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Abstract — This paper addresses the spare capacity allocation (SCA)
problem considering any single node failure in mesh networks. The SCA
node failure problem aims at finding backup routes and providing suffi-
cient spare capacity to protect traffic when any single node fails in com-
munication network. Here, we introduce our novel matrix formulation of
the arc-flow SCA node failure model. In this model, working paths are
given before pre-planned backup paths are routed and reserved. Because
backup paths can not be guaranteed if general shortest path routing of
working paths is used, we give a graph algorithm to find working path
which has at least one node-disjoint backup path. We extend our recent
approximation algorithm, successive survivable routing (SSR), to solve the
above SCA model. Numerical comparison shows that SSR has the best
trade-off between solution optimality and computation speed.

Keywords—spare capacity allocation, protection and restoration, net-
work planning and optimization, network survivability

I. I NTRODUCTION

N
ETWORK survivability techniques have been proposed
to guarantee seamless communication services in the face

of network failures. Traditionally they include two phases, sur-
vivable network design and restoration scheme. They are com-
plementary to each other and cooperate to achieve seamless
service upon failures. Thespare capacity allocation(SCA)
problem is to decide how much spare capacity should be re-
served on network links for given traffic flows and their work-
ing paths on two-connected mesh networks. It is part of surviv-
able network design and is NP-complete [1]. Many research
efforts on this issue has been done on SONET/SDH [2], [3],
[4], [5], ATM [6], [7], [8], [9], WDM networks [10], [11], [12].
Recent issue on IP and MPLS networks are also given in [13],
[14], [15]. A detailed literature review on different spare ca-
pacity allocation algorithms and restoration schemes is given
in [16], [1].

In this paper, we first formulate an arc-flow spare capacity
allocation problem to consider node failures on directed mesh
networks. In this model, each flow has to find a node-disjoint
backup path in order to protect any single intermediate node
failure along its working path. A graph algorithm is used to
find a working path which has at least one node-disjoint backup
path. Such a protectable working path can not be guaranteed
when it is found by shortest path routing due to trap topologies.
Next, we briefly introduce the successive survivable routing
(SSR) and use it to solve the SCA model. The numerical results
comparing several SCA algorithms shows that SSR can find
near optimal solution in real time.
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II. A RC-FLOW MODEL FOR NODE FAILURES

In this paper, the spare capacity allocation (SCA) problem
is formulated to protect against any single node failure. In
this section, we consider failure-independent path restoration
(FID). All traffic flows require a 100% restoration for any given
failure scenario. It requires that all affected flows can be de-
toured to their backup paths upon any given failure scenario.
Provisioning enough spare capacity on links is the prerequisite
condition to such traffic protection and restoration.

Given a network topology and the working paths, the objec-
tive of SCA is to minimize the total cost of spare capacity on
network links. The decision variables are the backup paths and
the spare capacity reservation on links. A way to reduce the
total cost is sharing spare capacity on common links of backup
paths whose working paths are link-disjoint.

A network is represented by a directed graph ofN nodes
andL links with R flows. The link capacity is unlimited for
the simplicity of introduction and a treatment to capacitated
networks can be generalized [1].

A flow r; 1 � r � R is specified by its origin/destination
node pair(o(r); d(r)) and traffic demandmr. Working and
backup paths of flowr are represented by two1 � L binary
row vectorspr = fprlg andqr = fqrlg. The l-th element
in these vectors equals to one if and only if the corresponding
path passes linkl. Path-link incidence matrices for working
and backup paths of all flows are the collections of these row
vectors, formingR � L matricesP = fprlg andQ = fqrlg
respectively. LetM = Diag(fmrgR�1) denote the diagonal
matrix representing the demands of flows. Note that if the pro-
tection level is under 100%, the elements inM can be adjusted
to reserve partial spare capacities on back paths.

We characterizeK failure scenarios in by a binary matrix
F = ffkgK�1 = ffklgK�L. The row vectorfk in F is
for failure scenariok and its elementfkl equals one if and
only if link l fails in scenariok. In this way, we can con-
sider scenarios with multiple simultaneously failed links. We
also define a flow failure matrixU = furgR�1 = furkgR�K ,
whereurk = 1 if flow r will be affected by failurek, and
urk = 0 otherwise. The single node failure is, hence, captured
by an equivalent failure of all its adjacent links. Considering
node failures, each flow has to avoid its source and destina-
tion nodes. This modification is to avoid unwanted distractions
from unrestorable flows during the algorithm. In this way, we
introduce two matricesDo andDd to indicate the source and
destination nodes of a flow. These two nodes are excluded from
the failures considered for the corresponding flows.



TABLE I

NOTATION

N;L;R;K Numbers of node, link, flow & failure
n; l; r; k Indices of node, link, flow, and failure

P = fprg = fprlg Working path-link incidence matrix
Q = fqrg = fqrlg Backup path-link incidence matrix
M = Diag(fmrg) Diagonal matrix of flow demands

G = fglkg Spare provision matrix
Gr

= fgrlkg Contribution of flowr toG
s = fslgL�1 Vector of spare capacity on links

�(s) = f�l(sl)gL�1 Unit cost function of spare capacity
W;S Total working, spare capacity

� = S=W Network redundancy
o(r); d(r) Origin/destination nodes of flowr
vr = fvrlg Link metrics for flowr
BfbnlgN�L Node-link incidence matrix

D = fdrngR�N Flow-node incidence matrix
Do,Dd Binary incidence matrixes between

flow and source node; or destination
node,Do

�Dd
=D

F = ffklgK�L Binary failure link incidence matrix,
fkl = 1 iff link l fails in failurek

U = furkgR�K Binary flow-failure incidence matrix,
urk = 1 iff failure k will affect flow
r’s working path

T = ftrlgR�L Binary flow tabu-link matrix,trl = 1

iff link l should not be used on flowr’s
backup path

A flow tabu-link matrixT = ftrgR�1 = furlgR�L gives
trl = 1 when the backup path of flowr should not use linkl,
and trl = 0 otherwise. Then we can findU andT in (1)
and (2) respectively. In order to capture logical relations in
above two equations, a binary matrix multiplication operation
“�” which modifies general addition (1 + 1 = 2) to boolean
addition (1 + 1 = 1) is introduced.

U = A� F T
�Do

�Dd (1)

T = U � F (2)

Thespare provision matrixG = fglkgL�K is given in (5).
Its elementglk gives the minimum spare capacity required on
link l when failurek happens. Moreover, the minimum spare
capacities required on links are given by the column vector
s = fslgL�1 in (4). The “max” operation on a matrix returns
a column vector, with each entry being the maximum of the
corresponding row. In this way, the minimum spare capacities
on links are always enough to protect any failure.

Let �l(sl) denote the link cost function of spare capacity on
link l. �(s) = f�l(sl)gL�1 is a column vector of link costs.
The total link cost on network iseT�(s), wheree is the unit
column vector of lengthL.

Using the above notation in Table I, we formulate anarc-
flow integer programming model for SCA in (3)-(8).

min
Q;s

eT�(s) (3)

s.t. s = maxG (4)

G = QTMU (5)

T +Q � 1 (6)

QBT
=D (7)

Q : binary (8)

The objective function in (3) is to minimize the total cost
of spare capacity on networks. Constraint (4) and (5) give the
method to calculates fromQ. Note that constraint (5) can be
replaced by (9) and (10).

Constraint (6) guarantees that backup paths will not use any
link which might fail simultaneously with their working paths.
For any single node failure, it assures backup paths are node-
disjoint from their working paths.

Flow conservation constraint (7) guarantees that backup
paths given inQ are feasible paths. It is given in a matrix
representation and is also called the mass balance constraint
in [17]. Only source and destination nodes have non-zero traf-
fic accumulation while all the intermediate nodes have zero
traffic accumulation. They are based on the properties of the
path-link incidence matrix in [18]. The topology is given by
a node-link incidence matrixB = (bnl)N�L wherebnl = 1

or �1 if and only if noden is the originor destination of link
l. D = (drn)R�N is the flow node incidence matrix where
drn = 1 or�1 iff o(r) = n or d(r) = n. In directed network,
bothB andD are not binary matrices as those in undirected
network.

Another way to computeG is through aggregating per-flow
based information of working and backup paths. This is the
key step on building our successive survivable routing algo-
rithm in Section IV. First, the contribution of a single traffic
flow r toG is given byGr

= fgrlkgL�K in (9), whereur and
qr are the row vectors inU andQ. The spare provision matrix
G, thus, is also given in (10).

Gr
= mr(q

T
r ur); r = 1; : : : ; R (9)

G =

RX

r=1

Gr (10)

From above equations, per-flow based information inP , Q
is replaced byG as the stored network state information. The
space complexity is reduced fromO(RL) to O(LK) and it is
independent of the number of flows. This improves the scala-
bility of the spare capacity sharing operation and makes it pos-
sible to be implemented distributively.

III. F IND A WORKING PATH WITH NODE-DISJOINT BACKUP

In above model, working paths are given before backup
paths are decided. The reason is because working paths are



used almost all the time and are much more important that
backup paths. In order to provide node-disjoint backup paths,
we have to guarantee that each working path has at least
one node-disjoint backup path on the given 2-node-connected
topology. This task is not trivial since working path found by
general shortest path algorithms can not guarantee this prop-
erty and may beinfeasible for SCA node failure problem.
Since the path costs of the backup and working paths are differ-
ent, the problem to find both optimal paths is an NP-complete
problem [19]. Hence, a graph algorithm to find afeasible
working path is given here.

An example of infeasible working path is shown in Fig. 1.
The working path from node 8 to node 11 is 8-13-1-23-18-19-
4-11, where all the numbers between 8 and 11 are intermediate
nodes on the path. This path has shortest hop but it does not
have a node-disjoint backup path! Hence, before we start solv-
ing the spare capacity allocation problem, we have to make
sure every working path has at least one node-disjoint backup
path.
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Fig. 1. Network 6 with 23 nodes and 33 links, a path is from node 8 to 11

A similar problem, called trap topology, has been dis-
cussed by Dunn, Grover and MacGregor [20]. In a trap
topology, a working path may block all the possible link-
disjoint backup paths although the network topology is two-
link-connected. The problem to find a working path with link-
disjoint backup path can be solved by usingaugmenting path
algorithm from [17] as we discussed in [16]. Unfortunately,
this algorithm can not be directly used to find working path
with node-disjoint backup path.

The flow chart of our graph algorithm is given in Fig. 2. The
algorithm finds a working path which has at least one node-
disjoint backup path for flowr on networkG which includeN
nodes andL links. Step 2 finds a working pathpr onG. Step 3
removes all links which are adjacent to any intermediate nodes
of pr to get a new networkG2. Step 4 tries to find a path on
G2. If such path is available, the original working pathpr has a
node-disjoint backup path and the algorithm exits. Otherwise,
the algorithms continues on step 5 where a residual network
G3 is generated by removing only directed links used bypr. If
we skip Step 6 and Step 8, Step 7 finds a secondary path onG3.
Step 9 removes all the “trap links” fromG and returns to Step
2. A trap link is defined as a linkl which is on the working
pathpr and its reversed direction linkl0 is on pathp
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Fig. 2. Flow chart of the SSR algorithm at the source node of flowr
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Fig. 3. Split noden2 on pathar which includesn1 � n2 � n3

in Step 7. Without Step 6 and 8, this algorithm degrades to
the algorithm we used to find working path with link-disjoint
backup path based on the augmenting path algorithm [16].

Next, we concentrate on Step 6 and Step 8 to see how to
split/merge intermediate nodes on the working path and why
such operations can help us found working path with node-
disjoint backups. Fig. 3 shows how to split an intermediate
noden2 on a working pathpr. First, all links onpr have been
removed inG3 as marked in dotted links on the left half of the
figure. A mirror noden�2 is added intoG3. It takes all out-
bound links fromn2 except the one in the reverse direction of
pr. It also takes an inbound link in the reverse direction ofpr
and adds a directed link ton2. The new networkG3 is shown
on the right half of Fig. 3. After all intermediate nodes onpr
have been divided, Step 7 routes a path represented by a path
link vectorp

�
in the new networkG3. Step 8 merges all mirror

nodes back to their original nodes with their links attachment
restored. The resulted path vectorp

�
will also be modified fol-

lowing the contraction ofG3. After such node split/merge, the



new pathp
�

either (a) passes some tabu links which is on the
reversed direction ofpr, or (b) does not crossing any interme-
diate nodes onpr. In case (a), the tabu links passed byp

�
will

be marked as trap links in Step 9 and be excluded fromG in
further working path routing. Case (b) should never happens
since otherwise a pathp

�
should be found earlier in Step 4.

After Step 9, one or more trap links will be removed fromG
and the algorithm return to Step 2 to find a new working path.
The iterations will be repeated until all trap links are removed
and a working path with at least one backup path is found. The
algorithm exits when Step 4 find a node-disjoint backup path.

IV. SUCCESSIVE SURVIVABLE ROUTING

The successive survivable routing (SSR) algorithm has been
introduced in [16], [21]. Each traffic flow first routes its work-
ing path then routes its backup path on its source (or destina-
tion) node. Here, we briefly provide formulas and give the SSR
flow chart at the source node of flowr in Fig. 4.

1. GivenF , p
r
, andd(r)

2. Periodically updateG

3. Calculatevr fromG

4. Updateq
r

by vr

5. UpdateG, s from q
r

Fig. 4. Flow chart of the SSR algorithm at the source node of flowr

Step 1 initiates SSR on flowr with its working pathpr, des-
tination noded(r) and the failure matrixF . Thenur andtr,
which are part ofU andT in (1) and (2), are calculated.

Step 2 periodically collects current network state informa-
tion andG. The per-flow based information is not required for
backup path routing and reservation. This makes SSR scalable
and suitable for a distributive implementation.

In Step 3, a shortest path algorithm is used to find a backup
path. The vector of link metricsvr are found based on the
following notation. GivenG, qr andGr for current flow
r, let G�

= G � Gr and s� = max(G�

) be the spare
provision matrix and the link spare capacity vector afterqr
is removed. Letq+r denote an alternative backup path for
flow r, andGr+

(q+r ) = mrq
+
r

T
ur. Then, this new pathq+r

produces a new spare capacity reservation vectors+(q+r ) =

max(G�

+ Gr+
(q+r )). Let q+r = e � tr, which means the

backup path uses all possible links, then we can find a vector
of link metricsas

vr = fvrlgL�1

= �(s+(e� tr))� �(s
�

); 1 � r � R; (11)
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wheretr is the binary flow tabu-link vector of flowr. In the
node failure case, its elemetns for the links adjacent to the in-
termediate nodes of the working path are marked by one.

Step 4 improves the backup path by using a shortest path
algorithm with link metricsvr. In Step 5, if the backup path
is changed in Step 4, the spare capacity reservations along the
path will be updated accordingly. After this step, the algorithm
returns to Step 2 to start next backup path update.

The algorithm terminates when there is no backup path up-
date and it reaches a local optimum.

V. NUMERICAL RESULTS

Eight networks in [16] are summarized in the beginning of
Table II and used for numerical experiments. Symmetrical traf-
fic flows are loaded between all node pairs. All flows have one
unit bandwidth demand. This traffic demand pattern is given
for the ease of comparison.

Several algorithms are compared on different networks. For
network 6 shown in Fig. 1, we give the comparison of network
redundancies versus CPU times of these algorithms in Fig. 5.
It shows that SSR is near optimal comparing to Branch and
Bound (BB). The ranges of redundancies SSR found is within
4% from the optimal solution found by BB. Moreover, SSR
is very fast comparing to other algorithms like SR, SPI and
RAFT as introduced in [16]. Since the CPU times for SSR, SR
and SPI are the summation of 64 independent running cases,
the time for a single case is lower than a second. Hence, these
three algorithms also belong to fast algorithms as RAFT.

All numerical results on eight networks are summarized in
Table II and their network redundancies are drawn on Fig. 6.
The total spare capacities found by these algorithms can be
consluded as: Optimal= BB < SSR< SR� SPI� RAFT
� NS. SSR is a fast algorithm and achieves near optimal solu-
tions.

VI. SUMMARY

This paper extends our recent matrix representation and suc-
cessive survivable routing (SSR) algorithm for node failures on
mesh networks. First, node failures are modeled by the matrix-
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based arc-flow SCA model. Second, a graph algorithm to find
a shortest working path with existence of node-disjoint backup
paths are provided. The objective here is to find shortest work-
ing paths which have node-disjoint backup paths. This prob-
lem is a NP-complete problem due to different path costs [19].
Third, based on the working paths prepared by the graph algo-
rithm for node failures, we use the SSR algorithm to find near
optimal SCA solutions. Comparing with several other algo-
rithms for SCA problems considering node failures, SSR has
the best trade-off between computation speed and solution op-
timality for node failures.

TABLE II

NUMERICAL RESULTS

Network 1 2 3 4 5 6 7 8
N 10 12 13 17 18 23 26 50
L 22 25 23 31 27 33 30 82
R 90 132 156 272 306 506 650 2450

W 142 224 324 640 826 1686 2732 11104

Total spare capacityS
1BB 38 99 113 252 539 1252 1812 -

2SSRmin 42 108 124 272 552 1268 1812 5720
SSRmax 50 120 144 294 574 1306 1826 5800

SRmin 46 110 126 280 556 1280 1832 5764
SRmax 58 130 148 308 586 1320 1872 5894
SPImin 66 130 170 362 654 1440 1958 7394
SPImax 84 154 202 416 710 1540 2008 7780

RAFT 82 142 194 408 688 1578 2010 7690
NS 198 326 456 910 1324 2736 5652 16278

Total CPU time (in second)
BB 60 130 720 1700 130 5900 41 -

SSRsum 3.25 3.63 3.84 6.51 5.94 8.6 14.73 293.43
SRsum 0.59 0.63 0.71 1.08 1.17 2.25 2.81 38.18
SPIsum 0.58 0.64 0.66 0.98 1.03 1.96 2.36 28.96

RAFT 0.02 0.02 0.02 0.04 0.04 0.08 0.11 0.92
NS 0.02 0.02 0.02 0.04 0.04 0.08 0.1 0.89

The experiments are run for the eight networks. The flows are full meshed in the network
with one unit traffic load. Working paths are given with their total capacity reservation
“W ” above. The following rows provide the total spare capacity found from different
algorithms.1 Branch and bound (BB) algorithm use CPLEX [22] on a SUN Ultra Enter-
prise server with 4GB memory and 250MHz UltraSparc CPU. SSR, SR, SPI, RAFT and
NS are coded in C++ on a Pentium III 533MHz PC.2For SSR, SR and SPI, 64 random
number seeds are used for generating flow sequences to update backup paths. For these
64 results, their maximum and minimum total spare capacities and the sum of their CPU
times are given.
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