
Detecting Malicious Packet Dropping in the
Presence of Collisions and Channel Errors in

Wireless Ad hoc Networks
Thaier Hayajneh, Prashant Krishnamurthy, David Tipper, and Taehoon Kim

Graduate Networking and Telecommunications Program
University of Pittsburgh, Pittsburgh, PA, USA

Email: {hayajneh, prashant, dtipper, tkim}@sis.pitt.edu

Abstract—Detecting malicious packet dropping is important
in ad hoc networks to combat a variety of security attacks such
as blackhole, greyhole, and wormhole attacks. We consider the
detection of malicious packet drops in the presence of collisions
and channel errors and describe a method to distinguish between
these types. We present a simple analytical model for packet loss
that helps a monitoring node to detect malicious packet dropping
attacks. The model is analyzed and evaluated using simulations.
The results show that it is possible to detect malicious packet
drops in the presence of collisions and channel errors.

I. INTRODUCTION

Nodes in ad hoc networks rely on other nodes to forward
and route data packets to the destination. Malicious nodes can
exploit this situation and disrupt ad hoc network operation by
dropping data packets and not delivering them to the next hop.
In its obvious version, a malicious node will simply discard
all the data packets that it is supposed to relay (this is referred
to as the black hole attack [1]).

The nodes in an ad hoc network communicate using wireless
links which are by nature vulnerable to interference and
channel errors that may corrupt some or many data packets.
Moreover, the nodes share the physical medium, compete to
transmit data packets and suffer collisions. Thus, one of the
problems in detecting malicious nodes that drop packets is
that it may not be clear as to whether the packet was dropped
due to channel errors, collisions, or due to malicious intent.
In most detection mechanisms, the number of packets that are
not forwarded is recorded by a passive listener. A threshold on
the number of dropped packets is then used to decide whether
or not a node is malicious. Depending on the threshold and
data load, a burst of errors on the channel or an increase in
the number of collisions can trip the threshold creating false
alarms.

As described in the next section, previous work on distin-
guishing between causes for dropped packets considered only
collisions and channel errors [2]–[5] and ignored malicious
packet drops. On the other hand, protocols that detect mali-
cious packet dropping [6]–[8] ignored collisions and channel
errors. In this paper we adopt a unified approach to packet loss
considering collisions, channel errors, and malicious packet
drops. We consider two possibilities for a malicious node.
First, it aims to disrupt network operation by not relaying a
packet to the next hop. In this case the node will acknowledge
the packet to the sender. The sender typically believes that the

forwarded packet was lost due to some natural reason (colli-
sion or channel error). Second, the malicious node intends to
drain the energy of a node. Here the malicious node will not
acknowledge receipt of a packet. The sender retransmits the
data packet unnecessarily several times expending energy.

The rest of the paper is organized as follows. Section
II describes related work on distinguishing between causes
for packet drops and detection of malicious nodes that drop
packets. Section III provides the framework used to determine
the probability that a node is malicious. Section IV presents the
performance evaluation and Section V discusses the limitations
and concludes the paper.

II. RELATED WORK

Related work in this area assumes 802.11-like nodes. We
assume that the reader is familiar with 802.11 access proce-
dures.

A classification of the types of interference that impacts
packet loss was presented in Ma et al. [9]. In Type-1 interfer-
ence, the interference signal arrives prior to the desired signal.
In Type-2 interference, the interference signal arrives after the
desired signal, and in the case of collisions, both signals arrive
at the same time. Statistics computed at each node are used to
determine the packet loss rate due to each type of interference.

Pang et al. [2] distinguished between packet loss due to
collisions and link errors. The main idea is that shorter
RTS/CTS and MAC headers in 802.11 are less vulnerable to
errors than data. Thus, during the RTS/CTS access procedure,
errors are assumed to be due to collisions. If the node receives
the CTS frame but not the ACK frame then the transmission
has more likely failed due to a channel error. However, if an
RTS/CTS frame is not received, then the transmission more
likely failed due to a collision. If a basic access procedure
is used, the sender depends on feedback from the receiver
to determine the cause of packet loss. If a packet with a
corrupted header is received, the receiver sends nothing and
the sender will timeout and assume that a collision occurred.
If a packet with a correct header is received but the data part
is corrupted, the receiver can recognize the sender and reply
with a NAK frame. Here, the sender will assume that the
packet was lost due to channel errors. The collision aware rate
adaptation (CARA) scheme in [3] depends on RTS probing to
differentiate collisions from channel errors. The technique is



2

similar to the one presented in [2] in assuming causes of packet
drops.

Malone et al [5] presented a technique to estimate packet
losses caused by collisions and by channel errors. The tech-
nique requires the knowledge of some statistics such as the
number of successful transmissions out of the total transmis-
sions over some period of time and the number of slots in
which the station does not transmit.

Next we look at detecting malicious packet dropping at-
tacks. We do not consider reputation schemes and watchdog-
like schemes (see for e.g., [10]) in detail as they do not
distinguish between types of packet losses. Other work such as
[6] use probes disguised as normal packets to detect malicious
nodes and [7] considers a centralized authority that receives
reports on statistics of various IP flows. Neither distinguishes
between causes for packet loss. Differentiating malicious drops
from overflow of buffer space in relay nodes in an ad hoc
network is considered in [11]. The assumption is that packets
are either maliciously dropped by a bottleneck node or due to
buffer overflows. The sender S’s traffic rate is λ to receiver R
through a bottleneck node X together with other traffic. Node
X has a finite buffer size B which is assumed to be known to
its neighbors. The empirical probability of packet loss at node
X (number of dropped packets)/(number of sent packets) is
compared to the loss rate for a Poisson source using an Erlang
formula: (Λ/µ)B/

∑B
k=0(Λ/µ)B . If the empirical probability

is significantly greater than the predicted probability, then node
R suspects that node X is maliciously dropping packets. We
do not consider buffer overflows in this paper and use very
large buffer sizes in the simulations.

III. DISTINGUISHING CAUSES FOR PACKET LOSS

A. Overview

In Fig. 1 we present a comprehensive overview for causes
of packet loss in ad hoc networks. In general, a packet is sent
from node A to node B. The expectation is that node B will
relay it to the next hop which is either the destination or a
node along the route to the destination. The packet is either
received or not received by node B. There are several causes
that may prevent a packet from being received. If Node B’s
buffer is full then it cannot accept any new packets and drops
them. Some packets may be corrupted due to channel error
which makes them unreadable and will be dropped by node
B. Since nodes in ad hoc network mainly use Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA), packets
may collide. Collisions may be natural or intentional. Natural
collisions may happen when two nodes attempt to access the
medium at the same time. Later we will show that collisions
in ad hoc networks also depend on the traffic rate. When two
or more packets collide they will both be corrupted and not
received at node B. Intentional collisions can be caused by a
node C that does not adhere to the rules of the MAC layer
protocol. These attacks are considered as MAC misbehaving
attacks [12] or as jamming. Finally, jamming attacks [13] can
prevent a packet from being received.

If a packet is received at node B then it may be forwarded
correctly to the next hop, which is the best case. Node B may
maliciously attempt to corrupt the packet and then forward

Packet is sent

Packet is 
Received

Forwarded 
Correctly

Forwarded 
after 

corruption

Dropped 
Maliciously

Packet is not 
Received

Jamming or 
Misbehavior

Buffer 
overflow

Collisions & 
Channel 
Errors

Fig. 1. Overview of packet loss

IDLE

RTS-col

CTS-col

1

Pt

PC .(1-PC)

PC

Transmit
Data

1

Channel 
Error

1

Pe

Malicious 
Drop

Pm

Forwarded 
Correctly PCorrect

Ack

1

C
ollision M

odel

1

1

Fig. 2. State diagram of packet loss

it or forward a modified version of the packet. Node B may
avoid acknowledging the packet to drain node A’s battery. The
packet may also be maliciously dropped by node B, and our
goal in this is to detect these two malicious activities.

Assumptions and Scope of this paper: MAC misbehaving
attacks [12] and jamming attacks [13] are considered beyond
the scope of our work. We assume that a malicious node will
either drop a packet or forward it correctly. We do not consider
the case where a malicious node may forward corrupted
packets to the next hop. Integration of MAC misbehavior,
jamming, and forwarding of corrupted packets into our frame
work is part of ongoing work.

B. General Framework
A state diagram for the different causes of packet loss that

we consider is shown in Fig. 2. In the beginning the system
will be in an idle state in which the node will be waiting
for a packet to send. When a packet arrives, after sensing the
medium to be free, the node sends an RTS packet. The system
may move to an RTS-collision (RTS-col) state when two or
more nodes that are within each other’s range transmit an RTS
at the same time. This occurs with probability PC . The system
may move to a CTS-col state when a hidden node (not in the
transmitting node’s range but within the range of the receiving
node) transmits something that collides with the CTS sent by
the receiving node. CTS-col will also happen with probability
PC but will only happen if there is no RTS collision, thus
CTS-col will occur with probability (1−PC)PC . A node will
transmit a packet only if it receives a CTS reply to its RTS,
that is, the Transmit data state will be reached if neither RTS-
col nor CTS-col are the previous states. Thus the probability



3

that a data packet is transmitted Pt, is:

Pt = (1− PC)(1− PC .(1− PC)) = 1− 2PC + 2PC
2 − PC

3

The assumptions here are that the size of the RTS/CTS
packets is small (also transmitted at the lowest data rate: 1
Mbps) and if either was not delivered correctly then most
probably a collision occurred (this was also assumed in [2],
[3]). After a packet is transmitted it will be either forwarded
with probability PCorrect, lost due to channel errors with
probability Pe, or maliciously dropped or not ACK-ed with
probability Pm. Packets that are maliciously dropped may or
may not be acknowledged. In the state diagram we assume
that dropped packets will be acknowledged. Thus, a system
that is in the Malicious Drop state will move to the ACK state
if an ACK message is sent or return to the Transmit state if
no ACK is sent. Packets lost due to channel errors will also
not be acknowledged by the receiver, and will be retransmitted
after some timeout. That is, when the Channel Error state is
reached, the system will definitely return back to the Transmit
state. For a packet to be received and forwarded correctly it
must satisfy the following conditions: (i) it must be transmitted
by the sender (ii) it must not be dropped due to channel errors
(iii) it must not be maliciously dropped. Thus the probability
to forward a packet correctly PCorrect can be computed as:

PCorrect = Pt(1− Pe)(1− Pm) (1)

Our goal is to solve this equation and find an estimated value
of Pm. In what follows, we describe how nodes can estimate
the values for PC , Pe, and PCorrect. In Section IV, we also
consider the impact of wrong estimates. We note here that the
state diagram assumes a steady state, that we are not strictly
verifying whether the states are memoryless or not, and that
we make several simplifying assumptions here (e.g., the limit
on the number of retransmissions is not considered). The state
diagram is not used analytically otherwise here, but is used
to clarify the assumptions. In case RTS/CTS procedures are
not employed, feedback to the sender based on header/data
corruption as in [2] can be employed. However, we have not
considered this approach in this paper.
Collisions: One way of estimating PC is to use available
analytical work. Collisions in 802.11 have been extensively
analyzed by researchers. The most cited reference by Bianchi
[14] and a related reference with modified assumptions [15]
both used a complicated Markov chain model. In most of the
analysis, an IEEE 802.11 infrastructure network with an access
point is assumed. We assume an ad hoc configuration in which
each node will only compete with neighbors that are within
its transmission range and use simpler estimates.

In [16], linearization was used to find an approximate value
for PC that depends only on the contention window W and
the number of nodes n, and is given by:

PC =
2W (n− 1)

(W + 1)2 + 2W (n− 1)

Using this equation, PC is more than 50% if the number
of nodes in the wireless LAN exceeds 20 nodes. In our
simulations we have n = 13 and W = 31. This will estimate
PC = 0.421 (PC = 0.24 if only neighbors are considered with

n = 6 for node 2 in Fig. 3). If we follow the analysis similar to
[17], the probability of collision is Pc = 1−(1−τ)n−1 where
n is the average number of contending nodes and τ is the
average probability that a node sends a packet (approximately
once every W if nodes always have packets to send). Thus
we have: τ = 1/W and the probability of collision can be
approximated as:

PC = 1− (1− 1/W )n−1

For n = 6 and W = 31, PC = 0.15 which is close to the
result in Fig. 4 for packets arriving every 0.1s.

In all of the above approximations, PC is not related to
the traffic rate and it is overestimated. Unfortunately, PC is
actually related to the traffic rate as our simulations show in
Section IV. Thus the approach we use is for nodes to count
the number of RTS and CTS packets seen. A node sends an
RTS packet after sensing the media to be free. Then the node
will wait for a CTS packet and if it is not received within
its specified time period then the number of packets lost due
to collisions will be increased. Using the number of RTS
and CTS packets that were counted during a time window
w the probability that a packet was lost due to collision can
be computed as:

PC = (#RTS −#CTS) /#RTS (2)

Channel errors: To model the channel error, the wireless
channel is assumed to be a two state Markov chain with
alternating good and bad states. This approach has been also
used in [18] to analyze the performance of 802.11. The
good and bad state durations are assumed to be exponentially
distributed with means λ−1

g and λ−1
b , respectively. In [19]

researchers performed exhaustive experiments and modeled
802.11 links to find the values of λ−1

g and λ−1
b for several

PHY layer bit rates and three SNR levels (high, medium, and
low). In this paper we use model parameters from [19] for 11
Mbps links at high SNR (around 32 dB) where the good and
bad state mean durations are 0.08s and 0.0003s respectively.
The model in [19] is a coarse model that can be used as is with
some knowledge of operating data rates and SNR conditions
by nodes. A priori training may also be used to estimate
these parameters. In this case, Pe = 0.0003/0.0803 = 0.37%.
Models for medium and low SNRS are not expected to change
our conclusions.
Energy Drain Attack: In this case, a malicious node intends
to drain the senders battery by not sending ACKs and making
the sender retransmit several times before sending an ACK.
When the malicious node responds with an ACK to a data
packet, the sender node will assume that the packet has been
received and forwarded correctly. In this case, the sender node
estimates P

′

Correct as:

P
′

Correct = #ACK/#RTS (3)

The malicious node may drop the ACK-ed packet and not relay
it to the next hop, but because the attack is directed towards
draining the battery, the ultimate fate of the ACK-ed packet is
not relevant. We note that overhearing may drain the battery
as well, but leave consideration of this problem for the future.



4

Malicious Dropping Attack: In this case, the malicious
receiving node may send an ACK message upon receiving
a packet to be relayed and not forward the packet to the next
hop. There are two possible ways to know if the acknowledged
packet was forwarded or not, either by monitoring the node
using overhearing capability (see [20] or [10]) or by having
feedback from other nodes that are on the route to the destina-
tion. Feedback from other nodes will include communication
overhead and is not instant. In this paper we prefer to monitor
the receiving node. The node overhears the packets sent by the
malicious receiver and detect which packets were forwarded
to the next hop nodes and computes the value of P

′

Correct.
Probability of malicious packet dropping: The probability
of packet loss due to malicious packet dropping is computed
by a sending node using equation (1). Pe and PC are computed
as discussed previously. To find an approximate value for Pm

the node uses the estimated value of P
′

Correct. Thus Pm can
be computed as:

Pm =

{ (
γ − P ′

Correct

)
/γ, if

(
γ − P ′

Correct

)
> 0

0 , Otherwise

}
(4)

where γ = (1− 2PC + 2P 2
C − P 3

C)(1− Pe)
The idea here is that if there is no malicious packet

dropping, the estimated P
′

Correct should take into account
the potential natural causes for packet drops through γ. The
probability of packet loss due to malicious packet dropping
is computed and if this value is greater than some threshold
value then the node is suspected to be maliciously dropping
packets.

C. Protocol Description
We now present the steps that a sending node A will use to

detect if its neighbor node B is maliciously dropping packets.
Step(1): Node A will count the RTS messages it sent

to node B during some time window w and also the CTS
messages received from node B during the same time. Node
A will use equation (2) (or the analytical overestimates) to
compute PC .

Step (2): Node A will use the model previously described
for the value of Pe based on the link SNR. We assume
symmetric links, and thus the SNR is expected to be equal
at the sending and receiving sides.

Step (3): If the goal of node A is only to prevent energy
drain attacks then equation (3) is used to compute P

′

Correct.
Step (4): If the goal of node A to detect malicious packet

dropping then it will use monitoring through overhearing to
get an estimate of P

′

Correct.
Step(5): Node A will use equation (4) to compute the

percentage of packets being maliciously dropped. If Pm is
greater than some threshold value (which will be estimated
later using the simulations) then the node is marked as being
malicious and node A will take appropriate steps (inform other
neighbors, remove it from routes, etc.).

IV. PERFORMANCE EVALUATION

The performance of our protocol to detect malicious packet
dropping is evaluated in this section using simulations. We
used ns-2 to simulate the network configuration shown in Fig.

number of nodes 13
Routing Protocol DSR

Data rate 11 Mbps
Queue size infinity
Tx. range 250 m

MAC layer protocol 802.11
Simulation time 500 sec

Traffic type CBR
Packet size 512 B

packet interval 0.25 sec

TABLE I
SIMULATION PARAMETERS

0

8

11

7

4

3

10

6

2

9

5

1

12

Fig. 3. Simulated Nentwork

3. We have 12 CBR traffic flows between different nodes as
follows: 0 to 9, 1 to 9, 1 to 10, 1 to 12, 2 to 9, 2 to 10, 2 to
11, 2 to 12, 3 to 10, 3 to 11, 3 to 12, and 4 to 11. Each CBR
traffic flow starts at a different time. Each of nodes 5, 6, 7, and
8 has 3 CBR traffic flows that goes through them. The goal
of the simulation is to have node 2 use the protocol described
in the previous section to check if any of nodes 5, 6, 7, and
8 is maliciously dropping packets (or draining battery). Node
2 monitors links: 2-5, 2-6, 2-7, and 2-8. In the simulations,
we made node 6 intentionally drop a specific percentage of
packets that go through it, however, nodes 5, 7, and 8 will not
intentionally drop any packets.

The simulation parameters that we used are shown in Table
I (other parameters were default for ad hoc networks in ns-
2). The channel error model described in section III.B was
implemented in ns-2. RTS and CTS packets were always
received correctly.

0.08

0.1

0.12

0.14

0.16

isi
on

0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6

Pr
ob

. o
f C

oll
i

Packet interval (s)

Fig. 4. Collisions for different traffic loads

Fig. 4 shows the probability of collisions for different traffic



5

loads. The probability of collision PC was computed by node
2 by counting the number of RTS packets it sent, the number
of CTS packets it received, with (2). As shown in Fig. 4, the
smaller is the packet inter-arrival time, the more is the load and
thus there is a higher probability of collision. The simulation
was repeated 100 times and 95% confidence intervals are
shown in Fig. 4. For all the other simulations we used packet
intervals of 0.25 seconds which results in approximately a 2%
collision probability.

0 25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

Link 2‐5 Link 2‐6 Link 2‐7 Link 2‐8

Channel Error %

Fig. 5. Channel Error %

Fig. 5 Shows the percentage of channel errors for the links:
2-5, 2-6, 2-7, and 2-8 in the simulations as seen by node 2
when it communicated with nodes 5, 6, 7, and 8, respectively.
We used 95% confidence intervals. While we initially assume
that node 2 uses the value 0.37 from the channel model, we
consider the impact of making errors in this value later.

Node 2 follows the steps of the protocol described in section
III.C and computes Pm to check if any of nodes 5, 6, 7, or 8 is
maliciously dropping packets or trying to drain its energy by
asking for unnecessary retransmissions. The simulation results
show that the computed Pm for nodes 5, 7, and 8 were almost
zero. Thus there are no false alarms with this approach. Node
6 intentionally drops 2, 5, 10, 15, and 25 percent of the data
packets that pass through it (going from node 2 to node 10).
In this case, the values of Pm computed by node 2 are shown
in Fig. 6. Again, the simulation was repeated 100 times and
we used 95% confidence intervals.

Fig.6 shows the “computed” Pm percentage values at node
2 for the energy drain attack (ED) and malicious dropping
(MD) as a function of simulation “specified” malicious packet
(or ACK) dropping levels. The match is not exact, but the
computed Pm value tracks the actual packet drop values.
We set a threshold value of 1% – that is if the “computed”
Pm is greater than 1% then the node being monitored is
suspected to be maliciously dropping packets. The results
in Fig. 6 show that the protocol can detect any node that
is maliciously dropping more than 4% of the packets that
goes through it (MD case). Energy drain attacks that make
the sender retransmit more than 2% of the packets are also
detected with this threshold. The MD case in which node 6
is dropping only 2% of the packets is not detected by the
protocol as the computed Pm percentage is less than 1%. We
believe that detecting malicious packet dropping that is more
than 4% is very reasonable, as smaller percentages are likely
to cause less serious damage to the network operation.

Fig.7 shows how sensitive our protocol is to estimation
errors in Pe. The actual estimated value of Pe should be

15

20

25

m
 p
e
rc
e
n
ta
g
e

0

5

10

0 5 10 15 20 25

C
o
m
p
u
te
d
 P
m

Specified Pm percentage

MD

ED

1 % threshold

Fig. 6. Computed Pm percentage

8

10

12

14

m
 p
e
rc
e
n
ta
g
e

MD with Pe=0%
MD with Pe=4%
MD with Pe=8%
MD with Pe=10%
1 % threshold

0

2

4

6

0 2 4 6 8 10 12 14 16

C
o
m
p
u
te
d
 P
m

Specified Pm percentage

Fig. 7. Computed Pm percentage with different estimated Pe values

25

30

35

40

45

50

m
 p
e
rc
e
n
ta
g
e

MD with Pc=1%
MD with Pc=5%
MD with Pc=10%
MD with Pc=20%
MD with Pc=33%
1 % threshold

0

5

10

15

20

25

0 10 20 30 40 50

C
o
m
p
u
te
d
 P
m

Specified Pm percentage

Fig. 8. Computed Pm percentage with different estimated PC values

around 0.37%. Fig.7 shows the values of the “computed” Pm

as a function of the actually “specified” simulation value for
different (erroneous) estimates of Pe while the real Pe was
0.37%. The assumption here is that node 2 made errors in
estimating the value of Pe either because of using an incorrect
model or because the channel changed in between. If node 2
underestimates Pe, the sensitivity of the protocol is improved,
as lower Pm values can be detected (but this may also cause
false alarms when Pe is large - medium or low SNRs and is
estimated to be smaller). If Pe is overestimated significantly



6

(e.g., 10% instead of 0.37%), the protocol can detect a node
that drops more than 12% of the data packets. Similarly, Fig.8
shows the sensitivity of the protocol to estimation errors in
PC . The real PC value computed by node 2 using equation
(3) is 2%. If however, as shown in Fig.8, a higher estimated
value of PC is used (e.g., based on the analytical models),
the protocol becomes less sensitive. For instance, if PC is
mistakenly estimated to be 33% then only packet dropping
of 50% can be barely detected. In summary, the estimated
average numbers of collisions and channel errors together
determine the extent to which malicious drops can be detected.
Good estimates can detect very small percentages of malicious
packet drops.

Threshold value: In our simulations, we have used a 1%
threshold value for a traffic rate that results in PC

∼= 0.02 and
used a channel error model with Pe

∼= 0.0037. However, for
different traffic loads for situations that have higher interfer-
ence and higher Pe, a threshold of 1% may be too low. It is
possible to use a higher threshold value at the expense of the
ability to detect lower levels of packet drops. For example, a
threshold value of 10% will ignore “computed” drops that are
less than 10% but produce low, if any, false positives. Using a
higher threshold value (≥ 50%) is still useful to detect higher
malicious packet drop rates (e.g., black hole attacks).

V. DISCUSSION AND CONCLUSION

The problem of distinguishing between the different causes
for packet drops is not simple as the causes may overlap
with each other. Moreover, the problem of packet loss is non-
stationary (the causes may change with time). For instance,
collisions are related to the network traffic at that time, channel
errors depend on signal fading and shadowing, which depend
on the environment and has inherent randomness. Mobility
will make the problem even harder, as malicious nodes may
move and make it more difficult to predict the cause of packet
loss. Route changes due to excessive drops are possible. While
we believe the assumptions about distinguishing causes for
packet drops based on RTS/CTS is reasonable, it is likely that
RTS/CTS packets may also be lost due to errors and may
not entirely prevent collisions of data packets. Finally, the
topology we have used is limited in size and scope and results
for random/grid like topologies are necessary. Investigation of
these issues is part of ongoing work as also is the possibility
of using measurements to verify this framework.

In this paper, we present a simple method to distinguish
between natural causes for packet drops by a node (collisions
and channel errors) as against malicious packet drops by a
relay node in an ad hoc network. If nodes can have reasonable
estimates for collision probabilities and channel error proba-
bilities, even fairly low levels of malicious packet drops can
be detected significantly. Underestimates of the natural causes
can cause false alarms while overestimates can allow some
malicious packet drops to be undetected.

ACKNOWLEDGMENTS

This research was supported in part by the Army Research
office MURI grant W911NF-07-1-0318. The authors thank
anonymous reviewers for their comments to improve the paper.

REFERENCES

[1] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand
routing protocol for ad hoc networks,” Wirel. Netw., vol. 11, no. 1-2, pp.
21–38, 2005.

[2] Q. Pang, S. Liew, and V. Leung, “Design of an effective loss-
distinguishable mac protocol for 802.11 wlan,” Communications Letters,
IEEE, vol. 9, no. 9, pp. 781–783, Sep 2005.

[3] J. Kim, S. Kim, S. Choi, and D. Qiao, “Cara: Collision-aware rate adap-
tation for ieee 802.11 wlans,” INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, pp. 1–11, April
2006.

[4] J.-H. Yun and S.-W. Seo, “Novel collision detection scheme and its
applications for ieee 802.11 wireless lans,” Computer Communications,
vol. 30, no. 6, pp. 1350–1366, —2007—.

[5] D. Malone, P. Clifford, and D. J. Leith, “Mac layer channel quality
measurement in 802.11,” Communications Letters, IEEE, vol. 11, no. 2,
pp. 143–145, Feb. 2007.

[6] M. Just, E. Kranakis, and T. Wan, “Resisting malicious packet dropping
in wireless ad hoc networks,” in In Proc. of ADHOCNOW03. Springer
Verlag, 2003, pp. 151–163.

[7] F. Anjum and R. Talpade, “Lipad: lightweight packet drop detection for
ad hoc networks,” Vehicular Technology Conference, 2004. VTC2004-
Fall. 2004 IEEE 60th, vol. 2, pp. 1233–1237 Vol. 2, Sept. 2004.

[8] O. F. Gonzalez, M. P. Howarth, and G. Pavlou, “Detection of
packet forwarding misbehavior in mobile ad-hoc networks.” in WWIC,
ser. Lecture Notes in Computer Science, F. Boavida, E. Monteiro,
S. Mascolo, and Y. Koucheryavy, Eds., vol. 4517. Springer, 2007,
pp. 302–314. [Online]. Available: http://dblp.uni-trier.de/db/conf/wwic/
wwic2007.html#GonzalezHP07

[9] H. Ma, J. Zhu, and S. Roy, “On loss differentiation for csma-based dense
wireless network,” Communications Letters, IEEE, vol. 11, no. 11, pp.
877–879, November 2007.

[10] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in MobiCom ’00: Proceedings
of the 6th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM, 2000, pp. 255–265.

[11] W. Zhang, R. Rao, G. Cao, and G. Kesidis, “Secure routing in ad
hoc networks and a related intrusion detection problem,” Military
Communications Conference, 2003. MILCOM 2003. IEEE, vol. 2, pp.
735–740 Vol.2, Oct. 2003.

[12] S. Radosavac, A. A. Cárdenas, J. S. Baras, and G. V. Moustakides,
“Detecting ieee 802.11 mac layer misbehavior in ad hoc networks:
Robust strategies against individual and colluding attackers,” J. Comput.
Secur., vol. 15, no. 1, pp. 103–128, 2007.

[13] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in MobiHoc ’05:
Proceedings of the 6th ACM international symposium on Mobile ad hoc
networking and computing. New York, NY, USA: ACM, 2005, pp.
46–57.

[14] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordi-
nation function,” Selected Areas in Communications, IEEE Journal on,
vol. 18, no. 3, pp. 535–547, Mar 2000.

[15] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of
reliable transport protocol over ieee 802.11 wireless lan: analysis and
enhancement,” INFOCOM 2002. Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2, pp. 599–607 vol.2, 2002.

[16] M. Carvalho and J. Garcia-Luna-Aceves, “Delay analysis of ieee 802.11
in single-hop networks,” Network Protocols, 2003. Proceedings. 11th
IEEE International Conference on, pp. 146–155, Nov. 2003.

[17] J. Yin, X. Wang, and D. Agrawal, “Optimal packet size in error-prone
channel for ieee 802.11 distributed coordination function,” Wireless
Communications and Networking Conference, 2004. WCNC. 2004 IEEE,
vol. 3, pp. 1654–1659 Vol.3, March 2004.

[18] N. Gupta and P. R. Kumar, “A performance analysis of the 802.11
wireless lan medium access control,” Communications in Information
and Systems, vol. 3, no. 4, pp. 279–304, 2004.

[19] J. N. Arauz, “802.11 markov channel modeling,” Ph.D. dissertation,
School of Information Sciences, University of Pittsburgh, 2004.

[20] K.-F. Ssu, C.-H. Chou, and L.-W. Cheng, “Using overhearing tech-
nique to detect malicious packet-modifying attacks in wireless sensor
networks,” Comput. Commun., vol. 30, no. 11-12, pp. 2342–2352, 2007.


