
Race ConditionsRace Conditions

March 27, 2006March 27, 2006

Concurrency and Race
condition

• Concurrency
– Execution of Multiple flows (threads, processes, tasks,

etc)

– If not controlled can lead to nondeterministic behavior

• Race conditions
– Software defect/vulnerability resulting from

unanticipated execution ordering of concurrent flows
• E.g., two people simultaneously try to modify the same

account (withrawing money)

Race condition

• Necessary properties for a race condition
– Concurrency property

• At least two control flows executing concurrently

– Shared object property
• The concurrent flows must access a common

shared race object

– Change state property
• Atleast one control flow must alter the state of the

race object

Race window

• A code segment that accesses the race object in
a way that opens a window of opportunity for
race condition
– Sometimes referred to as critical section

• Traditional approach
– Ensure race windows do not overlap

• Make them mutually exclusive
• Language facilities – synchronization primitives (SP)

– Deadlock is a risk related to SP
• Denial of service

Time of Check, Time of
Use

• Source of race conditions
– Trusted (tightly coupled threads of execution)

or untrusted control flows (separate
application or process)

• ToCToU race conditions
– Can occur during file I/O

– Forms a RW by first checking some race
object and then using it

Example

• Assume the program is running with an
effective UID of root

int main(int argc, char *argv[]) {
FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

int main(int argc, char *argv[]) {
FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

TOCTOU

• Following shell commands during RW
rm /some_file

ln /myfile /some_file

• Mitigation
– Replace access() call by code that does the following

• Drops the privilege to the real UID

• Open with fopen()

• Checks to ensure that the file was opened successfully

TOCTU

• Not all untrusted RCs are purely TOCTOU
– E.g., GNU file utilities

– Exploit is the following shell command
mv /tmp/a/b/c /tmp/c

• Note there is no checking here - implicit

chdir(“/tmp/a”);
chdir(“b”);
chdir(“c”);
//race window
chdir(“..”);
chdir(“c”);
ulink(“*”);

chdir(“/tmp/a”);
chdir(“b”);
chdir(“c”);
//race window
chdir(“..”);
chdir(“c”);
ulink(“*”);

File locking

• SP cannot be used to resolve RC from independent processes
– Don’t have shared access to global data

• File locks can be used to synchronize them

int lock(char *fn) {
int fd;
int sleep_time = 100;
while (((fd=open(fn, O_WRONLY | O_EXCL | O_CREAT, 0)) == -1)

&& errno == EEXIST) {
usleep(sleep_time);
sleep_time *= 2;
if (sleep_time > MAX_SLEEP)
sleep_time = MAX_SLEEP;

}
return fd;

}

void unlock(char *fn) {
if (unlink(fn) == -1) {
err(1, "file unlock");

}
} Figure 7-3

int lock(char *fn) {
int fd;
int sleep_time = 100;
while (((fd=open(fn, O_WRONLY | O_EXCL | O_CREAT, 0)) == -1)

&& errno == EEXIST) {
usleep(sleep_time);
sleep_time *= 2;
if (sleep_time > MAX_SLEEP)
sleep_time = MAX_SLEEP;

}
return fd;

}

void unlock(char *fn) {
if (unlink(fn) == -1) {
err(1, "file unlock");

}
} Figure 7-3

File locking

• Two disadvantages
– Open() does not block

• Use sleep_time that doubles at each attempt (also known as
spinlock or busy form of waiting)

– File lock can remain locked indefinitely (e.g., if the
locking process crashes)

• A common fix is to store the PID in the lock file, which is
checked against the active PID.

• Flaws with this fix
– PID may have been reused
– Fix itself may contain race conditions
– Shared resource may also have been corrupted because of the

crash

File System Exploits

• Files and directories are common race objects
• Open files are shared by peer threads
• File systems have exposure to other processes

• As file permissions
• File naming conventions
• File systems mechanisms

– Most executing programs leave a file in a corrupted state when it
crashes (backup is remedy)

• Exploits
– Symbolic linking exploits
– Temporary file open exploits
– ulink() race exploit
– Trusted filenames
– Nonunique temp file names

Symbolic linking
exploits

• Unix symbolic linking is most common
– Symlink is a directory entry that references a

target file or directory

– Vulnerability involves programmatic reference
to a filename that unexpectedly turns out to
include a symbolic link

• In the RW the attacker alters the meaning of the
filename by creating a symlink

Symbolic linking
exploits

Attacker does:

rm
/some dir/some file

if (stat(“/some_dir/some_file”, &statbuf) == -1) {
err(1, "stat");

}
if (statbuf.st_size >= MAX_FILE_SIZE) {

err(2, "file size");
}
if ((fd=open(“/some_dir/some_file”, O_RDONLY)) == -1) {

err(3, "open - %s",argv[1]);
} Figure 7-4

if (stat(“/some_dir/some_file”, &statbuf) == -1) {
err(1, "stat");

}
if (statbuf.st_size >= MAX_FILE_SIZE) {

err(2, "file size");
}
if ((fd=open(“/some_dir/some_file”, O_RDONLY)) == -1) {

err(3, "open - %s",argv[1]);
} Figure 7-4

Symbolic linking
exploits

• Reason for its wide spread use in exploits
– Creation of symlink is not checked to ensure that the

owner of the link has any permissions for the target
file, nor

– Is it even necessary that the target file exists

– The attacker only needs write permissions to the
directory in which symlink is created

• Further complication introduced by the following
– Symlink can reference a directory

• E.g., in some passwd() function – required user to specify a
password file as a parameter

Symbolic linking
exploits

• Vulnerable segment in passwd()
Open the password file, use it to authenticate the user, and then

close the file
Create and open a temporary file called ptmp in the directory of

the password file
Reopen the password file and copy an updated version into

ptmp (which is still open)
Close both files and rename ptmp as the new password file

• Exploit allows entry to an account
– A creates a bogus attack_dir/.rhosts – A is a valid user
– V has real password file in victim_dir
– A creates symlink to attack_dir called symdir
– A calls passwd() passing the password file as /symdir/.rhosts

Symbolic linking
exploits

• Vulnerable segment in passwd()
Open the pssword file, use it to authenticate the user, and then

close the file
- attacker changes /symdir to attack_dir

Create and open a temporary file called ptmp in the directory of
the password file

- allow use of victim_dir
Reopen the password file and copy an updated version into

ptmp (which is still open)
- attacker changes /symdir to attack_dir

Close both files and rename ptmp as the new password file
- allow use of victim_dir

Result:
The password file in victim_dir is replace by that from the

attack_dir

Symbolic linking
exploits

• Slightly different symlink vulnerability
– Permissions are threatened (elevated)

– The attack works because of the following
• When permissions are changed on a symbolic link, the

change is applied to the target file rather than the link

• Windows “shortcut” is similar
– But windows rarely have symlink problem because

• The API includes primarily file functions that depend on file
handles rather than the file names, and

• Many programmatic windows functions do not recognize
shortcuts as links

Temporary file open
exploits

• Temporary files
– Vulnerable when created in a directory where

attacker has access

– In unix /tmp is frequently used for temporary
files

– Simple vulnerability

int fd = open(“/tmp/some_file”,
O_WRONLY |
O_CREAT |
O_TRUNC,
0600)

int fd = open(“/tmp/some_file”,
O_WRONLY |
O_CREAT |
O_TRUNC,
0600)

What if the /tmp/some_file is
a symbolic link before the
instruction is executed?

Solution:
add O_EXCL flag

File existence check and
creation -> atomic!

What if the /tmp/some_file is
a symbolic link before the
instruction is executed?

Solution:
add O_EXCL flag

File existence check and
creation -> atomic!

Temporary file open
exploits

• Stream functions in C++ have no atomic
equivalent

int main(int argc, _TCHAR* argv[])
{

ofstream outStrm;
ifstream chkStrm;
chkStrm.open("/tmp/some_file",,

ifstream::in);
if (!chkStrm.fail())

outStrm.open("/tmp/some_file",
ofstream::out);

.

.
}

Race window?

int main(int argc, char *argv[])
{ int fd;

FILE *fp;
if ((fd = open(argv[1],

O_EXCL|O_CREAT|O_TRUNC|O_RDWR,
0600)) == -1) {

err(1, argv[1]);
}
fp = fdopen(fd, "w");
:
:

}

mitigation

File descriptor + O_EXCL

Temporary file open
exploits

• Exploit would be possible if the filename
can be guessed before a process creates it

• Random filename using mkstemp()
– Each X is replaced by a random character

char template[] = “/tmp/fileXXXXXX”;
if (fd = mkstemp(template)) = -1) {

err(1, “random file”);
}

char template[] = “/tmp/fileXXXXXX”;
if (fd = mkstemp(template)) = -1) {

err(1, “random file”);
}

ulink Race exploits

• RC is created when
– A file is opened and later unlinked

– Key reason, Linux does not support an
equivalent to unlink() that uses a file descriptor

• Replacing the named open file with another file or
symbolic link, an attacker can cause unlink() to be
applied to the wrong file

• Mitigation: proper permissions on the directory

Trusted filenames

• Trusted filename vulnerability
– Results as a result of unverified filenames

• Filenames from user or untrusted source

• Goal of exploit
– Cause a program to manipulate a file of attacker’s choosing
– Mitigation: verify the filename

• Some difficulties
– Different length restrictions, remote file systems & shares, etc.
– Device as a file (some OSs crash)
– Inclusion of substring “..”
– General mitigation: transform to canonical form

• Generate an absolute path without “..”, “.” or symbolic links
• Unix – realpath()

– Care must be taken to avoid TOCTOU condition using realpath() to check a
filename

• Another mitigation is to validate ancestral directories.

Nonunique Temp File
Names

• Faulty implementation
– Of tempnam() and tempfile() can produce non

unique filenames (using a uers ID)

– tmpnam_s() generates a valid filename that is
not the name of an existing file

• RC is still possible if the name is guessed before
use

Mitigation strategies

• Can be classified based on properties
– Mitigations that remove concurrency property
– Techniques that eliminate the shared object

property
– Ways to mitigate by controlling access to the

shared object to eliminate the change state
property

• Different strategies may/should be
combined

Mitigation strategies

• Closing the race window
– Eliminate RW whenever possible

• Techniques
– Mutual exclusion
– Thread safe functions
– Use of atomic operations
– Checking file properties safely
– Use file descriptors not filenames
– Shared directories
– Temporary files

Mitigation strategies

• Mutual exclusion
– Implement mutually exclusive critical sections

• Mutex/semaphores
• Critical issue is to minimize CS size

– Object-oriented alternative
• Use decorater module to isolate access to shared resources
• provides wrapper functions

– Signal handling poses problems
• Signals can interrupt normal execution flow at any time
• Unhandled signals usually default to program termination
• A signal handler can be invoked at any time, even in the midst of a mutually

excluded section of code
• If the attacker sends a signal to a process within a race window, it is possible

to use signal handling to effectively lengthen the window
• Mitigation:

– Signal handling should not be used for normal functionality
– Avoid sharing objects between signal handlers and other program code

Thread safe function

• In Multithreaded applications
– It is not enough to ensure code is RC free

– It is possible that invoked functions could be
responsible for race conditions

• Thread safe function
– No RC when concurrent calls to this function

– If non-thread safe function is called, treat it as
a critical section

Use of atomic
operations

• Atomicity
– Implemented by synchronization functions

• Entry to critical section
– Should not be interrupted until completed
– Concurrent executions of EnterCriticalRegion() should

not overlap
– Concurrent execution of EnterCriticalRegion() should

not overlap with the execution of LeaveCritcalSection()
• Open() with O_CREAT and O-EXCL

– Alternative is to call stat() or access() followed by
open() – may introduce TOCTOU

Checking file properties
securely

• lpstat() is a difficult problem
– Stats a symbolic link

• No file descriptor alternative

• Mitigation – follow the four steps
– lpstat() the filename
– open() the file
– fstat() the file descriptor from step 2
– Compare the results from steps 1 and 3

struct stat lstat_info;
int fd;
if (lstat(“some_file”, &lstat_info) == -1) {
err(1, "lstat");

}
if (!S_ISLNK(lstat_info.st_mode)) {
if ((fd = open(“some_file”, O_EXCL | O_RDWR, 0600)) == -1)
err(2, argv[1]);

}

struct stat lstat_info;
int fd;
if (lstat(“some_file”, &lstat_info) == -1) {
err(1, "lstat");

}
if (!S_ISLNK(lstat_info.st_mode)) {
if ((fd = open(“some_file”, O_EXCL | O_RDWR, 0600)) == -1)
err(2, argv[1]);

}

Checking file properties
securely

• The four steps are used in the following

struct stat lstat_info, fstat_info;
int fd;
if (lstat(“some_file”, &lstat_info) == -1) {
err(1, "lstat");

}
if ((fd = open(“some_file”, O_EXCL | O_RDWR, 0600)) == -1) {
err(2, "some_file");

}
if (fstat(fd, &fstat_info) == -1)
{
err(3, "fstat");

}
if (lstat_info.st_mode == fstat_info.st_mode &&

lstat_info.st_ino == fstat_info.st_ino)
//process the file

struct stat lstat_info, fstat_info;
int fd;
if (lstat(“some_file”, &lstat_info) == -1) {
err(1, "lstat");

}
if ((fd = open(“some_file”, O_EXCL | O_RDWR, 0600)) == -1) {
err(2, "some_file");

}
if (fstat(fd, &fstat_info) == -1)
{
err(3, "fstat");

}
if (lstat_info.st_mode == fstat_info.st_mode &&

lstat_info.st_ino == fstat_info.st_ino)
//process the file

Eliminating the race
object

• RC exists because of
– Concurrent execution flows share some object

• Hence, RC can be eliminated by
– Eliminating shared objects, or
– Removing shared access to it

• Mitigation
– Identify the shared object (file system is key)
– Use file descriptors, not file name

• File’s directory is key element
• Once a file is opened, it is not vulnerable to symlink attack if the file

descriptor is used instead of file/directory
– Shared directories – avoid it
– Temporary files: /tmp is key source (commonly shared)

Eliminating the race
object

• Temporary files: some good practices
– Never reuse filenames, especially temporary files

– Use random files names for temporary file – avoids
conflict and guessing

• Use cryptographically strong random number generator and
seeds

– Use mkstemp() instead of mktemp(), tempnam(), etc.

– Unlink temporary files as early as possible
• Reduces the RW

– Log temporary file events

Controlling access to
the race object

• Some techniques
– Principle of least privilege

• Eliminates RC or reduce exposure
– If possible, avoid running processes with elevated permissions
– When a process must use elevated permissions, these should

be normally dropped (using setuid())
– When a file is created, the permissions should be restricted

exclusively to the owner

– Trustworthy directories
– Chroot jail

• Creates an isolated directory with its own root/tree
– Avoids symlink, “..” exploits

Race detection tools

• Static analysis
– Parses software to identify race conditions
– Warlock for C (need annotation)
– ITS4 uses (database of vulnerabilities)
– RacerX for control-flow sensitive interprocedural analysis
– Flawfinder and RATS – best public domain

• Extended Static checking
– Use theorem proving technology

• Race condition detection is NP complete
– Hence approximate detection
– C/C++ are difficult to analyze statically –

• pointers and pointer arithmetic
• Dynamic dispatch and templates in C++

Race detection tools

• Dynamic analysis
– Detect during execution
– Disadvantages

• Fails to consider execution path not taken
• Runtime overhead

– Some tools
• Eraser, MultiRace
• ThreadChecker (intel) – finds races and deadlocks
• RaceGaurd for unix – secure use of temp files

