
ABSTRACT

The ramifications of statistical bias due to the initial state of a system are
well known. Simply, long-term averages will be tainted by the observations
which occur while the statistic approaches steady state. Determining realis-
tic techniques for estimating the length of the transient period is a significant
problem, particularly in systems with which there is no experience. This
study focuses on the comparison and evaluation of several techniques for
determining the length of transient periods. Markovian queues for which an
exact length of the transient can be determined are used as the test-bed for
these techniques.
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INTRODUCTION

In using simulations of a stochastic system, the question of statistical bias
due to system initialization has been significant in many works. Consider an
arbitrary system in which some measure of the performance is of interest. It
is likely that very little is known with regard to the steady state characteris-
tics of such a system. In simulating such a system and initializing it to some
arbitrary state, it is therefore not possible to know whether the starting state
is typical of the steady-state behavior of the system. As such, the starting
state may have an impact on long-term performance measures.

This point has motivated the study of algorithms which can determine the
length of a transient period due to initialization bias, such that those obser-
vations which are collected during the transient period may be deleted.
Other works in the literature (notably (Gafarian, et al. 1978), (Schruben
1982), (Schruben, et al. 1983), (Welch 1983), (Vassilacopoulos 1989),
(Pawlikowski 1990), (Law and Kelton 1991), and (Roth and Josephy 1993))
also discuss the motivation for determining the initial transient length of a
system simulation.

Several algorithms have been proposed for determining the length of tran-
sient periods; many are analytically justified while others are purely heuris-
tic. A thorough survey of methods for determining transient period lengths
is presented in (Gafarian, et al. 1978) and Section 3.1 of (Pawlikowski
1990). However, many of these algorithms are dependent on a diverse set of
parameters and the guidelines for determining these parameters are usually
conjectural.

In this paper, we implement and compare a number of techniques for esti-
mating the transient period of a system. The techniques which we study are
documented in (Gafarian, et al. 1978), (Pawlikowski 1990), and (Law and
Kelton 1991). In this work, we seek to compare these techniques with one

another as well as experimentally determine parameters which yield the
most accurate estimates of the theoretically determined transient period
(without significant overestimation). Note that the techniques described in
(Gafarian, et al. 1978), however, are only compared in situations in which
multiple replications are available. In many circumstances, repeating simu-
lations and aggregating the results is not a feasible alternative or is computa-
tionally unattractive. In extending this work, we have applied these
techniques to both single and multiple replications (as applicable).

Secondly, results for determining the length of the initial transient period
that involve mean arrival rates for finite capacity systems which are greater
than mean service rates have not been found in the literature. This situation,
however, is common in studies of computer systems and communication
networks (Lovegrove, et al. 1990).

The next section presents the background and parameters of the transient
period detection algorithms associated with this work. In the following sec-
tions, the algorithms under consideration as well as references to their ori-
gins are presented along with the results of their implementation. A
comparison of the results of these algorithms with theoretical values is also
presented, followed by conclusions and recommendations.

BACKGROUND

Simulation models of systems are used to generate random samples on
which statistical conclusions can be based. A basic problem of simulated
systems is determining how long (either in terms of the number of observa-
tions or the time related to the observations) before “steady state” is
reached. Typically, “steady state” is defined in terms of one of the statistics
inherent to the system which eventually takes on certain properties or passes
a pre-defined criteria. Most algorithms rely on the mean of a performance
measure to determine steady state.

For this work, “steady state” is based on the mean sojourn time for a cus-
tomer through the system under study. The system used for these experi-
ments was a M/M/1/21 queue (20 buffer spaces and 1 server). As such, this
system will allow for examining the time required to reach “steady-state”
for overloaded systems. The arrival rate of customers to the system, λ, is
varied from 0.1 to 2.0 in increments of 0.1 customers per second; the service
rate, μ, is normalized to 1.0 customers per second. By numerically solving
the Chapman-Kolmogorov equations describing the M/M/1/21 queue for
varying levels of utilization and a 2% settling time, the exact transient
period length may be obtained. These theoretical values are given in Table 1
for the denoted values of server utilization, ρ = λ/μ.

This study involves comparing four transient period estimation techniques
selected from (Gafarian, et al. 1978), (Pawlikowski 1990), and (Law and
Kelton 1991). Each transient period estimation technique was compared in
two different experimental ways. First we evaluate the techniques for their
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number of crosses must be re-evaluated with every new observation contrib-
uting to the running mean. Secondly, there is not a general method for deter-
mining an appropriate value for the parameter ‘k’.

In the experiments presented here, the number of crosses allowed was var-
ied from 5 to 20. The first set of experiments were performed with an
“empty and idle” start-up condition: the system was empty and the server
idle when the simulation was begun. Figure 1 illustrates the results obtained
with a lone replication for various values of k as compared to the theoretical
values presented in Table 1. Figure 2 shows the similar results for 25 repli-
cations per experiment for various values of ‘k’. In previous studies of this
type of algorithm, (Wilson and Pritsker 1978b) suggested that k = 7 would
be sufficient for a M/M/1/15 system with 1000 observations. (Gafarian, et
al. 1978) showed that k = 25 was sufficient for an M/M/1 system with 100
replications of 100 ensemble observations each.

Figure 1 shows that for the single replication case, transient periods corre-
sponding to lower utilizations (ρ<0.6) were best estimated using low values
of k. Even at k = 5, transient period estimate errors do not drop under 100%
until ρ=0.5 (7.05% error). As the server utilization increases, higher values
of k provide more accurate results. Note that for utilizations around one
(ρ=1.0), the length of the transient can be underestimated unless ‘k’ is
increased.

FIGURE  1

By implementing 25 replications, Figure 2 bears out similar results. Again,
the curves significantly exaggerate the transient periods for lower utiliza-
tions. This figure shows that for ρ>1.0, the curves for the respective values
of ‘k’ do not closely track the theoretical results, but they do follow the
shape of the theoretical results’ curve.

Once the first set of simulations reached “steady state” according to the
“Crossings of the Mean” rule, the number of entities in the system was
recorded. (In the multiple replication case, the average of the number of
entities in each replication was rounded to the next higher integer.) This
value was then used as the initial state for another set of similar experi-
ments, the results for which are given in (McKinnon and Tipper 1995).

The effects of changing the initial state of the system seemed to reduce the
transient period length somewhat except for utilizations below 1.0. The
effect of changing the initial state for utilizations above 1.0 did not seem
particularly evident as the values for the length of the initial transient esti-
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ability to determine the transient period from an experiment comprised of
multiple replications with different pseudo-random number generator seeds.
Secondly, the performance of each of the estimation techniques is also
applied to a single (common) simulation replication, as applicable.

The performance measures for both of these situations are determined for
two cases, where applicable: an “empty & idle” initial system state and a
“known plausible steady state” initial system state. The latter is determined
from the steady state estimate of the “empty & idle” single replication case.
In the following sections, we discuss each of the four transient length esti-
mation algorithms. Also presented are the numerical determinations of the
transient periods under the aforementioned conditions.

“CROSSINGS OF THE MEAN” RULE

Referenced in (Gafarian, et al. 1978) and (Pawlikowski 1990), this algo-
rithm is attributed to Fishman’s Concepts and Methods in Discrete Event
Digital Simulation (John Wiley, New York, 1973). The idea is that observa-
tions contribute to a running mean which is asymptotic to a statistic’s theo-
retical mean. By the nature of a running mean, individual observations will
appear on either side of the mean as the simulation progresses, contributing
to its convergence.

Simply, as each observation is recorded by the simulation, the mean of the
observations up to that point is calculated. The number of consecutive
observation pairs which “cross” this running mean is then determined. A
“cross” is defined as observation xi-1 falling either above or below the mean
X(n) and observation xi falling on the opposite side of X(n), respectively;
X(n) is the sample mean given by equation (1). If the number of “crosses” is
less than a previously determined threshold (“k”), the simulation continues;
otherwise, steady state is deemed to have been realized.

The main disadvantages of this approach are twofold. One is that it requires
the storage of all observations, xi, until steady state is determined since the

TABLE  1: Theoretical Transient Periods

ρ Transient Period ρ Transient Period

0.1 6.0 1.1 165.0

0.2 8.0 1.2 130.0

0.3 11.0 1.3 99.0

0.4 15.0 1.4 78.0

0.5 22.0 1.5 63.0

0.6 36.0 1.6 52.0

0.7 63.0 1.7 44.0

0.8 109.0 1.8 39.0

0.9 162.0 1.9 34.0

1.0 184.0 2.0 30.0

X n( ) 1
n
--- x

i

i 1=

n

∑= (1)



mates were about the same as when the simulation started in the “empty &
idle” state.

FIGURE  2

“WINDOW OF TOLERANCE” RULE

Described in (Pawlikowski 1990), this algorithm is based on evaluating the
relative volatility of the running mean over a pre-defined number of sam-
ples. It basically states that a fixed number of consecutive running mean val-
ues must lie within a “tolerance zone” in terms of a percentage of a given
running mean. Therefore, the transient period has completed with observa-
tion ‘n’ once the criteria in Equation (2) is met for a predetermined number
of observations (‘k’).

One obvious problem with this technique is the fact that two separate and
unrelated parameters must be defined before any analysis can commence:
the length of the “window” of observations (‘k’) and the acceptable devia-
tion from the steady state value within the “window” (‘δ’). From an imple-
mentation standpoint, additional complexity is introduced in that the ‘k’
previous observations must be constantly maintained and updated.

After running the same simulation (seeded with the same random number
stream) from the “Crossings of the Mean” Rule with this criteria, the results
in Figure 3 & Figure 4 were generated. The experiments were performed for
a number of sets of parameters. Based on the suggested values given in
(Pawlikowski 1990), the length of the “window”, ‘k’, (i.e., the number of
samples required to fall within the pre-specified tolerance level) was varied
from 10 to 25 in increments of 5 and from 25 to 100 in increments of 25.
The reason that values below 30 were considered and are presented are
described in (Pawlikowski 1990), (Gafarian, et al. 1978), and (Roth 1985):
overestimation of the transient period. These values are denoted ‘k’ in all
figures’ legends. The tolerance values (denoted ‘δ’) were assigned values
from 0.1% to 5%. The more stringent requirements, those below 1%, did not
reliably generate a termination point for the length of the transient period
within the 100,000 event simulations used for this study. As such they are
not considered in the following discussion. Similarly, the values of ‘k’
shown are those which most closely estimated the theoretical transient
period; values of ‘k’ below 10 were not significantly different from those
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shown and those above 15 generated dramatically larger transient period
estimations.

FIGURE  3

Figure 3 illustrates the values generated for the “single replication” case; it
illustrates that, for low utilizations (ρ<0.6) in this case, all of the shown sets
of parameters grossly overestimated the length of the transient period. The
curves comprised of the aggregate values of 25 replications are shown in
Figure 4 and were somewhat more indicative of the effects of each of the
parameters. All of the transient period lengths estimated for low utilizations
were at least an order of magnitude greater than that of the theoretical val-
ues. (Roth 1985) and (Gafarian, et al. 1978) both mention that this type of
heuristic can result in extreme over-estimation of transient periods. As the
utilization increased to ρ>0.9, most of the values of ‘k’ and ‘δ’ shown
underestimate the length of the transient period. Also, none of the curves
shown resemble that of the theoretical values.

FIGURE  4

By re-initializing the simulation with the “steady state” average queue
length from the previous experiment, results similar to those documented in
the previous experiments are obtained. Again, this technique has been con-
sidered within the literature as probably inappropriate for this type of sce-
nario.
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“WELCH’S ALGORITHM”

Described in (Law and Kelton 1991) & (Welch 1983), this algorithm is the
only one analyzed which specifically requires multiple replications of iden-
tical systems. In this method, ‘n’ replications, each of length ‘m’, are gener-
ated, from which an ensemble average across the ‘n’ replications for each
observation is determined. Therefore, given observation ‘i’ (of ‘m’ observa-
tions) from the replication j, xi,j, equation (3) describes the ensemble aver-
ages, ‘Xi’.

A fixed number, ‘w’, of consecutive ensemble averages are then averaged
with one another in order to attempt to remove high-frequency artifacts. ‘Yi’
is defined as the “smoothed” average value of the observations.

One modification for this scheme provides for multiplying each of the
ensemble averages by carefully selected coefficients, al, before averaging
them. (Law and Kelton 1991) suggests that the application of a low-pass fil-
ter to the ensemble average values can improve the estimate of the transient
response. One set of appropriate coefficients and smoothed average values
are shown in equations (4), (5), and (6).

The subscript ‘l’ ranges from 1 to ‘w’, the odd (non-even) size of the “win-
dow” of observations which contribute to the ensemble averages. A plot of
the smoothed averaged observations ‘Yi’ must then be generated and a point
beyond the apparent transient period must be selected by visual observation
by the practitioner.

Regarding the selection of parameters for “Welch’s Algorithm”, (Law and
Kelton 1991) and (Welch 1983) present general guidelines for ‘n’ & ‘w’.
Additionally, the length of each replication, ‘m’, is a third parameter which
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must be determined prior to execution of the simulation. All of the simula-
tions in this study had ‘m’ set to 10,000 events.

FIGURE  5

(Law and Kelton 1991) made two points regarding “Welch’s Algorithm”
which were verified in this work. First, increasing ‘w’, the window of
ensemble averages which contribute to each “aggregate” statistic, results in
a more stable “aggregate” statistic curve. This point is illustrated in
Figure 5, using ρ=0.6 and n=25 as an example, the size of the “window”
was increased from 41 to 61.

FIGURE  6

Second, by increasing ‘n’ (the number of replications contributing to each
ensemble average), the volatility of the “aggregate” statistic was dramati-
cally affected. For instance, again using ρ=0.6 and a window size of w=51
samples for comparison, Figure 6 shows how dramatically the number of
replications affected the variation of the “aggregate” statistic

Since “Welch’s Algorithm” calls for visually estimating when steady-state
has begun, some error is intrinsically associated with results derived from
this algorithm. These errors will be directly linked to the resolution of plots
based on experiments, which are based on the number of observations and
the number of replications in each run. (Law and Kelton 1991) calls for a
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minimum of 2000 observations (‘m’) and 10 replications (‘n’) per scenario
with w between 10 and half of the number of observations.

Figure 6 shows a comparison of “aggregate” statistics between results from
one, five, and 25 replications. Since “Welch’s Algorithm” specifically calls
for multiple replications, the value of the single replication data may be
minimal.

With the previous notes in mind, the interpretations of the results for 25 rep-
lications per experiment are shown in Figure 7. It should be noted that,
based on visual observations, Welch’s Algorithm significantly underesti-
mated the transient period length for ρ between 0.7 and 1.5 for all values of
‘w’ considered.

FIGURE  7

Using the ensemble averages of the queue lengths of the concurrent replica-
tions at the time steady state is deemed to have occurred as an initial state,
the model was re-simulated. The estimated transient period under this con-
dition is approximately halved across all utilizations, hence further underes-
timating the theoretical transient period length for ρ>0.7.

SCHRUBEN’S “TEST FOR STATIONARITY”

The “Test for Stationarity” Rule is described briefly in (Pawlikowski 1990)
and, in detail, in (Schruben et al. 1983). Using one of the heuristic rules in
the literature as a starting point for the transient period, the transient
period’s observations are removed until the remaining observations pass a
statistical stationarity test. Given the number of observations removed, addi-
tional observations are generated at the end of the event stream. The ‘T’
measure in equation (7) is then compared to the theoretical Student’s ‘t’ dis-
tribution statistic (for a predefined significance and number of degrees of
freedom). The process is repeated until the criteria is satisfied by the experi-
mental measure ‘T’ passing a statistical test for stationarity.

This algorithm obviously requires a comparatively large number of vari-
ables to be considered before execution. (Pawlikowski 1990) provides rec-
ommended values based on a separate algorithm which incorporates that of
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(Schruben, et al. 1983). The four of these parameters which relate to the pre-
vious equation and their recommended values are presented in Table 2.

In the implementation of this test, the “Crossings of the Mean” Rule was
used as a starting point. Since Schruben’s rule only allows for increasing the
alleged transient, it will not be able to compensate for a starting algorithm’s
overestimation.

As we presented earlier, the “Crossings of the Mean” Rule substantially
overestimated the transient period for most utilizations, thereby somewhat
defeating this technique. The results for the “Test for Stationarity” based on
the “Crossings of the Mean” Rule (for a single replication and an “empty &
idle” initial state) are presented in Figure 8. The comparable results for the
“possible steady state” initial state are presented in (McKinnon and Tipper
1995).

FIGURE  8

Another note regarding not only Schruben’s test, but also many other tests,
is the requirement of a minimum number of observations in order to deter-
mine if a transient has been found. Realizing at least 100 (nv) observations
are necessary to accurately compute σ over nv, Schruben’s test determined
that in many low utilization cases the transient period had (legitimately)
expired after the required 100 observations. This phenomena is what is
observed in both Figure 8 at lower utilizations (ρ<0.7) and for both of the

TABLE  2: “Test for Stationarity” Rule Parameters

Variable Recommended Value

Simulation Length (nmax) 100000

Sequence Length Used to Esti-
mate Stationarity (nt)

200 (minimum)

Sequence Length Used to Esti-
mate Steady-State Variance,σn

(nv)

100

Exchange Rate between Tran-
sient Observations & New
Observations

0.5 (New Observations per
Transient Observation)
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entire k=5 curves. In other cases, however, specifically those about ρ=1.0,
the test was able to improve the initial estimate

CONCLUSIONS

Based on the theoretical results, the transient length detection techniques’
performance can be characterized as a function of the utilization of the
queue. The “Crossings of the Mean” Rule was the most accurate at low uti-
lizations for single replication experiments, although it significantly overes-
timated the actual transient period. In light of the number of observations
which should be available for this type of experiment, however, the addi-
tional observations may be able to be sacrificed. It also performed best when
given a reasonably “stable” starting state (i.e., a system state close to that of
“steady state”); with ρ<0.3, transient estimates were reduced to roughly
50% of the estimates realized for an “empty & idle” system. Above that
point, estimates were reduced slightly, but not appreciably. The appropriate
size of the threshold value used for this type of experiment seemed to shift
with the utilization, first appealing to lower thresholds and then, as the utili-
zation increased, higher thresholds.

For multiple replications and low utilizations, Welch’s Algorithm generated
the most accurate results. The main hurdle associated with using it, how-
ever, is the necessity to manually estimate when the transient period has
ended. This point makes it unreasonable to use in automated studies unless
this requirement is satisfied using another algorithm (such as the “Crossings
of the Mean” Rule or Rule “R8” from (Pawlikowski 1990) applied to the
“aggregate” statistics). Applying an initial non-empty state did not affect the
transient period estimates significantly.

As the utilization grows into the heavy utilization range (above roughly
75% of capacity), almost all of the algorithms discussed underestimated the
transient period’s length. The “Crossings of the Mean” Rule showed the
results closest to the theoretical estimates in the single replication case and
came very close to the theoretical results in the multiple replication cases
(while overestimating the theoretical results). The effects of providing a
plausible “steady state” as an initial condition to these experiments were
negligible. The fact that the curves for higher values of ‘k’ (of the “Cross-
ings of the Mean” Rule) did seem to approximate the shape of the theoreti-
cal curve in many cases does appear promising though.

The “Window of Tolerance” Rule provided the most accurate results for
finite queue utilizations above approximately 1.3. At some set of parame-
ters, the “Window of Tolerance” Rule overestimated the length of the tran-
sient period, but, as seen in Figure 3 and Figure 4, the higher values of ’δ‘
and lower values of ‘k’ provided the most accurate results. As the utilization
approached 2.0, however, estimates still showed errors approaching 100%.
Providing a non-empty initial state seemed to have a minimal effect on the
estimate of the transient period in this case.

It should be noted that none of the transient length detection algorithms was
found to accurately estimate the transient period over all load ranges. Fur-
thermore, the parameters of each algorithm which yielded the most accurate
estimation varied with the load. Based on the results of our study, we could
suggest the “Crossings of the Mean” Rule with the use of multiple replica-
tions to estimate the transient period. If only a single replication is available,
again, the “Crossings of the Mean” Rule would appear to yield the best
results with appropriate selection of the parameter ‘k’.
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