
Accepted for publication in International Conference on Web Services, Las Vegas, June 2003.

Access Control in Dynamic XML-based Web-Services with X-RBAC

Rafae Bhatti James B. D. Joshi Elisa Bertino Arif Ghafoor

School of Electrical &
Computer Engineering,

Purdue University,
West Lafayette, IN

School of Electrical &
Computer Engineering,

Purdue University,
West Lafayette, IN

Dipartimento di
Informatica e

Comunicazione
Università di Milano,

Milano, Italy

School of Electrical &
Computer Engineering,

Purdue University,
West Lafayette, IN

bhattir@ecn.purdue.edu joshij@ecn.purdue.edu bertino@dico.unimi.it ghafoor@ecn.purdue.edu

Abstract
Policy specification for securing Web services is fast
emerging as a key research area due to rapid
proliferation of Web services in modern day enterprise
applications. Whilst the use of XML technology to support
these Web services has resulted in their tremendous
growth, it has also introduced a new set of security
challenges specific to these Web services. Though there
has been recent research in areas of XML-based
document security, these challenges have not been
addressed within the XML framework. In this paper, we
present X-RBAC, an XML-based RBAC policy
specification framework for enforcing access control in
dynamic XML-based Web services. An X-RBAC system
has been implemented as a Java application, and is based
on a specification language that addresses specific
security requirements of these Web services. We discuss
the salient features of the specification language, and
present the software architecture of our X-RBAC system.

Keywords: XML, RBAC, Access Control, Web-Services

1. Introduction

With the advent of massively distributed computing
systems requiring secure interoperation, and the demand
for sharing online information content across various
Internet applications, Web services security is becoming
an increasingly important task. These Web services
introduce a new set of security challenges that are not
addressed by traditional security models. Key amongst
these challenges is to develop access control models that
provide content-based context-aware access, and handle
the heterogeneity of subjects and objects. This means
that the access control model should capture security-
relevant content and context information, such as time,
location, or environmental state, available at the time the
access requests are made, and incorporate it in its access
control decisions. The object heterogeneity implies that
the requested resource may be one of several media types
available to the system, or even represent an abstract

concept. Heterogeneity of subjects implies that the user
profile may change dynamically, and hence needs to be
constantly updated and incorporated into access control
decisions. Such profiles are used by Web services to
authenticate transfer of a user from one domain to another
based on his/her current login information. For example,
a registered user at an online bookstore could be offered a
complementary purchase at a partner Web site based on
his/her net dollars worth of purchases. Handling both the
object and subject heterogeneity complicates access
control specification. These specific challenges have not
been addressed in recent research on Web-based
document security models.

In this paper, we present a Java-based system for
implementing a Role-Based Access Control (RBAC)
policy specification. The RBAC model [1] is
characterized by the notion that permissions are assigned
to roles, and not directly to users. Users are assigned
appropriate roles according to their job functions, and
hence indirectly acquire the permissions associated with
those roles. Our implementation is based on an XML-
based RBAC policy specification language outlined in [2]
that incorporates the content and context-based dynamic
access control requirements of XML-based Web services.
Here we use its updated version to develop an X-RBAC
system in Java that supports the specification of RBAC
policies for secure Web services.

The remainder of this paper is organized as follows. A
compendium of related work is provided to motivate the
utility of X-RBAC. In section 3, we briefly discuss the
salient features of the specification language. The
discussion not only summarizes but also updates portions
of the original specification. Section 4 discusses the
system architecture of X-RBAC, illustrated throughout by
sample policy instances to highlight the various
functionalities of the system. We conclude the paper by
discussing some of our immediate and future
implementation goals.

2

<XUS>
 <user user_id="john">
 <user_name>John</user_name>
 <cred_type cred_type_id="C100">
 <type_name>Nurse</type_name>
 <cred_expr>
 <age>30</age>
 <field>opthalmology</field>
 <level>5</level>
 <status>single</status>
 </cred_expr>
 </cred_type>
 <max_roles>2</max_roles>
 </user>
 <user user_id="nancy">
 <user_name>Nancy</user_name>
 <cred_type cred_type_id="C200">
 <type_name>Eye_Doctor</type_name>
 <cred_expr>
 <age>34</age>
 <field>opthalmology</field>
 <level>8</level>
 <grade>A</grade>
 </cred_expr>
 </cred_type>
 <max_roles>1</max_roles>
 </user>
</XUS> (a)

<XRS>
 <roles>
 <role role_id="R100">
 <role_name>Nurse</role_name>
 <senior>Eye_Doctor</senior>
 <cardinality>8</cardinality>
 </role>
 <role role_id="R200">
 <role_name>Eye_Doctor</role_name>
 <DSD_Role_Set_id>DSD1</DSD_Role_Set_id>
 <junior>Nurse</junior>
 <senior>Eye_Surgeon</senior>
 <cardinality>6</cardinality>
 </role>
 <role role_id="R300">
 <role_name>Eye_Surgeon</role_name>
 <DSD_Role_Set_id>DSD1</DSD_Role_Set_id>
 <junior>Eye_Doctor</junior>
 <cardinality>2</cardinality>
 </role>
 </roles>
 <DSD_Role_Sets>
 <DSD_Role_Set DSD_Role_Set_id="DSD1"
 DSD_cardinality="1">
 <DSD_Role>Eye_Doctor</DSD_Role>
 <DSD_Role>Eye_Surgeon</DSD_Role>
 </DSD_Role_Set>
 </DSD_Role_Sets>
</XRS> (b)

Figure 1: XML instances of (a) XUS (b) XRS

2. Related Work and Motivation

Securing Web-based documents and applications using
XML and/or RBAC has been the topic of many recent
research publications. An XML-based language to secure
Web-based XML documents, and its Java-based
implementation, Author-X, has been discussed in [3, 4].
A related effort has been reported in [5]. An XML access
control language, XACL, and its integration in a Web
application, has been discussed in [6]. All these efforts
are non-RBAC and have been based on XML DTDs, and
not on XML schemas, and hence lack the set of enhanced
capabilities that XML schema provides over DTD [7].
Much recent work has been reported in the literature
about implementing the RBAC model in various
application domains. The RBAC model is widely
accepted because of its generality, which allows it to be
used for defining a diverse set of access control policies
[8, 9, 10], and its suitability for Web applications [11].
Another advantage of the RBAC model is that it
simplifies authorization administration. An XML-based
approach to specify enterprise RBAC policies has been
reported in [12]. A reference implementation has been
provided to address access control needs of corporate
intranets in [13]. In both these approaches, there is no
credential-based or another mechanism provided to allow
the assignment of authenticated users to a particular role.
Any user can select any available role as long as the

consistency constraints are satisfied. A closely related
approach is presented in the OASIS XACML [14]
specification. It is based on an extension of XML to
define an access control specification that supports
notions similar to those of user credentials and context-
based privilege assignments. It, however, does not
directly support the notion of roles, and hence lacks the
essential features as separation of duty constraints, role
hierarchy and cardinality. The absence of roles also
prohibits the provision of a comprehensive mechanism to
supply and evaluate sophisticated constraints on
assignments of users to privileged tasks, since direct user-
permission assignments reduces scalability and
complicates manageability of the resulting scheme. To the
best of our knowledge, no earlier effort within XML and
RBAC framework has been reported to target the
aforementioned specific security requirements of Web
services.

3. X-RBAC Specification Language

The specification language for X-RBAC aims at
modeling the basic RBAC elements and their associated
set-relations. To represent the RBAC elements in XML,
schemas definitions are generated for “user”, “role”, and
“permission”. A set of instances for these definitions is
shown in Figures 1 and 2. We reproduce below, for
completeness, the salient features of the policy
specification.

3

<XPS>
 <permission perm_id="P1">
 <object_type>Schema</object_type>
 <object_id>XS101</object_id>
 <operation>all</operation>
 </permission>
 <permission perm_id="P2">
 <object_type>Instance</object_type>
 <object_id>XI100</object_id>
 <operation>all</operation>
 </permission>
 <permission perm_id="P3">
 <object_type>Element</object_type>
 <object_id>/EyeCareMedicalHistory/
 Patient/ Name</object_id>
 <operation>navigate</operation>
 </permission>
</XPS>

 (a)

<XCredTypeDef>
 <credential_type cred_type_id="C100">
 <type_name>Nurse</type_name>
 <attribute_list>
 <attribute_nametype="integer">age</attribute_name>
 <attribute_name type="string">field</attribute_name>
 <attribute_name type="integer">level</attribute_name>
 <attribute_name type="string">status</attribute_name>

 </attribute_list>
 </credential_type>
 <credential_type cred_type_id="C200">
 <type_name>Eye_Doctor</type_name>
 <attribute_list>
 <attribute_name type="integer">age</attribute_name>
 <attribute_name type="string">field</attribute_name>
 <attribute_name type="string">level</attribute_name>

 <attribute_name type="string">grade</attribute_name>
 </attribute_list>
 </credential_type>
</XCredTypeDef> (b)

Figure 2: XML instances of (a) XPS (b) XCredTypeDef

User Credentials: To evaluate the users being assigned to
a particular role, the specification language uses the
notion of credentials as discussed in [15]. A “credential
type” enforces a common set of attributes for all users
belonging to that type. This set of attributes constitutes
the “cred_expr” for the given credential type. A credential
type definition schema (XCredTypeDef) is supplied as
part of the specification language to facilitate the creation
of new credential types. In Figure 1(a), the users “john”
and “nancy” have credential types “Nurse” and
“Eye_Doctor” respectively. We refer to this document as
XML User Sheet (XUS). A sample XCredTypeDef
instance is provided in Figure 2(b). The user credentials
are dynamically updateable to support consistent
authorization decisions.

Roles: A role has an associated set of credentials that
must be satisfied by the users who are assigned to that
role. Each role has an optional “SSD_Role_Set_id” and
“DSD_Role_Set_id” tag to indicate any separation of
duty constraints. The RBAC model uses the notion of
Static Separation of Duty (SSD) and Dynamic Separation
of Duty (DSD) constraints on roles. The semantics of
static separation of duty require that no n roles that are
part of a “Static Separation of Duty Role Set”
(SSD_Role_Set) be assigned to the same user, where n is
any positive integer. The semantics of dynamic separation
of duty require that no m roles that are part of a “Dynamic
Separation of Duty Role Set” (DSD_Role_Set) be
simultaneously activated by the same user, where m is
any positive integer. A role also has a “junior” and
“senior” tag to reflect role hierarchy. Role “cardinality” is
the maximum number of users that may be assigned to
this role at any time. An XML instance document
describing “Nurse”, “Eye_Doctor” and “Eye_Surgeon”

roles, along with the SSD and/or DSD role sets, is shown
in Figure 1(b). We refer to this document as XML Role
Sheet (XRS).

Permissions: Permissions associate objects in the system
with corresponding operations. An “object” in our
framework can represent either a (i) concept cluster, (ii)
schema, (iii) instance document, or (iv) document element
to which permission is being assigned. A “concept
cluster” is a group of XML schemas related to a specific
concept. Exercising access control at conceptual level is
very desirable in huge data repositories, such as digital
libraries. A more detailed treatment of concept clusters is
given in [2]. The available “operations” are “read”,
”write”, ”navigate”, and “all” (which includes all three).
An XML instance document of permission specifications
is shown in Figure 2 (a). We refer to this document as
XML Permission Sheet (XPS).

User-role & permission–role assignments: The
information about users, roles and permissions available
from the corresponding XML sheets are used to specify
the access control policy for the protected objects. The
documents generated in this phase include an XML User-
to-Role Assignment Sheet (XURAS) and an XML
Permission-to-Role Assignment Sheet (XPRAS). These
assignments are captured through XML schemas, the
instances of which are shown in Figure 3. Keeping the
user, role, and permission specifications separate from
their assignments allows independent design and
administration of the policy, and hence supports a
modular implementation of the X-RBAC system.
In the XURAS instance of Figure 3(a), the “logical_expr”
is used to evaluate the “predicate” for the
“credential_condition”. This example associates a set of

4

<XURAS>
 <ura ura_id="URA1">
 <role_name>Eye_Doctor</role_name>
 <users>
 <user user_id="john">
 <cred_conditions>
 <cred_condition>
 <cred_type>Nurse</cred_type>
 <logical_expr op="AND">
 <predicate>
 <operator>eq</operator>
 <name_param>field</name_param>
 <value_param>ophthalmology
 </value_param>
 </predicate>
 <predicate>
 <logical_expr op="OR">
 <predicate>
 <operator>lt</operator>
 <name_param>age</name_param>
 <value_param>80</value_param>
 </predicate>
 <predicate>
 <operator>gt</operator>
 <name_param>level</name_param>
 <value_param>4</value_param>
 </predicate>
 </logical_expr>
 </predicate>
 </logical_expr>
 </cred_condition>
 </cred_conditions>
 </user>
 </users>
 </ura>
</XURAS>
 (a)

<XPRAS>
 <pra pra_id="PRA1">
 <role_name>Nurse</role_name>
 <permissions>
 <perm_id>P3</perm_id>
 </permissions>
 </pra>
 <pra pra_id="PRA2">
 <role_name>Eye_Doctor</role_name>
 <permissions>
 <perm_id>P1</perm_id>
 <perm_id>P2</perm_id>
 </permissions>
 </pra>
</XPRAS> (b)

Figure 3(a): XML instance of XURAS

Figure 3(b): XML instance of XPRAS

 credentials to the “Eye_Doctor” role. It states that all
users with the “Nurse” credential type can be assigned to
the “Eye_Doctor” role only if “field” is “opthalmology”
and, either “level” is greater than 4, or “age” is less than
80. Note that a user with user_id = “any” is recognized by
the system as an unknown user, who may be required to
supply additional credential conditions in order to be
assigned to a particular role. If no explicit conditions are
specified, then any user could be assigned the particular
role, which usually is the “guest” role in most Web
services.
In the XPRAS instance of Figure 3(b), the assignment
identified by “PRA2” associates the “Eye_Doctor” role
with the permissions “P1” and “P2”, which refer to a
schema object and an instance document, respectively
(see Figure 2(a)). In this case, an “Eye_Doctor” role is
authorized to “read/write/navigate” all instance
documents conforming to the schema identified by XML
schema id “XS101”, and also the instance document
identified by XML instance id “XI100”. Similarly, the
assignment identified by “PRA1” associates the “Nurse”
role with the permission “P3”, which refers to the
“Name” element identified by an XPath expression (see

Figure 2(a)). Hence, the “Nurse” role is authorized
only to “navigate” the “Name” element in all
documents conforming to the structure imposed by the
given XPath expression.

4. X-RBAC System Architecture

In this section, we present the system architecture of
X-RBAC. We first provide an overview of the system
components and technologies, and then elaborate upon
it with the help of the XML instances presented in
section 3 to illustrate the process of specification and
enforcement of the said policy. We also outline some

ongoing enhancements to the current implementation, and
certain desirable features that should be incorporated in
future.

4.1 Overview

The X-RBAC framework allows the XML-based policies
to be specified and enforced through a Java-based GUI-
enabled application. The application code is readily
integrated into a Web browser by an application-to-applet
transformation mechanism provided by Java.
The overall system design is depicted in Figure 4. As
indicated in the figure, the two main sub-systems of X-
RBAC Module are the XML Processor and the RBAC
Processor. The XML processor is implemented in Java
using Java API for XML Processing (JAXP). Custom
modules have been designed to get the DOM instance of
parsed XML documents and forward them on to the
RBAC Processor. The RBAC Module then administers
and enforces the policy according to the supplied policy
information.
The policy information is contained in the XML Policy
Base. A document composition module external to X-

5

Figure 4: X-RBAC System Architecture

XML/SOAP

Authorization

XML/SOAP

Access
Request

Legend:
 Data Item

Functional
Module

X-RBAC Module

DOM

XML
Parser

XML Processor

user-role &
perm-role

assignments

Session Data

Structures

RBAC
Module

RBAC Processor

XML
Policy
Base

Document
Composition
Module

RBAC is provided to compose the policy documents. In
addition to composing the five primary policy sheets, this
module allows the system administrator to create a
credential type definition sheet, XCredTypeDef, and
hence specify the credential types for a given policy. All
these XML sheets together constitute the XML Policy
Base. The policy sheets from the XML Policy Base are
loaded into the X-RBAC Module by the system
administrator. Since X-RBAC can act as both stand-alone
and web-deployable application, it may be invoked from
either the local system, or remotely through an XML-
aware browser. Hence, the X-RBAC Module seamlessly
interfaces with an external client. The client may submit
an access request through any standard XML-based Web
services messaging protocol, like SOAP [16]. Similarly,
the access authorization is returned via the same protocol.

4.2 XML Processor

The XML Processor contains the XML Parser and the
DOM tree representations of the supplied XML
documents. The X-RBAC system provides a Policy
Loader to load the policy sheets for a given policy. As a
next step, functionality is provided to validate the policy
sheets in terms of existence checking and type
conformance. This means that all users, roles, and
permissions referenced in XURAS and XPRAS must
exist in the corresponding XUS, XRS and XPS
respectively. Also, the credential types associated with
the users must conform to the type definitions in the

XCredTypeDef sheet. In the context of the XML
instances displayed in Figures 1-3, it checks for the
definition of credential types “Nurse” and “Eye_Doctor”,
and the existence of the user ids “john” and “nancy”, and
the role names “Nurse”, “Eye_Doctor”, and
“Eye_Surgeon”. This validation support is provided by
Apache Xalan XSLT engine built into JAXP. Once the
policy sheets are validated, the corresponding DOM tree
representation is generated and passed on to the RBAC
Processor. A facility is provided to display the instance of
the DOM tree via the X-RBAC GUI. A snapshot of the
DOM tree display of a loaded XUS in X-RBAC GUI is
shown in Figure 5(a).

4.3 RBAC Processor

The RBAC Processor contains the RBAC Module and
associated data items generated by the RBAC Module. It
performs the policy administration and enforcement tasks.

Policy Administration: The RBAC Module provides
functionality to parse the DOM tree structures supplied
by the XML Processor, and retrieves the relevant
information into its internal data structures. The policy
assignments are checked against the RBAC consistency
rules, similar to those outlined in [17], against violations
of any SSD, DSD, or cardinality constraints. In the
context of the XML instances of Figures 1-3, this means

6

Figure 5: Snapshots of Policy Display (a) XUS (b) Roles and Hierarchies Information

that user “john” will be assigned by the RBAC Module to
the “Eye_Doctor” role because it satisfies all the required
credential and consistency conditions. The permissions in
the system are also assigned to roles under similar
consistency notions. It may be noted that the actual role
activation for “john” would occur when he actually logs
into the system and requests a role. The notion of role
assignment in the context of “john” is of static type, i.e. it
implies that “john” has been declared as assignable to the
said role based on already supplied credential
information. There can also be a dynamic role assignment
for an unknown user based on his/her credentials supplied
at the time of login. These static and dynamic policy
assignments create the complete internal representation of
the XML Policy Base within the RBAC Processor for
enforcement of the policy. A facility is provided to
display the policy information items via the X-RBAC
GUI. A snap shot of the “roles and hierarchies”
information as extracted from RBAC Module data
structures is shown in Figure 5(b).

Policy Enforcement: The information from the internal
data structures is then used by the RBAC Module to
enforce the policy and manage user sessions. The initial
login into the system will create a default session for the
user with a pre-specified “minimal” set of roles activated
based on the supplied user credentials. The initial login
can be the “user_id” from the XUS, if it is a known user,
or a “user_id” of “any”, as discussed in section 3. In
addition to the default set of activated roles, more roles
can also be activated if the user credentials so allow.
Access to resources is requested in the form of an XML
Access Request (XAR) that specifies the “object type”
and “object id” of the requested resource. An XAR could
be submitted locally or remotely as an assertion in SOAP
or similar XML-based messaging protocol. This access
request is then evaluated based on the currently activated
roles for this user. Only those resources may be accessed

 during a session for which the activated set of roles has
associated permissions. Both the login information and
XARs for a user are stored in an XML Access Sheet
(XAS). A log of the sessions is maintained and the user
credentials are dynamically updated to capture the activity
profile of the user for future access decisions.

4.4 Implementation Goals

The current implementation of X-RBAC is a Java-based
application. We have experimented with transforming it
to an applet (or servlet) that can be made to run in a local
web browser. Integration of X-RBAC Module in web
browsers could pose some known technical issues in
terms of file access as governed by Java security APIs. A
documented approach to handle this is to add the to-be-
accessed files to the ACLs of the browser serving the
resources. The web browser running X-RBAC can then
evaluate and fulfill the incoming access requests of each
user in each session independently, according to its
currently activated set of roles. We would also direct our
efforts to standardize the composition of the XML Policy
Base by adopting WS-Policy specifications [18]. Such
provisions would allow an X-RBAC module implemented
as an applet to be readily deployed as a Web Service and
enforce domain-specific access control policies.

We are contemplating a few enhancements in system
design. The support for concept clusters, as discussed in
the language specification, needs to be incorporated.
More transparent form of validation mechanisms are
being researched for validating the policy sheets. We are
keenly looking into providing validation support through
the use of XML schema, instead of the currently adopted
XSLT/XPath model. It is also being considered to provide
a facility to generate the schemas for each credential type
defined in the XCredTypeDef sheet, so that the credential

7

types can be validated through the use of XML schema
references, rather than through program code.

5. Conclusions

In this paper, we have presented X-RBAC, an XML-
based RBAC policy specification framework for
enforcing access control in dynamic XML-based Web
services. The X-RBAC implementation is a Java-based
application, and is based on a policy specification
language that addresses the security challenges specific to
these Web services. The specification language adopted
provides compact representation of access control
policies, and conforms to the NIST RBAC model. Our
framework can be used to specify and enforce RBAC
policies for securing XML documents at conceptual,
schema, instance as well as element levels, and allows
dynamically capturing context information. The software
architecture presented in the paper separates the XML
and RBAC components of the system into distinct
modules, which allows independent design and
administration of the policy.

Modifications and extension to our X-RBAC system in
several directions are being considered. We plan to add
support for a multi-domain environment where policy
authorizations may not be centrally located, but are
distributed across several domains. We also plan to allow
specification of the elaborate set of temporal constraints
introduced in our Generalized Temporal Access Control
Model [19].

Acknowledgements

Portions of this work have been supported by the
sponsors of the Center for Education and Research in
Information Assurance and Security (CERIAS) at Purdue
University, and the National Science Foundation under
NSF Grant# IIS-0209111.

References

[1] David F. Ferraiolo , Ravi Sandhu , Serban Gavrila , D.
 Richard Kuhn , Ramaswamy Chandramouli, “Proposed
 NIST standard for role-based access control”, ACM
 Transactions on Information and System Security,
 Volume 4, Issue 3, August 2001.
[2] R. Bhatti, J. B. D. Joshi, E. Bertino, A. Ghafoor, “XML
 based RBAC Policy Specification for Secure Web-
 Services”, Submitted to IEEE Computer.
[3] E. Bertino, S. Castano, E. Ferrari, “Securing XML
 Documents with Author X”, IEEE Internet Computing
 May-June 2001.
[4] E. Bertino, S. Castano, E. Ferrari, “On Specifying Security
 Policies for Web Documents with an XML-based
 Language”, Proceedings of Sixth ACM Symposium on

 Access Control Models and Technologies, 2001.
[5] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P.
 Samarati, “A Fine Grained Access Control System for
 XML Documents”, ACM Transactions on Information
 and System Security, Volume 5, Issue 2, May 2002.
[6] S. Hada, M. Kudo, “XML Access Control Language:
 Provisional Authorization for XML Documents”, October
 16, 2000, Tokyo Research Laboratory, IBM Research.
[7] Why XML Schema beats DTDs hands-down for data

http://www-106.ibm.com/developerworks/xml/library/x-
sbsch.html

[8] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman,
 “Role Based Access Control Models”, IEEE Computer
 Volume 29, Issue 2, February 1996.
[9] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-
 Based Access Control to Enforce Mandatory and
 Discretionary Access Control Policies,” ACM
 Transactions on Information and System Security, Volume
 3, Issue 2, February 2000.
[10] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R.
 Chandramouli, “The NIST Model for Role-Based Access
 Control: Towards a Unified Standard,” ACM
 Transactions on Information and System Security,
 Volume 4, Issue 3, August 2001.
[11] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford,
 “Security Models for Web-based Applications”,
 Communications of the ACM, Volume 44, Issue 2, Feb.
 2001.
[12] N. N. Vuong, G. S. Smith, Y. Deng, “Managing Security
 Policies in a Distributed Environment Using eXtensible
 Markup Language (XML)”, Symposium on
 Applied Computing, March 2001
[13] D. F. Ferraiolo, J. F. Barkley, D. R. Kuhn, “A Role Based
 Access Control Model and Reference Implementation
 Within a Corporate Intranet”, ACM Transactions on
 Information and System Security, Volume 2, Issue 1, Feb
 1999.
[14] XACML 1.0 Specification

http://xml.coverpages.org/ni2003-02-11-a.html
[15] E. Bertino, S. Castano, E. Ferrari, M. Mesiti,
 “Controlled Access and Dissemination of XML
 Documents”, Workshop on Web Information And Data
 Management, November 1999.
[16] Simple Object Access Protocol (SOAP) 1.1
 http://www.w3.org/TR/SOAP/
[17] S. I. Gavrila , J. F. Barkley, “Formal Specification for
 Role Based Access Control User/role and Role/role
 Relationship Management”, Proceedings of the third ACM
 Workshop on Role-based access control, Fairfax,
 Virginia, United States, October 22-23, 1998.
[18] Web Services Policy Framework (WS-Policy)

http://www-106.ibm.com/developerworks/library/ws-
polfram/

[19] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor,
 "Generalized Temporal Role Based Access Control Model
 (GTRBAC) (Part I) - Specification and Modeling",
 Submitted to IEEE Transaction on Knowledge and Data
 Engineering.

