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Abstract— In this paper, we propose an adaptive capacity
allocation scheme at the call level for a blocked call cleared loss
system. The scheme aims to maintain the connection blocking
probability around a specified target value by dynamically adjust-
ing the allocated capacity. Based on a fluid flow model of the loss
system, Lyapunov Stability theory is used to derive an adaptive
capacity adjustment scheme which guarantees overall system
stability around the target call blocking probability. Numerical
results are given which show that the Lyapunov control based
scheme is robust to load variations and performs better than
existing schemes in the literature.
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I. INTRODUCTION

In this paper, we propose a novel adaptive bandwidth
allocation scheme at the call level for a blocked call cleared
loss system. The goal of implementing a bandwidth adjust-
ment scheme is to provide a mechanism which will allow
for efficient use of network resource while meeting QoS
requirements. The basic idea is to dynamically allocate and
deallocate the capacity from the underlying transport network
for different calls/flows/connections/service classes in order
to respond to the network traffic changes so as to meet the
QoS requirements. In other words, if the traffic is low for
a particular class at certain time, as long as the QoS is
met, some capacity may be deallocated for use by either
other services or assigned to a shared pool. Similarly, if the
QoS of a certain traffic class is degraded by any network
changes, additional capacity may be requested from the trans-
port network. As a result, better utilization of the network
resources can be achieved. The capabilitiy of dynamically
allocating/deallocating bandwidth is now possible in some
network technology (e.g., SONET Mesh Networks [4], cellular
networks with dynamic channel allocation ) and is expected
to be common place in the future.

Over the years a fair amount of literature has appeared
on developing adaptive bandwidth control algorithms to meet
packet level QoS metrics and the interested reader is referred
to the survey paper [16]. There has been much less work
in the literature that addresses call blocking and capacity
adjustment at the call level. Mase and Imase [18] proposed

adaptive bandwidth allocation for virtual trunks in circuit
switched networks to handle variation in multi-hour loading
patterns. A simple adjustment heuristic was proposed. Shioda
[15] proposed adaptively adjusting the capacity allocated to
virtual paths in ATM networks as a function of the call
blocking deviation from a desired call blocking rate. A simple
threshold approach on the deviations and capacity adjustment
was proposed. In [7], a dynamically, reconfigurable, capacity
environment was addressed. Adaptive capacity schemes based
on the blocking and utilization as means to calculate when and
how much adjustment should be made were proposed and a
comparative performance evaluation presented. However, the
assumption of a priori knowledge of the traffic, for which
the adjustment parameters can be properly tuned, make the
schemes not very robust.

In this paper, we adopt the same scenario of [7] and propose
a robust, adaptive scheme that automatically adjusts the link
capacity using a control theory approach. In past there has
been interest in applying techniques from control theory to
regulate communication network behavior. This work has fo-
cused on a variety of problems from IP packet level congestion
control [10], [14], to ATM cell level network congestion
control [3], to IP packet level bandwidth allocation [17]. Here
we focus on the call or connection level network behavior.
Specifically, in this paper, we present a differential equation-
based fluid-flow model that captures the traffic dynamics of a
loss system. Based on the fluid-flow model, Lyapunov stability
theory is used to determine an adaptive bandwidth allocation
scheme that guarantees an overall system stability by forcing
the call blocking of the system to track a desired value or
desired time varying trajectory. The resulting scheme is simple
to implement and is shown to have performance which is
robust to variations in the input load, parameter settings and
desired trajectory.

The remainder of the paper is organized as follows. In the
next section, we present a fluid-flow based model of the call
blocking behavior in a loss system. In Section III, we introduce
the Lyapunov Stability Theorem and its application to obtain
an adaptive capacity allocation scheme. Then, in Section IV
we evaluate the performance of the proposed scheme through
simulations. Finally, the paper concludes in Section V.



II. A FLUID-FLOW MODEL FOR LOSS SYSTEMS

In order to develop an adaptive bandwidth allocation scheme
based on control theory principles a suitable model of the
dynamic behavior must be determined. Here, we adopt an
approximate fluid-flow modeling approach described in [19]
and [20]. We consider a nonstationary offered load to a single
traffic class loss system. In modeling the loss system, we
consider the case where the link capacity C(t) is time varying
and is counted as a multiple of a basic bandwidth unit (e.g.,
64 Kbps DS0’s in a circuit switched network). We assume that
that the time varying offered load at time t is characterized by
a nonstationary Poisson process with mean arrival rate λ(t)
at time t. This is consistent with the measurement results and
models reported in [6], [11], [9].

The call holding (duration) time is assumed to be exponen-
tially distributed, with mean, 1/μ. Thus, the offered load, the
arrival rate and the holding time are related by a(t) = λ(t)/μ.
Note that there is no restriction on the arrival pattern of traffic
within a connection, only on the holding time of connections
and the time between connection requests. A connection
arrival, at time, t, finds capacity C(t), if there is a free unit
of capacity, in the present value of C(t), to accommodate the
connection, then the connection is accepted and uses a unit of
bandwidth, otherwise, the connection is blocked and cleared.
Note that C(t) is time-dependent and represents the adjustable
capacity in the network link. Under the assumptions above we
have a time-dependent, nonstationary loss system which is a
M(t)/M(t)/C(t)/C(t) type queue.

Obtaining closed form expressions for the general nonsta-
tionary behavior of queueing systems is extremely difficult,
so we adopt a numerical solution approach using a fluid flow
approximation. Specifically, we use the Pointwise Stationary
Fluid Flow Approximation (PSFFA) method [19], [20]. Here,
we derive the PSFFA model for the specific system under
consideration. We define x(t) as the state variable representing
the average number of connections that are present on the link
at time, t. Let

·
x(t) = dx(t)/dt be the rate of change of the

state variable with respect to time. From the flow conservation
principle, the rate of change of the average number in the
system is equal to the difference between the average arrival
and departure rates. Let fin(t) and fout(t) denote the ensemble
average number of connections in and out of the system at time
t, respectively. Then the rate of change of the state variable
can be related to the flow in and flow out by:

·
x(t) = −fout(t) + fin(t) (1)

This type of equation is referred to as a fluid flow equation
[9], [19], [20]. To determine the particulars of the flow in
and out of the system for the M/M/C/C queue case, we let
πi(t); i = 0; 1, ..., C(t) denote the state probabilities of the
system, with πi(t) representing the probability that there are i
connections in the system at time t. The flow into the system
is just the offered load λ(t) minus the portion of the offered
load that is blocked. Hence we have:

fin(t) = λ(t)(1 − πC(t)(t)) (2)

where πC(t)(t), denotes the probability that a connection is
blocked at time t, given the current capacity C(t). The flow
out of the queue fout(t), is the current utilization of the C(t)
servers and is given by

fout(t) = μπ1(t) + 2μπ2(t) + ... + C(t)μπC(t)(t) (3)

Which can be shown to be equivalent to fout(t) = μx(t).
Thus, the fluid flow model becomes:

·
x(t) = −μx(t) + λ(t)(1 − πC(t)(t)) (4)

Computing an exact solution for πC(t)(t) in the non-
stationary case is difficult and we use the PSFFA approach of
approximating it from the steady state formulas for the system
under study [19], [20]. For the M/M/C/C system we use the
steady state functional relationships to estimate πC(t)(t) as a
function of x(t). At steady state [8], the average number of
connections in the system x, the offered load a Erlangs and
the blocking probability πC are related by:

x = a[1 − πC ] (5)

and

πC = E(a, C) =
aC

C!∑C
k=0

ak

k!

(6)

Note, that πC = E(a, C), where E(a, C) is the well
known Erlang-B loss formula. We assume the same functional
relationships hold for the time varying behavior and we solve
for a(t)and πC(t)(t) using the equations above. Specifically,
equation (5) is rewritten as:

a(x(t)) =
x(t)

1 − E(a(x(t)), C(t))
(7)

Since equation (6) is now a function of C(t), and the offered
load, a(t) is a function of x(t), we get:

πC(t)(t) = E(a(x(t), C(t)) =
a(x(t))C(t)

C!∑C(t)
k=0

a(x(t))k

k!

(8)

Note that equation (7) is a fixed point equation which can
be solved together with equation (8) in an iterative fashion
to jointly determine a(x(t)) and πC(t)(t). Thus, the PSFFA
model of the system is given by (4) together with (7) and (8).

The PSFFA model can be solved numerically to determine
the time varying behavior of the system. We identify an initial
condition for the state variable at time t0 as x(t0) and an initial
capacity value C(t0). The arrival rate is approximated by a
constant over a small time step �t, by λ(t) = λ(t0 + �t/2)
for t ∈ [t0, t0 +�t]. Then the blocking probability πC(t)(t) is
approximated by a constant over t ∈ [t0, t0 + �t] by solving
(7) together with (8). The PSFFA model (4) can then be
numerically integrated using a standard technique, such as, the
Runge-Kutta-Fehlberg numerical method [2]. The numerical
solution yields the value of the state variable at the end of
the time interval, x(t0 + �t), which then becomes the initial
condition for the next time step [t0 +�t, t0 +2� t]. We then



adjust the capacity and arrival rate for the new time step and
the procedure is repeated for each interval in the time horizon.
The numerical solution technique can be written in algorithmic
form over [t0, tf ] as follows.

1) Initialization: set current time t, to t = t0 establish the
initial system occupancy x(t) = x(t0), system capacity
C(t) = C(t0) and specify a time step Δt

2) Approximate the arrival rate λ(t) by a constant λ over
[t, t + Δt] with λ = λ(t + Δt/2)

3) Approximate πC(t)(t) over [t, t+Δt] by a constant πC(t)

by solving (7) and (8) iteratively until the change in
a(x(t)) does not exceed a prespecified ε

4) Utilizing x(t), λ (from step 2), πC(t) (from step 3),
numerically solve the differential equation given by (5)
over the small time interval Δt, and get the new system
occupancy at time t + Δt; x(t + Δt).

5) Increment time, t = t+Δt. If t < tf , go to 2, else stop.

In order to evaluate the accuracy of the fluid flow model
we compare it to exact results. For finite capacity Markovian
queues the nonstationary behavior can be determined with high
precision by integrating the associated Chapman Kolmogorov
differential equation model [19]. Defining p j(t) as the proba-
bility of j connections being in the system at time t, μ as the
mean service rate, and λ(t) as the time varying mean arrival
rate, C as the fixed system capacity, the Chapman-Kolmogorov
differential equations [8] (CK model) are given by:

dp0(t)/dt = −λ(t)p0(t) + μp1(t)
dpj(t)/dt = λ(t)pj−1(t) − (λ(t) + jμ)pj(t)

+(j + 1)μpj+1(t), 0 < j < C
dpC(t)/dt = λ(t)pC−1(t) − CμpC(t)

This differential equation model can be solved numerically
in a fashion similar to the solution of the PSFFA model. One
approximates the arrival rate by a constant over a small time
step and applies a standard numerical integration algorithm
to solve the differential equations over the time step. This
procedure is repeated over the time horizon as detailed in [19].
From the solution to the CK model for the time dependent
state probabilities pj(t), one can directly determine the time
varying mean number in the system using x(t) =

∑N
i=0 ipi(t)

and the blocking probability using pC(t).
Following the literature ([6],[11], [13],[20]), we consider the

nonstationary load to follow a sinusoidal pattern representing
the cyclic load over a fixed time period (e.g., a day), specifi-
cally λ(t) = A + Bsin(w(t + D)) where A, B, w and D are
constants. Figures 1 and 2 show typical nonstationary behavior
of the system as determined by the PSFFA and CK models,
in this case for the M/M/24/24 queue (corresponding to
a T1 line) with μ = 1, x(0) = 0 and arrival rate λ(t) =
15 + 3 sin(0.1(t + 20)). From the figures one can see that the
PSFFA models the system quite accurately.

III. ADAPTIVE CAPACITY ALLOCATION

The proposed control scheme is based on the idea that
the blocking probability should be maintained close to a
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desired target value or target trajectory. In other words, if
the connection blocking rate is beyond an acceptable level,
a request for additional capacity is desirable to provide an
acceptable level of blocking. By the same token, if the current
blocking is significantly lower than what is acceptable, it may
indicate that this system may have too much idle bandwidth,
thus it is desirable to release some of it. While heuristic
capacity adjustment schemes along these lines have been
proposed in the literature [7],[15]; they lack provable qualtities
and their performance is sensitive to parameter settings.

Here we use the fluid flow model of the previous section
together with results from Lyapunov stability theory to design
a feedback based adaptive bandwidth controller that guarantees
stability of the system around a desired blocking probability.
Note, that the control is based on the fluid flow model rather
than the CK model due to the scalability and simplicity of
the fluid flow model. The stability based control approach
adopted here, has recently been advocated in robotics and other
nonlinear systems [12],[5]. The approach has the advantage



of ensuring stability while allowing deviations around the
desired target value in order to economize on the control action
required. In the telecommunications context we note that
service level agreements between customers and a transport
network service provider typically provide guarantees on the
call blocking rate over a time period (e.g., 2% call blocking
during the peak busy hour). Thus it is not necessary to try and
adjust the capacity to track the desired blocking probability
exactly.

In designing the controller note that, since the blocking
rate, πC(t), is related to the number of connections in the
system, x(t), as indicated in equation (5), we can control the
blocking probability by controlling the number of connections.
Hence, the desired target value of the blocking probability
is translated to a corresponding target value for the number
of connections. Using this parameter translation simplifies the
computation and improves the ability to measure the feedback
information as the number in system is easier to measure
than the blocking probability. Next, we present the Lyapunov
theorem for globally asymptotic stability [5] and then we show
its application in determining the controller design:

Theorem 1: The equilibrium point of differential equation
·
e(t) = f(t, e) is globally asymptotically stable if a Lyapunov
function, V (e), can be determined such that: (1) V (e) is a

continuously differentiable positive definite function, (2)
·
V (e)

is negative definite and (3) V (e) → ∞ as ‖e‖ → ∞.

The proof of the stability theorem and its variations (i.e.,
stability in the sense of Lyapunov) are given in [5]. Here we
use the stability theorem to craft a control that will guarantee
the stability of the number of connections x(t) in tracking a
desired target number of connections xd(t). Specifically, let
πd

C(t) denote the desired target blocking probability, which
from (5) maps into xd(t) as the corresponding target number
of connections in the system.

The error then can be defined as:

e(t) = xd(t) − x(t) (9)

Taking the derivative of both sides yields,
·
e(t) =

·
xd(t) − ·

x(t) (10)

Substituting (4) in the above equation yields,
·
e(t) = −μxd(t)+λ(t)(1−πd

C(t))−(−μx(t)+λ(t)(1−πC(t)))
(11)

·
e(t) = −μe(t) − λ(t)(πd

C (t) − πC(t)) (12)

Our control approach is to determine the capacity adjust-
ment that ensures the error system defined by (12) is globally
asymptotically stable as defined in Theorem 1. In determining
our adaptive bandwidth controller we note that the parameters
and variables are restricted as follows, x(t) ≥ 0, xd(t) ≥ 0,
λ(t) ≥ 0, μ > 0 and C is an integer. For the error system (12)
to be stable, we must determine a Lyapunov function such that
it meets the conditions of the stability theorem. Here we define
a Lyapunov function by:

V (e) =
1
2
e2 (13)

which is positive definite, as well as meeting the third condi-
tion of the stability theorem. The derivative of V (e) is given
by,

·
V (e) = e(t)

·
e(t) = e(t)(−μe(t)−λ(t)(πd

C(t)−πC(t))) (14)

For stability,
·
V (e) must be negative definite function and

we pick the contoller to ensure this. In particular we select
C(t) such that it results in

πC(t) = −kfe(t)
λ(t)

+ πd
C(t) (15)

where kf is a positive feedback controller gain. Substituting
the controlled blocking rate πC(t) into (14) results in

·
V (e) = −μe2(t)−λ(t)e(t)(πd

C (t)−(−kfe(t)
λ(t)

+πd
C(t))) (16)

·
V (e) = −(μ + kf )e2(t) (17)

which is negative definite resulting in a stable system. Hence,
the basic control is to calculate πC(t) from (15) and then
determine the required C from (6). Note that in determining
the control, 0 ≤ πC(t) ≤ 1, which from (16) restricts the
choice of the feedback gain kf . In general, the smaller kf ,
the closer the system will track the target probability, but
at the expense of more capacity and frequent adjustments.
Conversely, the larger kf , the greater the variation allowed
in the blocking probability and the greater the capacity gains.

The control formulation can be written in algorithmic form
for operation over a time interval (t0, tf ) as follows:

Adaptive Bandwidth Control Algorithm

1) Initialization: Specify a control time step �tc, initial
target blocking probability πd

C , initial load λ(t0), mean
call duration μ, initial system occupancy x(t) = x(t0),
and initial system capacity C(t) = C(t0). Determine the
target number in system xd(t0).

2) Estimate or measure the offered load λ(t) and error e(t)
over [t; t+�tc]. If the mean call duration μ is expected
to vary, it can be measured as well.

3) Calculate πC(t)(t) from (15). Solve for the required
capacity, C(t), from (6), and update the link bandwidth.
Update xd(t) from (5) for the next control time step.

4) Increment time, t = t + �tc. If t < tf , go to 2, else
stop.

Note that there are two parameters in the control algorithm:
the control time step �tc which determines how frequently the
capacity will be adjusted and kf which determines how closely
the blocking rate should track the desired blocking value. The
effects of varying these parameters is shown below.



IV. PERFORMANCE ANALYSIS

In this section we present numerical results illustrating the
performance of the proposed adaptive bandwidth scheme, ad-
ditional results are given in [1]. The performance is estimated
by incorporating the adaptive bandwidth control algorithm into
the fluid-flow modeling framework presented in Section II. For
all numerical solutions to differential equations, the fifth order
Runge-Kutta routine provided in MATLAB was utilized. In the
numerical solution various values for the time step Δt (e.g.,
Δt = 0.1, Δt = 0.01, etc.) over which each integration is
conducted were tried, until decreasing the time step resulted
in no change in the results.

First we evaluated the performance of the proposed scheme
in comparison to static bandwidth allocation. In our baseline
experiments, the mean call holding time was μ = 1, the
offered load followed a sinusoidal pattern λ(t) = λ̂ + (3
sin(0.1(t + 20))) with λ̂ = 15, the desired target blocking
probability was a fixed πd

C(t) = 0.02 ∀t, the control time step
was �tC = 1 and the feedback gain was set to kf = 0.1. The
duration of each simulation was from t0 = 0 to tf = 120.
Note, that for the mean offered load of â = λ̂/μ = 15
Erlangs the fixed capacity allocation to achieve πd

C = 0.02
is C = 23. Similarly, at the peak load (a = 18 Erlangs),
the capacity allocation to achieve πd

C = 0.02 is C = 26.
In Figure 3, we plot the probability of blocking versus time
for the Lyapunov based adaptive capacity scheme along with
the results of using a static capacity allocation at the peak rate
(C = 26) and the mean rate (C=23). As shown, the proposed
Lyapunov scheme maintains the blocking rate roughly around
0.02. Figure 4 shows the capacity allocation for the three
schemes. Notice that the Lyapunov based scheme provides
considerable capacity savings over peak rate allocation, while
maintaining the blocking rate close to the desired value.

Secondly, the effect of the mean load on the performance
of the Lyapnov based controller was investigated. In Figures
3, and 5 we plot the probability of blocking versus time for
the proposed adaptive capacity scheme with different average
load values namely; â = 15, and 100. As shown in the figures,
the blocking rate is maintained around 0.02 for each load with
the variations being smaller for the larger load. It is important
to observe, however, that the percentage of load deviation for
each case is different. Specifically, when â = 15 there is a
deviation of ±20% in the load, whereas, for â = 100 there is
a deviation of ±3% in the load.

In the next set of experiments, we vary the desired target
probability of blocking πd

C for the â = 15 load case (i.e.,
λ(t) = 15+3 sin(0.1(t+20))). Figure 6, shows the probability
of blocking results when πd

C = 0.01 and πd
C = 0.03. As shown

in the figure, the blocking probability curves track around the
specified target vales. Figure 7 shows the corresponding capac-
ity adjustments. One can see the smaller the desired blocking
rate, the larger the capacity required and the capacity value is
changed more frequently. Notice, the controller performance
is robust to changes in the target blocking rate, not requiring
any parameter adjustment. Also, there is no requirement that
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the target blocking rate be held constant.
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To evaluate the performance of the adaptive bandwidth
scheme to the speed of variations in the offered load, we vary
the frequency of the load, specifically, we set a(t) = 15 +
3 sin(γ(t+20)) and γ = 0.05, 0.1 and 0.5. The corresponding
probability of blocking behavior is shown in Figures 8, 3
and 9. As shown in the figures, the blocking probabilities
are maintained around the target blocking rate, with the high
frequency case having the slightly worse performance. Notice
that the time duration for the low freqency load simulation is
longer than the other simulations.

The effect of varying the control time step �tc was investi-
gated for a variety of load scenarios. We illustrate the effect for
the high frequency case with γ = 0.05. The blocking behavior
when the control time step is decreased to �tc = 0.2 is shown
in Figure 10. Notice that improvement in the blocking behavior
in comparison to Figure 9. Clearly, the more frequent the
changes in the systems load the more frequent the bandwidth
control should be updated.

Lastly we compared our results with one of the adaptive
bandwidth heuristics given in [7]. The heuristic scheme is
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built on the idea that if the connection blocking is beyond an



acceptable level, or below a minimum threshold, a request for
additional capacity, or release of it, respectively, is desirable
to provide an acceptable level of blocking. In [7], the actual
amount to be adjusted is pre-set to a value, k, and the scheme
can be summarized as follows. Let b(t) be the blocking rate at
time t, bob denote the desired blocking rate and bd denote the
allowable deviation from the desired blocking rate. The basic
scheme is given as:

If (b(t) < bob - bd) then
C(t) = C(t) - k

Else if (b(t) > bob + bd) then
C(t) = C(t) + k

Else if (bob - bd ≤ b(t) ≤ bob + bd) then
No adjustment

Endif
Note, that the scheme requires constant monitoring of the

blocking probability which makes it difficult to implement as
a large number of measurements are required to accurately
estimate the blocking rate. Here for the purpose of comparison,
we implemented the scheme above using the fluid flow model
of Section II. In Figure 11 the blocking probability versus
time for â = 15 load case and k = 3 is given. One can see
that the heuristic results in large blocking rates. Comparing
Figure (11) with the results of our proposed scheme for the
same load in Figure 4, one can see the that Lyapunov scheme
outperforms the one in [7]. Furthermore, the Lyapuov based
scheme does not require extensive parameter tuning and has
the advantage that the the capacity is automatically adjusted
to meet the stability criteria.
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V. CONCLUSIONS

In this paper, we developed a novel call leve adaptive
capacity allocation scheme for a network that operates in a loss
mode. The capacity allocation scheme was determined by the
application of Lyapunov Stability Theory to a fluid flow model
of link queuing behavior. The resulting adaptive capacity

control scheme maintains the connection blocking rate around
a desired target blocking value so that the resulting error
system is globally asymptotically stable. Numerical results
showing the effectiveness of the proposed scheme and its
robustness to load variations were given. The extension of the
control approach to the multiple heterogeneous traffic classes
scenario is given in [1].
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