
On the Level of Guaranteed Services for Signaling
Control in Cellular Networks

Saowaphak Sasanus and David Tipper
Telecommunications Program, University of Pittsburgh, Pittsburgh, PA 15260

sasst128,dtipper@pitt.edu

Abstract— In this paper, we discuss our preliminary work on
signaling overload control for cellular services which requires
adaptability and scalability as well as guaranteed level of service.
We propose a set of controls that can provide different grades
of service to different service classes effectively. The controls are
resource sharing schemes proposed consisting of a token rate
control combined with priority scheduling and an awareness
of the transport network state. Simulation results are given
illustrating the behavior of new signaling overload controls and
comparative performance with the other existing controls in the
literature.

I. INTRODUCTION

Wireless cellular networks (WCNs) are dependent on signal-
ing networks for secure communications, location tracking of
users, and providing intelligent services (e.g., video calling,
incoming call restriction, multi-media message service). In
overload situations, congestion can easily occur at signaling
network database servers such as the visitor location register
(VLR) degrading network performance. Numerous examples
have been reported in the literature of mass call ins and
denial of service attacks (e.g., with short message services)
that overload the signaling network resulting in almost zero
throughput for a network service area, even though free traffic
channels are available in some areas [1] [2]. Clearly, new
signaling overload controls are needed as existing techniques
have been demonstrated to be lacking.

Unlike basic voice calls in PSTNs where all signaling ser-
vices, in WCNs the signaling of different mobile applications
should not be treated equally as there are many varieties
of signaling services and heterogeneity in the traffic. Multi-
class signaling overload control for WCNs have recently been
proposed in [3] [4] to ensure differentiated QoS among classes
of signaling traffic. Whereas, the advantages of adaptive over-
load control were explored in [5] [6]. By considering both
concepts, algorithms on adaptive multi-class token rate control
were proposed in [7] [8]. Token rate control is known to
provide better bounded maximum departure rate as well as
improving throughput by servicing a burst of packets after a
low activity period as compared to other rate-based controls
(i.e., call gapping, percentage of call blocking). In Wei Wu,
et al.’s algorithm [7] based on token rate control, load is
controlled only when an overload is detected. The algorithm
tries to optimally utilize resources by iteratively finding shared
ratios among all classes in each control decision. However,
the functionality of the algorithm depends solely on overload
detection where utilization is chosen as the trigger parameter.

When the utilization does not reflect the amount of current
arrivals well, the rate distribution scheme will behave incor-
rectly, as not all unused resources of one class is redistributed
to the others. Moreover, since the algorithm completely shares
all unused resource, services cannot be guaranteed in the
feedback delayed system. In Karagiannis’s algorithm [8],
overload control is always activated, lowering the overshoot
of call/service blocking rate and system delay time caused
by slow reaction to overload. However, token and job buffer
settings of the algorithm sometimes cause too large token ac-
cumulation, leading to undesirable performance. Moreover, the
algorithm uses static shared ratios where overloaded classes
are penalized while underloaded classes are credited with more
rate. This absolute resource distribution does not optimally uti-
lize resource or provide scalability in time-varying networks,
although it ensures guaranteed services.

The current algorithms do not provide guaranteed services
and effective resource sharing simultaneously. Moreover, none
of them address issue of ineffective control caused by servicing
load that needs new channel allocation when channel is
unavailable. We address the requirements of being adaptability
and scalability here and considered integration of state of
available radio resources in the control [9]. In this paper, we
propose two novel multi-class signaling network congestion
controls that allow an efficient tradeoff between providing
guaranteed and shared resources. Simulation results are given
for the proposed congestion control schemes illustrating their
performance as well as comparing them with other algorithms.
The remainder of the paper is organized as follows. In the next
section, we present our proposed adaptive multi-class signaling
overload controls. Followed by a comparative simulation based
performance evaluation in Section III. Lastly, in Section IV we
summarize our results and present our conclusions.

II. ADAPTIVE MULTI-CLASS TOKEN RATE CONTROLS

Overload control can be effective by dropping load in
the early stage of congestion and at source nodes. We use
centralized control approaches where the control decisions
are made at the server and the service rejections are done at
sources accordingly. Server drops overload that is not already
throttled by sources. Control decisions are more precise since
the server knows the global view of all sources. We study
token rate/bucket control here due to its superior performance
over other rate- and window-based controls. We bound the
maximum departure rate by limiting the bucket size. Let the

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2519

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

token bucket capacity be B bytes. Tokens arrive with the
deterministic rate of r bytes/sec where tokens that arrive into
a full bucket are dropped and lost. The maximum service rate
is M bytes/sec. For a burst length S, the arrival input burst
should not exceed MS bytes, thus B + rS ≤ MS. However,
token rate control has the disadvantage on large fluctuation
of the departure rate, which raises the requirement of large
buffer in the downstream node. Especially, the database server
which provides service to multiple sources is highly effected
by this requirement. To cope with this problem, the token
bucket/buffer size at each source is partitioned and used as job
buffer. Each class has a separate token buffer and job buffer
to easily achieve differentiated QoS among classes.

This work proposes resource sharing among classes using
the concept of rate sharing or buffer sharing1, both of which

Job sheduling

r1

C1

r2

C2

rm

Cm

COF

Jm
BR

Rejected
token

Rejected
token

Rejected
token

J1
AR

J2
AR

Jm
AR

J2
BR

J1
BR

Ji
BR : Buffer for jobs waiting on tokens

Ji
AR : Buffer for jobs waiting for service

Accepted job

Rejected job due to full
class i job buffer

Job buffer is full

Token is overflowed to
the overflow token buffer

Rejected token

can be explained by the queueing model shown in Fig. 1.

Fig. 1. Queueing model of the proposed resource sharing schemes

Let Ci and Ji be the size of the token buffer and the job
buffer of class i. The queueing model consists of the token
buffers (C1, C2, ..., Cm), the job buffers (J1, J2, ..., Jm)
for class (1, 2, ...,m), and the overflow buffer (COF). Class 1
is the highest priority class with class m the lowest priority
class. The job buffer of class i of two logical job buffers.
JBR

i stores jobs of class i that are waiting for tokens. The
second logical job buffer denoted by JAR

i stores jobs of class
i that are waiting for service. The token rate of class i is
denoted by ri. Tokens are credited to the token buffer of class
i periodically every 1/ri seconds. In the event the token buffer
of class i is full when its token arrives, the token is sent to the
overflow buffer, COF if it is available. Otherwise, the token
is lost. When a packet which belongs to class i arrives, if
there is available token in the token buffer of class i or in
the overflow buffer, the packet captures a token and moves
to JAR

i . Otherwise, the packet is queued in the job buffer of
class i, JBR

i if space is free. The packet is only rejected if
the job buffer is full. A packet in job buffer JBR

i waits until a
token becomes available in token buffer of its class or in the
overflow buffer. Once a job is in the JAR

i portion of the job

1A. Berger studies static control for the buffer sharing scheme [10]. Token
buffer of each class and the overflow buffer is set to 10.

buffer, it waits for its turn at the server. This queueing model
allows better utilization of the server since some tokens of
temporary low-activity classes can be used by packets which
belong to the other currently high-activity classes.

In both schemes proposed here, resources (i.e., token rate
and buffer) are distributed among classes based on priority
weights. Let Πi denote the priority weight for class i where∑

Πi = 1. The priority weight of any class is selected based
on the significance of that class and the percentage of load
which that class contributes to the total load. The token rate
of class i, ri is set equal to Πir. The allowed burst size which
is the summation of token and job buffer of class i is set
to ΠiB. The burst size of the highest priority class, B1 is
first derived according to its maximum system delay time2

recommended by the ITU [11], and is later used to calculate
the burst size of the other classes, Bi. However, the value of
Bi must not cause the violation to the preferrable maximum
system delay time of class i. We set the burst size, Bi at
each source based on the from the burst size, Bi at the server
and the number of participating sources. Since our overload
control is only activated when an overload is detected, a large
token accumulation is unlikely. In the exchange, overshoot in
the system delay time and the probability of service rejection
when the overlod is first detected, is expected to be higher
than the case that the overload control is always active.

At the server, let Svci and Svcmax
i denote the service

time and the maximum system delay time of class i at the
server where Svcmax

1 < Svcmax
2 < ... < Svcmax

m . The
burst size is set such that, B∗

1 × Svc1 ≤ Svcmax
1 and

B∗
i = min(Πi

Π1
×B∗

1 ,
Svcmax

i

Svci
), where a ∗ superscript indicates

the initial settings. Since the departure rate is limited by the
maximum service rate, the burst size is assigned to the token
buffer, C∗

i = B∗
i . There is no job buffer at the server, J∗

i = 0.
At each source, the token buffer size of each class is set to

the same token buffer size at the server, or C∗
i at source is

equal to B∗
iServer

. The job buffer size of the highest priority
class is set, so that the system delay time of the last job in
the queue will not violate the maximum system delay time
of its class. Let ´Svci be the token waiting time of class i
job, and ´Svc

max

i be the preferred maximum waiting time of
last job in the class i job queue where ´Svc

max

1 < ´Svc
max

2 <
... < ´Svc

max

m . Let ρtarg be the target average utilization of the
server. ´Svci is equal to 1

r×ρtarg×Πi
. Since the system delay

time here is a job’s waiting time for a token, the class i
job buffer size is set such that J∗

1 × ´Svc1 ≤ ´Svc
max

1 . The
burst size of the highest priority class is the summation of
the job buffer and the token buffer, B∗

1 = J∗
1 + C∗

1 . After
the burst size of the highest priority class is derived, the burst
size of each lower priority class can be calculated with the
constraint of its own budget of maximum system delay time,
B∗

i = min(ΠiB
∗
1

Π1
,

´Svc
max
i
´Svci

+ Ci). Then, the job buffer size of
each lower priority class can be derived from J∗

i = B∗
i −C∗

i .

2Assuming that delay time due to accessing radio channel and relaying
packet at a BS is very small, the maximum delay time budget is equally
distributed to a source (BSC) and a server (MSC/VLR).

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2520

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

The algorithm monitors arrivals at the server and checks
whether the system is overloaded at every end of the control
interval. By following Kasera et al’s study [12], overload is de-
tected using both the processor utilization and the acceptance
rate. The utilization is dimensionless which makes it relatively
system-independence but with slow reaction to overload. The
acceptance rate reacts fast to overload, but it does not represent
the inner situation of the processor as well as the utilization.
To prevent a ping-pong effect, we consider change in overload
status only when both indicators changed from detection or
abatement thresholds to the other.

When an overload is detected, a token rate of each class
is reassigned. We adopt Kasera et al.’s single-class control
algorithm [12] to the multi-class case. Let rni

be the class i
token rate in the nth control time interval (n = 0, 1, 2, ...).
The token rate in the next control interval (rn+1i

) is reduced
when the utilization of class i denoted by ρi is greater than
the target utilization of class i denoted by ρtargi

, but at least
rmini

to allow some transmission. If ρi is less than ρtargi
,

the token rate rn+1i
is increased but limited by the server’s

service rate r. The specific formula adopted is given by.

rn+1i
=

min

(
ρtargi

ρ̂i
× rni

,Πir
)

: ρ̂i < ρtargi
− ε

2

max
(

ρtargi

ρ̂i
× rni

, rmini

)
: ρ̂i > ρtargi

+ ε
2

rni
: otherwise

(1)
where ε is the percentage fluctuation allowed in the utilization

In rate sharing, the priority weights used in rate and buffer
distribution are adaptively adjusted while the overflow buffer
COF is set to 0. Let π̂i denote the adaptive priority weight.
The token rate of class i that theoretically allows satisfaction
to all classes denoted by rA

i . The weights π̂i is equal to rA
i /r

ρtarg

where rA
i is calculated using the similar concept to min-max

sharing3. In min-max sharing, the lowest token rate depends
only on the amount of the current load of each class, and
all classes have the same priority to access unused resource.
Whereas, in our sharing, the lowest token rate of any class
is set at a certain threshold indicating the maximum resource
that one class is allowed to share with the others, and the
higher priority classes have an easier chance to grasp unused
resources than the other lower priority classes.

Let xl
i be the minimum service rate that class i will receive

and xh
i be the baseline rate for class i. xh

i is set to Πirn,
and xl

i is set to xh
i (1 − H), where H denotes the maximum

percentage that one class is willing to share with the others.
We calculate rA

i as follows. In the first round, rA
i will be

set to at least xl
i and at most xh

i if arrival load of class i
denoted by λi is less than or equal to xl

i, and greater than or
equal to xh

i , respectively. If some classes require service rate
less than xl

i, classes that still unsatisfy with their assigned rA
i

3According to [13], “a min-max sharing allocates a user with a small
demand what it wants, and evenly distributes unused resources to the big
users”. First, demand of resource is allocated in increasing order. Second, no
source gets a resource larger than its demand. Third, source with unsatisfied
demands get an equal share of resource, which is continued until resource is
depleted.

can acquire more rate in the following rounds. That is only if
unused resource from the first round are not already claimed by
some higher priority classes. When all classes satisfy with their
assigned rA

i , whatever left is distributed to all classes using the
priority weights. Assuming m classes of services, rA

i ranges
from xl

i to xh
i +

∑
(xh

a − max(λa, xl
i)) | ∀a �= i, λa < xh

a .
In buffer sharing, we use a constant priority weight Πi in

rate and buffer distribution. When the arrival load changes,
the percentage of class i token buffer that is contributed to the
overflow token buffer denoted by Cp

OF i
is changed according

to Eq. 3 with the constraint that it must not exceed the
preferrable maximum percentage of resource sharing, H . The
value of Cp

OF i
is zero when the arrival load of class i, λi is

greater than or equal to the token rate of class i, rni
. The

value is increased linearly when the arrival load is less than
the token rate. When the arrival load of class i, λi is greater
than or equal to (1−H)rni

, Cp
OF i

is equal to H . The portion
of the overflow token buffer contributed by class i denoted by
COF i

is calculated by Eq. 2. The overflow token buffer COF

is the summation of COF i from all classes. Eq. 4 shows the
buffer settings as the percentage of sharing is changed.

COF i
= Cp

OF i
× B∗

i (2)

where Cp
OF i

=

{
min(rni

−λi

rni
,H) : ∀i|λi ≤ rni

0 : otherwise
(3)

Ci = (1 − Cp
OF i

) C∗
i , and Ji = (1 − Cp

OF i
) J∗

i (4)

In both sharing schemes, the token rate of class i is dis-
tributed to each source node similarly to rate distribution used
in rate sharing scheme except that priority is not exercised in
acquiring unused resources here. Let (rn+1i,j

) denote class i
token rate that node j receives. Let Hj denote the maximum
percentage that one node is willing to share with the others.
Let xl

i,j be the minimum service rate that node j will receive
and xh

i,j be the baseline rate for node j. Assuming the total of
n nodes, xh

i,j is set to
rn+1i,j

n , and xl
i,j is set to xh

i,j(1−Hj).
In the first round, rn+1i,j

is set to at least xl
i,j and at most

xh
i,j if arrival load of node j denoted by λi,j is less than or

equal to xl
i,j , and greater than or equal to xh

i,j , respectively.
If some nodes require service rate less than xl

i,j , nodes that
still unsatisfy with their assigned rate will receive more rate
but will not exceed λi,j . When all nodes satisfy with their
assigned rate, whatever left is distributed to all nodes equally.

III. PERFORMANCE EVALUATION

MSC/VLR
BS

BS

BS

BS

BSC

BSC

BSC

We studied a simple network model as shown in Fig. 2. There

Fig. 2. Node model in this study

were three sources of aggregate
signaling service requests at
base station controllers (BSCs)
each of which supports seven
base stations (BSs). Each BSC
was directly connected to a
common shared visitor loca-
tion register (VLR), a database
server co-located at the MSC.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2521

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

A BSC requested services from the VLR according to the
request originated from BSs. OPNET v.10 was the software
tool used to develop the simulation.

The assumption in this preliminary study was that all
signaling services had the same service delay time of 2.5ms4.
The delay time in dropping a packet due to unavailable job
buffer was set to 1ms. The control interval was set to 1.0s
to follow the setting in [12] and to suit database networks
where query and storage take time in the order of a second.
The simulation run time was set to 720s. The total target
utilization was set to 0.8. The detection and the abatement
thresholds were set to 0.8 and 0.7 for the utilization, and
0.7 and 0.6 for acceptance rate since it is less stable than
the utilization. The percentage of fluctuation allowed from
the target utilization was set to 0.01%. Three classes of
service requests were considered: high, medium, and low
denoted by class 1, 2, and 3, respectively. The arrival load
was independently originated among classes and followed a
Poisson distribution. The assumption was that all signaling
services consists of a packet with the same size. The priority
weight of high, medium, and low priority class denoted by
Π1, Π2, and Π3 were initially set to 0.5, 0.35, and 0.15,
respectively. These numbers were only set based on priority
in these experiments, not the contributed load.

For the proposed controls, table I below shows the initial
size of each class’ job and token buffers. The maximum
percentage of sharing was set to 40%. For other algorithms, we
follow rules exercised in the original work. In Karagiannis’s
algorithm, the minimum token buffer of each class was 90,
and a shared job buffer for all classes was 20. The settings
purposely reduced the packet loss due to unavailable job
buffer. In Wei Wu et al.’s algorithm, the token buffer of each
class was 10, and a shared job buffer for all classes is 200.

Table I. Initial Settings of Token and Job Buffers

Class Server Source
Bi Ji Ci Bi Ji Ci

HI 120 0 120 136 16 120
MED 84 0 84 95 11 84
LOW 36 0 36 40 4 36
Total 240 0 240 271 31 240

The performance parameters under the inspection were the
system delay time and the utilization of each class. The system
delay time is the time between a packet arriving and resided in
the job buffer until the packet receives service and departs. The
utilization of class i was a ratio of time that the server/VLR
serviced class i signaling packets to the summation of time
that the server/VLR serviced signaling packets from all classes
and the control packets that were successfully served within
the control interval.

For reliability of the results, data was collected from 57 runs
using different seed numbers. Each point is the average value

4The response time was selected such that it simplified the analysis and
it was proper with 2s post selection of authentication service and 4s post-
selection delay of paging/alerting services according to [11] by considering
the propagation delay time and queueing delay time at both source and the
server.

of the measurements from 57 run sets where each point in a
run set is the sample mean over 3s. However, we represent
the results in term of the average only as they are conclusive.

In the first experiment, the reaction of overload control
algorithm was inspected to a sudden overload by setting high
arrivals beginning at time 180s and ending at time 540s. In
the first experiment, the functionality of the proposed controls
was studied where all classes overloaded their resource shares.
The arrival load of high, medium, and low priority classes from
each source/BSC were set to 60, 60, and 70 packets/sec in the
period of 180s − 300s and 420s − 540s, and 70, 60, and 70
packets/sec in the period of 300s − 420s.

The simulation results show that the utilization of rate
sharing and buffer sharing could be maintained approximately
at the target utilization, 0.8. As shown in Fig. 3, each class
be able to utilize resource roughly at its share, which was the
product of the target utilization and the priority weight. Fig. 4
shows that the proposed controls provided differentiated QoS
among classes in term of the system delay time. Load from
the lower priority classes faced longer delay than load from

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(a)

the other higher priority classes.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(b)

Fig. 3. The utilization of each class in a) rate sharing and b) buffer sharing

In the second experiment, the proposed controls were com-
pared with Wei Wu et al.’s algorithm [7] and Karagiannis’s
algorithm [8], which are based on token rate control in [14].
To prove the concept of resource sharing, the arrival load from
high priority class was set to require resource less than its

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2522

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

share, while others overloaded their shares. High, medium,
and low priority class from each source/BSC were set equal
to 60, 40, and 30 packets/sec in the period of 180s−300s and
420s− 540s, and 30, 40, and 60 packets/sec in the period of

(a)

300s − 420s.

(b)

Fig. 4. The system delay time of each class in a) rate sharing and b) buffer
sharing

As shown in Fig. 5-6, the utilization of each class and the
system delay time of the compared algorithms. In Karagian-
nis’s algorithm, the lower priority classes lost the resource that
high priority class did not acquire. In the proposed controls,
the medium priority class could achieve higher utilization than
the guaranteed threshold and higher than the utilization of low
priority class. Wei Wu et al.’s algorithm serviced more load
from the low priority class than load from the medium priority
class, because classes that violated their guaranteed resource
were intended to relatively share unused resources based on
the priority weights. However, because of the implementation
of rate distribution that only function well when the server’s
status is overload, some resource may be left unused when the
overload trigger parameter does not reflect status of the current
arrivals well. Although our proposed controls and Wei Wu, et
al.’s algorithm all provided the differentiated services among
classes in term of the system delay time, our controls provide
less fluctuation. In Karagiannis’s algorithm, the system delay
time of medium priority class was higher than that of low
priority class because of large token accumulations caused by

the selection of the token buffer size.

IV. CONCLUSION

In this paper, we discuss the first part of a study on adaptive
signaling overload control for cellular networks. The second
part which integrates overload control decisions with the state
of transport network is in [9]. The proposed overload controls
allows tradeoff between providing guaranteed service and
resource sharing among multiple classes, allowing adaptive
and scalable control. Guaranteed level of service can be
accomplished as well as better utilization of the processor
capacity while differentiated services in utilization and the
system delay time can be maintained.

ACKNOWLEDGMENTS

This work was supported by TOT Corporation Public Co.
ltd. Saowaphak would like to express her gratitude to OPNET
Technologies in providing the simulation tool for this study.

REFERENCES

[1] W. Enck, P. Traynor, P. McDaniel, and T. LaPorta, “Exploiting open
functionality in SMS-capable cellular networks,” in Proceedings 12th
ACM Conference on Computer and Communications Security (CCS’05),
Alexandria, VA, Nov. 2005.

[2] T. Lewis, Critical Infrastructure Protection in Homeland Security:
Defending a Networked Nation, forthcoming. Wiley-Interscience, Apr.
2006.

[3] S. Kasera, J. Pinheiro, C. Loader, T. LaPorta, M. Karaul, and A. Hari,
“Robust multiclass signaling overload control,” in Proceedings of 3th
IEEE International Conference on Network Protocols (ICNP’05), Nov.
2005, pp. 246–258.

[4] B. D. Choi, S. H. Choi, B. Kim, and D. K. Sung, “Analysis of priority
queuing system based on thresholds and its application to signaling no.
7 with congestion control,” Computer Networks, vol. 32, no. 2, pp. 149–
170, Feb. 2000.

[5] R. A. Farel and M. Gawande, “Design and analysis of overload control
strategies for transaction network databases,” in Proceedings of the 13th
International Teletraffic Congress (ITC 13), Copenhagen, Denmark, June
1991, pp. 115–120.

[6] D. E. Smith, “Ensuring robust call throughput and fairness for SCP
overload controls,” IEEE/ACM Transactions on Networking, vol. 3,
no. 5, pp. 538–548, Oct. 1995.

[7] W. Wei, Y. Fangchun, and Z. Hua, “The study on overload control of
application server in next-generation networks,” in Proceedings Inter-
national Conference on Communication Technology (ICCT’03), vol. 2,
Apr. 2003, pp. 1429–1432.

[8] G. Karagiannis, “Scalability and congestion control in broadband
intelligent and mobile networks,” Ph.D. dissertation, Twente University,
P.O. Box 217, 7500 AE Enschede, the Netherlands, June 2002.
[Online]. Available: http://doc.utwente.nl/fid/1363

[9] S. Sasanus and D. Tipper, “Adaptive multi-class signaling control for
cellular networks,” in IEEE Symposium on Computers and Communica-
tions (ISCC’07), 2007.

[10] A. W. Berger and W. Whitt, “A multiclass input-regulation throttle,”
in Proceedings of the 29th IEEE Conference on Decision and Control
(CDC’90), vol. 4, Honolulu, Hawaii, Dec. 1990, pp. 2106 – 2111.

[11] D. Grillo, “Personal communications and traffic engineering in itu-
t: the developing e.750-series of recommendations,” IEEE Personal
Communications, vol. 3, pp. 16 – 28, Dec. 2006.

[12] S. Kasera, J. Pinheiro, C. Loader, M. Karaul, A. Hari, and T. LaPorta,
“Fast and robust signaling overload control,” in Ninth International
Conference on Network Protocols, Nov. 2001, pp. 323 – 331.

[13] S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the Telephone Network. Addison-Wesley,
1997, Dec. 1998.

[14] A. W. Berger, “Overload control using rate control throttle: Selecting
token bank capacity for robustness to arrival rates,” IEEE Transactions
on Automatic Control (AC’91), vol. 36, no. 2, pp. 216–219, Feb. 1991.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2523

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(a)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(b)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(c)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (secs)

U
til

iz
at

io
n

High priority packets
Medium priority packets
Low priority packets

(d)

Fig. 5. The utilization of each class in a) rate sharing b) buffer sharing, c) the Karagiannis’ algorithm, and d) Wei Wu, et al.’s algorithm

0 100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (secs)

S
ys

te
m

 d
el

ay
 ti

m
e

High priority packets
Medium priority packets
Low priority packets

(a)

0 100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (secs)

S
ys

te
m

 d
el

ay
 ti

m
e

High priority packets
Medium priority packets
Low priority packets

(b)

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (secs)

S
ys

te
m

 d
el

ay
 ti

m
e

High priority packets
Medium priority packets
Low priority packets

(c)

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (secs)

S
ys

te
m

 d
el

ay
 ti

m
e

High priority packets
Medium priority packets
Low priority packets

(d)

Fig. 6. The system delay time of each class in a) rate sharing b) buffer sharing, c) the Karagiannis’ algorithm, and d) Wei Wu, et al.’s algorithm

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2524

Authorized licensed use limited to: University of Pittsburgh. Downloaded on October 6, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

