucial issue is what to do with
the permissions associated with it and the users assigned to it. Generally, it
will be required that the permissions be retained in the system and make them
available through other roles in the hierarchy. This requires redistributing the

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:28 • J. B. D. Joshi et al.

Table IX. Transformation with Criteria Satisfied for Different Scenarios

Criteria

(s〈f 〉 j) ∈ Ho (s〈 f1〉r), (r〈 f2〉 j) ∈ Hn Satisfied S1 S2 S3 S4 S5

1 (s ≥a r), (r ≥a j) C1, C2
√ √ × √ √

2 (s ≥a r), (r ≥i j) C2
√ √ × √ ×

3 (s ≥a r), (r ≥ j) C1, C2
√ √ × √ ×

4 (s ≥i r), (r ≥i j) C2r √ × √ × √

a s ≥a j 5 (s ≥i r), (r ≥a j) C2
√ × √ × √

6 (s ≥a r), (r ≥ j) C2r √ × √ × ×
7 (s ≥ r), (r ≥i j) C2r √ × √ × ×
8 (s ≥ r), (r ≥a j) C1, C2

√ × √ × √

9 (s ≥ r), (r ≥ j) C1, C2r √ × √ × ×
1 (s ≥a r), (r ≥a j) C2r √ √ × √ √

2 (s ≥a r), (r ≥i j) C1, C2r √ √ × √ ×
3 (s ≥a r), (r ≥ j) C2r √ √ × √ ×
4 (s ≥i r), (r ≥i j) C1, C2

√ × √ × ×
b s ≥i j 5 (s ≥i r), (r ≥a j) C1

√ × √ × √

6 (s ≥a r), (r ≥ j) C1, C2
√ × √ × ×

7 (s ≥ r), (r ≥i j) C1, C2
√ × √ × ×

8 (s ≥ r), (r ≥a j) C2r √ × √ × √

9 (s ≥ r), (r ≥ j) C2
√ × √ × ×

1 (s ≥a r), (r ≥a j) C1, C2r √ √ × √ √

2 (s ≥a r), (r ≥i j) C2r √ √ × √ ×
3 (s ≥a r), (r ≥ j) C1, C2r √ √ × √ ×
4 (s ≥i r), (r ≥i j) C2

√ × √ × ×
c s ≥ j 5 (s ≥i r), (r ≥a j) None

√ × √ × √

6 (s ≥a r), (r ≥ j) C2
√ × √ × ×

7 (s ≥ r), (r ≥i j) C2
√ × √ × ×

8 (s ≥ r), (r ≥a j) C1, C2r √ × √ × √

9 (s ≥ r), (r ≥ j) C1, C2r √ × √ × √

permissions associated with the deleted role to other roles in the hierarchy
and reassigning the users originally assigned to the deleted role. We identify
the following three approaches for the deletion of a role from a hierarchy with
respect to the privilege distribution: (1) the first approach is to reassign the
permissions of the deleted role to its immediate seniors; (2) the second approach
is to reassign the permissions of the deleted roles to its immediate juniors; and
(3) the third approach is to reassign the permissions of the deleted role to each
of the senior roles through which the permissions of the deleted role can be
acquired within the original hierarchy.

One key problem with these approaches is the reassignment of the users who
were originally assigned to the deleted role. As users assigned to the deleted
roles need to be reassigned to junior roles or the senior roles, any reassignment
will result in either a privilege escalation or privilege depletion of some users

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:29

Table X. Deletion of a Role Using the First and Second Approach

Pr Is Assigned to Role s Pr is Assigned to Role j

Reassignment Ur Assigned to s Ur Assigned to j Ur Assigned to s Ur Assigned to j

Results Privilege

escalation for

users in Ur

Privilege

depletion for

users in Ur

Privilege

escalation for

users in Ur
and U j

Privilege

escalation for

users in U j

Table XI. Result of Deletion of a Role Satisfying C1 and C2 Using the First and Second Approach

For (r〈 f 〉 j) ∈ Ho, For (s〈h〉r) ∈ Ho, For s〈 f 〉 j ∈ Hn, 〈 f 〉 is (For appropriate transformation)

〈 f 〉is 〈h〉 is First approach Second approach

I hierarchy (≥i) none appropriate none appropriate

A hierarchy (≥a) A hierarchy (≥a) A hierarchy (≥a) A hierarchy (≥a)

IA hierarchy (≥) A hierarchy (≥a) A hierarchy (≥a)(restrictive)

I hierarchy (≥i) any I hierarchy (≥i) I hierarchy (≥i)

IA hierarchy (≥) for any 〈h〉 〈h〉 〈h〉

assigned to the roles in the hierarchy. The third approach is ad-hoc in nature
and inefficient as permissions are explicitly assigned to all senior roles through
which they could be acquired before the transformation. Hence, it defeats the
purpose of a hierarchy structure. In practice, this approach may be applicable
when the whole hierarchy needs to be restructured. We do not discuss the third
approach further.

As before, let Ho be the original hierarchy and Hn the new hierarchy ob-
tained by deleting role r. Furthermore, let Ur and Pr be the sets of users and
permissions explicitly assigned to role r. For each immediate junior j of r, let
U j be the set of users assigned to j. Let s be an immediate senior of r. Table X
depicts what permissions users assigned to r in Ho can now acquire in Hn.

As shown in the table, for both approaches, it is possible that the users
are reassigned to senior or the junior roles. Privilege escalation of users in
Ur occurs in the first approach if they are reassigned to senior roles; privilege
depletion occurs if the users in Ur are reassigned to the junior roles. In practice,
a choice can be made based on the risk factor related to the privilege escalation
and privilege depletion resulting from reassignment of Ur . Note that Us and
U j are not affected in this case. In the second approach, if the users in Ur

are reassigned to s, privilege escalation, similar to that in the first approach,
occurs with respect to Ur . In the second approach, privilege escalation also
occurs with respect to the users in U j . Table XI further depicts different cases
of transformations for the first and the second approaches that attempt to meet
the criteria C1 and C2 introduced earlier (Note here the conditions are checked
for all r ∈ Hn not for r ∈ Ho as indicated in the Table VII).

Figure 9 depicts various transformations when (r≥aj) ∈ Ho under the first
approach. Note that s may be related to its immediate senior by any of the three
hierarchical relations. To show the overall picture, we include roles x, y, and z
as seniors of s with respect to I, A, and IA relations, respectively. Let 〈h〉 be the

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:30 • J. B. D. Joshi et al.

Fig. 9. Deletion of role r when (r ≥a j).

original relation between s and r. When 〈h〉 is an I hierarchy, s and j are not
hierarchically related, as s does not inherit j’s permissions, neither is any user
assigned to s or its seniors able to activate j in Ho. Hence, case (i) in Figure 9a
(i.e., “ no relation” between s and j) retains the original derived relation between
s and j (as indicated in the table). The choices (ii), (iii), and (iv) in Figure 9a
result in undesirable situations as each one makes something possible that was
not originally possible. Similarly, when 〈h〉 is an A or IA hierarchy, s and j have a
derived relation (s≥aj). Hence, as shown in Figures 9b and c, after the deletion
of role r, we can introduce the direct relation s ≥a j. We note that after the
deletion of role r, if we have (s ≥ j), it makes the inheritance of j’s permissions
by s possible, which was not originally allowed.

The cases for (r ≥i j) or (r ≥ j) in Ho can be similarly explained. When (r ≥i j) ∈
Ho, for all relations between s and r, the resulting relation between s and j will
be (s ≥i j) as shown in the table. It is straightforward to see that it is so when
〈h〉 is an I-relation. If 〈h〉 is an IA-relation, then (s ≥i j) is the derived relation in
Ho and, hence, after the transformation, the relation is maintained. However,
if 〈h〉 is an A relation, then the original relation between s and j would be (s[{r}]
≥i j). If in the transformed hierarchy, we use relation (s ≥i j) then users who can
activate s cannot activate j, but still can acquire j’s permission by activating s
in place of the deleted role r. Hence, the semantics about a user not being able
to activate it but being able to acquire its permissions by activating some senior
role is still present in the hierarchy with the new relation (s ≥i j). It is, however,
to be noted that this transformation affects the original relations between j and
role s or those above it. The change is in terms of what needs to be activated to
acquire j’s permissions.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:31

Fig. 10. Partitioning a role r into three roles r1, r2 and r3.

Various cases for the second approach can be similarly explained. The key
difference is when (r ≥a j) ∈ Ho. Here, if (s ≥i r) ∈ Ho, no hierarchical relation be-
tween s and j can be derived in Ho; hence, we cannot have any relation between
s and j. However, no relation between s and j means that the permission set Pr ,
now assigned to j, cannot be used by any user who can activate s. Note that in
Ho, a user who is assigned to s can inherit permissions of r and hence acquire
Pr . Therefore, for this case, there is no appropriate transformation. Similarly, [AQ5]
if (s ≥ r) ∈ Ho, the only possible new relation is (s≥a j). However, it is some-
what restrictive in the sense that, in Ho, a user u who can activate s need not
explicitly activate r to acquire its permissions, but in Hn, u needs to activate j
to acquire its permissions.

6.3 Partitioning of an Existing Role

Sometimes, it is essential that an existing role be simply partitioned to change
the semantics of the hierarchy. In particular, partitioning may indicate the
requirement for separating the role’s permissions into different subsets. We
identify the following three ways to partition a role: (1) vertical partitioning:
here a role is partitioned into a set of new roles that form a linear path with
the permission set of the old role distributed among the new roles; (2) horizon-
tal partitioning: here the role’s permission set is partitioned into a number of
disjoint sets, each of which is assigned to a new role; the new roles do not have
any hierarchical relations between them; and (3) hybrid partitioning: here both
vertical and horizontal partitioning are applied on the role, which result in an
arbitrary hierarchy over the new roles. Figure 10 illustrates these partitions.

In each case, the set of new roles replaces the partitioned role in the hierar-
chy. Once a role is partitioned, it is possible that an administrator completely
redefines the hierarchical relationships in the part of the hierarchy above the
partitioned role. Such a case requires offline redesign of the system. However,
it may be necessary to retain the original hierarchical semantics as defined

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:32 • J. B. D. Joshi et al.

by criteria C1 and C2 (Table VII). Table XII lays out various transformation
characteristics of the three approaches with emphasis in retaining the orig-
inal derived relation between s and j. In particular, Table XII depicts cases
where vertical partitioning creates a monotype linear path and hybrid parti-
tioning creates multiple monotype linear paths. We discuss hybrid linear paths
resulting from vertical and hybrid partitioning at the end of this section. Here,
role r of the original hierarchy Ho is partitioned into a set of new roles RP =
{x1, x2, . . ., xn}. As usual, let s and j represent a senior and a junior of r.

Row 1 shows various hierarchy characteristics associated with the roles in RP.
As already indicated above, in vertical partitioning, the new roles form a linear
path. As shown in the table, if originally (s ≥i r), (r〈 f 〉j) ∈ Ho where 〈 f 〉 ∈ {≥i, ≥},
or (s ≥ r), (r ≥i j) ∈ Ho, then in the new hierarchy Hn, the monotype hierarchy
over the roles in RP should be of type ≥i or ≥. This is necessary to retain the
original derived relation (s ≥i j) in the transformed hierarchy. If (s≥r), (r≥j) ∈
Ho or (s ≥ r), (r ≥a j) ∈ Ho, then the new linear path over the roles in RP should
be of type ≥. Similarly, if (s ≥a r), (r〈 f 〉 j) ∈ Ho, then the new linear path over
the roles in RP should be of type ≥a or ≥.

The original semantics as defined by criteria C1 and C2 are ensured in the
vertical partitioning by these transformations and by the new relations defined
in rows 3 and 4. For horizontal partitioning, the roles in RP are not hierarchically
related. For hybrid partitioning, the roles in RP form multiple linear paths.
The condition for the hybrid partitioning states that at least one linear path
must allow inferring the derived relation (s〈 f 〉 j) of Hn. For the linear path that
maintains the original derived relation (s〈 f 〉 j), we can use the transformations
outlined for vertical partitioning in the if–then columns.

Entries in row 2 indicate the reassignments of the users in Ur originally
assigned to role r, to new role(s) in RP. The reassignments shown here are
defined on the basis that the original access capabilities of the users are to be
retained, although they may result in privilege escalation for some users. In
practice, this may not be the actual case and the relations among roles in the
partition shown in row 1 may need to be accordingly adjusted. Rows 3 and 4
indicate how the roles s and j are related to the new roles in the partition. For
a vertical partitioning approach, the original relation between s and j is used
between s and x1, and xn and j, as indicated. Note that x1 and xn are the senior-
and the junior-most roles of the new linear path created by the roles in RP. In
case of horizontal partitioning, s and j are made senior and junior of each of the
roles in RP. The case for hybrid partitioning is similar to that of the horizontal
partitioning except that the role s is made senior to the senior-most roles of each
of the linear paths formed over the roles in RP, whereas j is made the junior of
each of junior-most roles of these linear paths.

Thus far, we have considered monotype linear components during the vertical
and the hybrid partition. In general, the vertical and hybrid partitioning may
result in hybrid linear path components. In such a case, the users originally
assigned to the partitioned role need to be assigned to the role set from the
partitioned set. First, consider the vertical partitioning. Here, the original users
of the partitioned role is assigned to the maximal subset of the partition set,
say MR, such that the roles in MR do not belong to any elements of the

⊔
(H)

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:33

T
a

b
le

X
II

.
T

ra
n

sf
o
rm

a
ti

o
n

C
h

a
ra

ct
e
ri

st
ic

s
fo

r
D

if
fe

re
n

t
A

p
p

ro
a

ch
e
s

to
R

o
le

P
a

rt
it

io
n

in
g

R
ol

e
r

∈
R
o
l
e
s
(H

o)

is
pa

rt
it

io
n

ed
in

to
R
P

=
{x

1
,
x 2

,
..

.,
x n

}
V

e
rt

ic
a

l
p

a
rt

it
io

n
in

g
H

o
ri

zo
n

ta
l

H
y
b

ri
d

⊂
R

o
le

s(
H

n
)

(m
o
n

o
ty

p
e

li
n

e
a

r
p

a
th

)
p

a
rt

it
io

n
in

g
p

a
rt

it
io

n
in

g

L
H

=
(R
P
,
〈f

〉)
(i

.e
.

fo
rm

s
li

n
e
a

r
p

a
th

)
H

=
(R
P
,

[
f]

)
=

{L
H

1
,

L
H

2
,
..

.,

if
th

en
L

H
n
}f

o
r

n
>

1
(i

.e
.

a
h

ie
ra

rc
h

y

(s
≥ i

r)
,

(r
〈f

〉j
)
∈

H
o

o
r

N
o

p
a

ir
is

w
h

ic
h

is
n

o
t

a
li

n
e
a

r
p

a
th

)
su

ch

1
H

ie
ra

rc
h

y
(s

≥
r)

,
(r

≥ i
j)

∈
H

o
〈f

〉∈
{≥

i,
≥}

h
ie

ra
rc

h
ic

a
ll

y
th

a
t
R
o
l
e
s
(L

H
i)

⊂
R
P

ch
a

ra
ct

e
ri

st
ic

s
re

la
te

d

(s
≥

r)
,

(r
≥

j)
∈

H
o

o
r

〈f
〉=

≥
C

on
d

it
io

n
:

(s
≥

r)
,

(r
≥ a

j)
∈

H
o

if
(s

〈f
〉j)

is
a

d
e
ri

v
e
d

re
la

ti
o
n

in

H
o

th
e
n

a
t

le
a

st
o
n

e
li

n
e
a

r
p

a
th

(s
≥ a

r)
,

(r
〈f

〉j)
∈

H
o

〈f
〉∈

{≥
a

,≥
}

L
H

i
m

u
st

a
ll

o
w

d
e
ri

v
in

g
re

la
ti

o
n

(s
〈h

〉j)
∈

H
o.

R
e
a

ss
ig

n
m

e
n

t
F

o
r

a
ll

u
∈

U
r
,

F
o
r

a
ll

x
∈
R
P
,

F
o
r

a
ll

x
∈

{S
L

H
1
,
S

L
H

2
,
..

.,
S

L
H

n
},

2
o
f

U
r

u
is

a
ss

ig
n

e
d

to
x 1

u
∈

U
r
,

u
is

u
∈

U
r
,

a
ss

ig
n

e
d

to
x

u
is

a
ss

ig
n

e
d

to
x

R
e
la

ti
o
n

w
it

h
s

F
o
r

a
ll

x
∈
R
P
,

F
o
r

a
ll

x
∈

{S
L

H
1
,
S

L
H

2
,
..

.,
S

L
H

n
},

3
w

h
e
re

(s
〈f

〉x
1
)

(s
〈f

〉x)
(s

〈f
〉x)

(s
〈f

〉r)
∈

H
o

R
e
la

ti
o
n

w
it

h
r

F
o
r

a
ll

x
∈
R
P
,

F
o
r

a
ll

x
∈

{J
L

H
1
,

J
L

H
2
,
..

.,
J

L
H

n
},

4
w

h
e
re

(x
n
〈f

〉j)
(x

〈f
〉j)

(x
〈f

〉j)
(r

〈f
〉j)

∈
H

o

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:34 • J. B. D. Joshi et al.

of the senior-most role. In the case of the hybrid hierarchy, the original users
are assigned to the set of roles that represents union of the MPs of individual
elements of the complete LPDHH.

As indicated above, the need for such partitioning is primarily to restructure
or redistribute permission sets in a hierarchy. Another reason for doing such
partitioning may be because of the temporal properties. For example, a role
may need to be vertically partitioned to arrange the temporal properties in
such a way that the intervals associated with a senior role contain the intervals
associated with the junior roles. Similarly, a horizontal partition may need to
be done to create roles with distinct nonoverlapping intervals. Furthermore, a
hybrid partitioning may be needed to properly structure very complex temporal
properties. Analysis of such partitioning, based on temporal properties, has
been considered in detail in a slightly different context in Joshi et al. [2005a]
and also details the pros and cons of such partitioning and provides design
guidelines.

6.4 Edge Deletion and Insertion

GTRBAC allows events of type (enable/disable h), which essentially adds or
removes the hierarchical edge between a prespecified pair of role. Using this
event, periodicity and duration constraints on hierarchical relation can be ex-
pressed. Hence, edge deletion and insertion issues can be considered as related
to the design of the time-based RBAC policies that includes hierarchical rela-
tions. In a generic nontemporal RBAC framework with hybrid hierarchy, edge
deletion, and insertion are important operations. However, both these opera-
tions can be viewed as operations on role addition and deletion discussed above.
For instance, an edge deletion can be viewed as the deletion of the junior role
of the edge and the addition of the same role with all the edges other than
the deleted edge reinserted by considering the issues addressed earlier for role
deletion. Similarly, an edge insertion can be viewed as role addition opera-
tion(s), if either or both of the roles in the edge did not exist in the original
hierarchy. Alternatively, if both the roles of the edges are present in the hierar-
chy, then edge addition can be viewed as removing the junior role of the edge
and reinserting it with all its original hierarchical relations as well as the new
relation.

7. RELATED WORK

Several researchers have addressed issues related to inheritance semantics in
RBAC [Giuri 1995, 1996; Moffett 1998; Nyanchama and Osborn 1999; Sandhu
1996, 1998] Our earlier work has addressed issues concerning the inheritance
relation when temporal properties are introduced [Joshi et al. 2002]. Further-
more, to the best of our knowledge, no work has been reported in the literature
that thoroughly analyzes the coexistence of different types of hierarchical rela-
tions on a set of roles. In Joshi et al. [2002, 2005b], we use the separate notion of
hierarchy using permission-usage and role-activation semantics similar to the
one proposed by Sandhu [1998] and strengthen Sandhu’s argument that the

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:35

distinction between the two semantics is very crucial. This argument is based
on the fact that the simple usage semantics is inadequate for expressing desired
inheritance relation when certain dynamic SoD constraints are used between
two roles that are hierarchically related, whereas, we emphasize the need for
such distinction to capture the inheritance semantics in the presence of var-
ious temporal constraints. Sandhu’s notion of activation hierarchy extending
the inheritance hierarchy corresponds to the IA hierarchy and our A hierarchy
corresponds to Sandhu’s relation that relates two roles by activation hierar-
chy, but not by inheritance semantics [Sandhu 1998]. Giuri [1995, 1996] has
proposed an activation hierarchy based on AND and OR roles. However, these
AND–OR roles can be easily simulated within Sandhu’s ER-RBAC96 model
that uses usage and activation hierarchies, making Giuri’s model a special case
of ER-RBAC96 [Sandhu 1998]. In order to address the needs of control princi-
ples in an organization, which include separation of duty, decentralization, and
supervision and review, Moffet [1998] and Moffett and Lupu [1999] have identi-
fied three types of hierarchies: is a hierarchy activity hierarchy, and supervision
hierarchies. They show that for addressing more completely these control prin-
ciples, we need a dynamic access-control model and a hierarchy that allows
restrictive inheritance as well as dynamic propagation of access rights [Moffett
and Lupu 1999]. We believe that GTRBAC’s temporal constraint framework
with trigger and constraint-enabling mechanisms and temporal hierarchies
can provide the modeling capabilities to address such dynamic issues. Nyan-
chama et al. address the transformation of hierarchies in terms of addition,
deletion, and partitioning of roles in the context of access rights administration
[Nyanchama and Osborn 1994]. However, the analysis is limited to monotype
hierarchies and does not indicate how the transformations are affected by the
presence of other constraints on hierarchical roles.

Sandhu et al. [1999] have presented ARBAC97 model for administrating
RBAC policies using structural properties of RBAC96 hierarchy. Similarly,
in Crampton et al. [2003] have proposed a Scoped Administration of RBAC
(SARBAC) using the notion of an administration scope as a unit of administra-
tion to impose conditions on hierarchy operations. The aim of both the models
has been to define administrative control by defining range or scope of control
for the administration of roles and hierarchical relations. By using the flex-
ible transformation primitives presented in Section 6, the development of a
more complete RBAC administration model than the ARBAC97 and SARBAC
models is possible and is left as a future work. Note that although both AR-
BAC97 and SARBAC emphasize hierarchy management, they do not consider
the coexistence of SoD constraints and role hierarchies and applies to monotype
hierarchies only. Furthermore, role partitioning is a hierarchy transformation
primitive that has not been addressed in the literature before.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extensive analysis of hybrid temporal role
hierarchies for GTRBAC model. We have introduced the notion of uniquely ac-
tivable set of a hierarchy that identifies access capabilities of a user assigned to
a role in a hierarchy in a single session. The formal results we have presented

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:36 • J. B. D. Joshi et al.

allows determining uniquely activable sets for hybrid temporal role hierar-
chies and provide a basis for controlling privilege distribution to the users by
restricting activable sets associated with the roles they are assigned to. The re-
sults related to the AC-equivalence between different role hierarchies also show
that, in cases where the principle of least privilege is not a concern, a monotype
hierarchy may be used. Furthermore, as an A hierarchy does not allow direct
permission inheritance, the results show that the A hierarchy provides the most
needed flexibility. In particular, an A hierarchy allows DSoD constraints to be
defined on hierarchically related roles. Furthermore, the inherit-all-permission
semantics of I hierarchy, as well as IA hierarchy, has several pitfalls in terms of
their ability to handle many organizational control principles [Moffett 1998]. We
have also introduced a set of inference rules, which can be employed to infer hi-
erarchical relationships between pairs of roles that are not directly related. We
have formally showed that the set of inference rules is sound and complete. In a
complex hybrid hierarchy, these rules provide a formal basis for analyzing the
permission-acquisition and role-activation semantics. We have also introduced
the notion of conditioned-derived relation that augments the three hierarchies
(I, A, and IA hierarchies) and facilitates capturing much fine-grained derived
permission-acquisition and activation semantics within a hierarchy. We have
also addressed the issue of hierarchy transformation with respect to role ad-
dition, deletion and partitioning. These transformations essentially form the
basis for policy evolution in an organization. It is to be noted that transforma-
tions that retain original hierarchical semantics in a hybrid hierarchy need to
be based on what type of additional role constraints exist or will be added in
the hierarchy. The results presented in this paper provide a formal basis for de-
veloping administrative tools for the management of GTRBAC systems. Such
security administrative functions are crucial for a well-planned, timely control
of unauthorized accesses, as well as for distributing least access capabilities to
users in order to allow them to carry out their activities and, at the same time,
minimize damage that may be caused by misuse of privileges. We plan to extend
the present work in various directions. We also plan to develop an SQL-like lan-
guage for specifying temporal properties for roles and to develop a prototype of
such language on top of a relational DBMS. Using the results presented here,
we plan to develop efficient security administration and management tools.

APPENDIX

A

The proofs are included in the technical report version of this paper, which is
available as a CERIAS technical report at https://www.cerias.purdue.edu/ with
the same title.

B

The proofs are included in the technical report version of this paper, which is
available as a CERIAS technical report at https://www.cerias.purdue.edu/ with
the same title.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:37

C

Here, we present an alternate way to compute the
⊔

(H) of a hierarchy. The key
issue is that a hierarchy relation generates a partial order of role sets (posets).
That is, for a role set R and 〈 f 〉 ∈ {≥i, ≥a, ≥}, a hierarchy H = (R, 〈 f 〉) denotes
a poset of roles, which means for x, y , z ∈ R

1. (x〈 f 〉x) (We assume that a role is senior to itself) [reflexivity property]

2. (x〈 f 〉 y) and (y〈 f 〉x) implies x = y ; [antisymmetry property]

3. (x〈 f 〉 y) and (y〈 f 〉z) implies x〈 f 〉z; [transitivity property]

Note that cases (1) and (2) are actually not allowed in the RBAC models; how-
ever, for mathematically viewing a role hierarchy as a poset, it does not in-
troduce any problem. Case (3) is implied from the definition of each hierarchy
type. Based on this, a hybrid hierarchy can be considered as a combination of
the two posets over a role set related to the I and A relation (called ISet and
ASet, respectively), as defined below:

ASet = (R, ≥a) and I Set = (R, ≥i) are posets defined on R that satisfy
the following criteria:

a. ∀(x〈 f 〉 y) ∈ H, (〈 f 〉 ∈ {≥a, ≥}) → ((x ≥a y) ∈ ASet)

b. ∀(x〈 f 〉 y) ∈ H, (〈 f 〉 ∈ {≥i, ≥}) → ((x≥i y) ∈ I Set)

Furthermore, a set X is called a chain or total order if, for all x, y ∈ X ,
either (x〈 f 〉 y) or (y〈 f 〉x); and X is called an antichain if, for all x, y ∈ X ,
(x〈 f 〉 y) only if (x = y). Let antichain set(I Set) be the function that computes
the set of all antichains of I Set. Furthermore, let can activate set(ASet) be
the set of roles that a user assigned to the senior-most role in H can activate
according to the A hierarchy relation defined in ASet, which is a subset of
H. Let SH denote the senior-most role in H. Now, the computation of

⊔
(H) is

given by the following theorem:

THEOREM (
⊔

(H) using anti chain): Given a hybrid hierarchy H over roles R,⊔
(H) = antichain set(I Set)

⋂
2can activate set(ASet)

PROOF. The proof follows as
⊔

(H) contains only those incomparable sets of
roles (antichains), indicated by antichain set (I Set), and that can be activated
together, as indicated by the chains in the ASet. For instance, when there is
no I hierarchy, the antichain set (I Set) is a set of all the combinations of the
elements of R. Based on this theorem, steps to complete

⊔
(H) will be as follows:

1. Given original hierarchy, create two hierarchies
a. An A-hierarchy (ASet) containing edges for each A and I A relation in H
b. An I -hierarchy (I Set) containing edges for each I and I A relation in H

2. Compute the antichain set for the I Set
3. Remove from I Set any role set that cannot be activated by the user assigned

to Hs as per the ASet.

This approach characterizes the uniquely activable set (UAS) in a much
simpler way. However, to compute the

⊔
(H), it requires computing the

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

14:38 • J. B. D. Joshi et al.

antichain set and the set of roles that the user assigned to SH can activate.
The difference between this approach and the one presented in Section 4 is that
the former computes

⊔
(H) of the entire hierarchy incrementally from that of

the subhierarchies, while the approach described above operates on the entire
hierarchy. The approach described in Section 4, hence, facilitates the mainte-
nance of the

⊔
(H) of the hierarchy incrementally. That is, a tool can be easily

designed to compute and maintain the
⊔

(H) information for any subhierar-
chy and use that to reconstruct the

⊔
(H) of the entire hierarchy. The

⊔
(H)

information for each role in the hierarchy is needed in order to support the
authorization decision process. This would not be easy using the approach de-
scribed here. Furthermore, the computation of the antichain set for a general I
hierarchy itself is not a straightforward task. The approach in Section 4 essen-
tially provides one incremental way to compute the antichains that form the⊔

(H) of the given hierarchy.

REFERENCES

BARKLEY, J., CINCOTTA, A., FERRAIOLO, D., GAVRILA, S., AND KUHN, D. R. 1997. Role based access

control for the world wide web. In Proceedings of 20th National Information System Security
Conference. NIST/NSA.

BERTINO, E. AND FERRARI, E. 1999. The specification and enforcement of authorization constraints

in workflow management systems. ACM Transactions on Information and System Security 2, 1

(Feb.), 65–104.

BERTINO, E., BONATTI, P. A., AND FERRARI, E. 2001. Trbac: A temporal role-based access control

model. ACM Transactions on Information and System Security 4, 3 (Aug.), 191–233.

BISKUP, J., FLEGEL, U., AND KARABULUT, Y. 1998. Secure mediation: Requirements and design. In

Proceedings of 12th Annual IFIP WG 11.3 Working Conference on Database Security. Chalkidiki,

Greece.

CRAMPTON, J. AND LOIZOU, G. 2003. Administrative scope: A foundation for role-based administra-

tive models. ACM Transsactions on Information System Security 6, 2, 201–231.

FERRAIOLO, D. F., GILBERT, D. M., AND LYNCH, N. 1993. An examination of federal and commercial

access control policy needs. In Proceedings of NISTNCSC National Computer Security Confer-
ence. Baltimore, MD.

GIURI, L. 1995. A new model for role-based access control. In Proceedings of 11th Annual Com-
puter Security Application Conference. New Orleans, LA.

GIURI, L. 1996. Role-based access control: A natural approach. In RBAC ’95: Proceedings of the
first ACM Workshop on Role-based access control. ACM Press, New York. 13.

JAEGER, T. AND TIDSWELL, J. E. 2001. Practical safety in flexible access control models. ACM Trans-
actions on Information and System Security 4, 2, 158–190.

JOSHI, J. B. D., AREF, W., GHAFOOR, A., AND SPAFFORD, E. H. 2001a. Security models for web-based

applications. Communications of the ACM 44, 2 (Feb.), 38–72.

JOSHI, J. B. D., GHAFOOR, A., AREF, W., AND SPAFFORD, E. H. 2001b. Digital government security

infrastructure design challenges. IEEE Computer 34, 2 (Feb.), 66–72.

JOSHI, J. B. D., BERTINO, E., AND GHAFOOR, A. 2002. Temporal hierarchies and inheritance seman-

tics for gtrbac. In SACMAT ’02: Proceedings of the seventh ACM symposium on Access control
models and technologies. ACM Press, New York. 74–83.

JOSHI, J. B. D., BERTINO, E., LATIF, U., AND GHAFOOR, A. 2005a. Analysis of expressiveness and

design issues for a temporal role based access control model. IEEE Transactions on Dependable
and Secure Computing 2, 2, 157–175.

JOSHI, J. B. D., BERTINO, E., LATIF, U., AND GHAFOOR, A. 2005b. Generalized temporal role based

access control model. IEEE Transactions on Knowledge and Data Engineering 17, 1 (Jan.), 4–23.

KOCH, M., MANCINI, L., AND PARISI-PRESICCE, F. 2002. A graph-based formalism for rbac. ACM
Transactions on Information and System Security 5, 3, 332–365.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Formal Foundations for Hybrid Hierarchies in GTRBAC • 14:39

MOFFETT, J. D. 1998. Control principles and role hierarchies. In RBAC ’98: Proceedings of the
third ACM workshop on Role-based access control. ACM Press, New York. 63–69.

MOFFETT, J. D. AND LUPU, E. C. 1999. The uses of role hierarchies in access control. In RBAC ’99:
Proceedings of the fourth ACM workshop on Role-based access control. ACM Press, New York.

153–160.

NYANCHAMA, M. AND OSBORN, S. 1999. The role graph model and conflict of interest. ACM Trans-
actions on Information and System Security 2, 1, 3–33.

NYANCHAMA, M. AND OSBORN, S. L. 1994. Access rights administration in role-based security sys-

tems. In Proceedings of the IFIP WG11.3 Working Conference on Database Security VII. North-

Holland, Amsterdam. 37–56.

OSBORN, S., SANDHU, R., AND MUNAWER, Q. 2000. Configuring role-based access control to enforce

mandatory and discretionary access control policies. ACM Transactions on Information and Sys-
tem Security 3, 2, 85–106.

PARK, J. S., SANDHU, R., AND AHN, G. J. 2001. Role-based access control on the web. ACM Trans-
actions on Information and System Security 4, 1 (Feb.), 37–71.

SANDHU, R. 1996. Role hierarchies and constraints for lattice-based access controls. Computer
Security—Esorics’96, LNCS N. 1146, 65–79.

SANDHU, R. 1998. Role activation hierarchies. Proceedings of 2rd ACM Workshop on Role-based
Access Control, 33–40.

SANDHU, R., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control

models. IEEE Computer 29, 2, 38–47.

SANDHU, R., BHAMIDIPANI, V., AND MUNAWER, Q. 1999. The arbac97 model for role-based adminis-

tration of roles. ACM Transactions on Information and System Security 1, 2, 105–135.

Received January 2003; revised April 2005; accepted September 2006

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 14, Pub. date: Nov. 2007.

P1: IAZ

ACMJ323-02 ACM-TRANSACTION September 9, 2007 11:19

Title: Formal Foundations for Hybrid Hierarchies in GTRBAC
Authors: James B. D. Joshi, Elisa Bertino, Arif Ghafoor and Yue Zhang,

Author Queries

AQ1 Au: Pls. Complete Categories and Subject Descriptors and also provide ap-
propriate General Terms.

AQ2 Au: Joshi et al. 2001a or b?

AQ3 Au: derived?

AQ4 Au: ok adding see later?

AQ5 Au: ok? Hence to Therefore?

