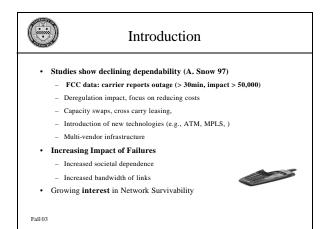


# Introduction


## · Growing dependence on communication networks

- Business, emergency service, government, military, etc.
- Exponential growth of cellular phones (fast growth of technical device)
   Financial transactions, 911, telemedicine, police, etc.

200

- Communication networks are critical infrastructure
  - PCCIP formed 1996.
  - CIAO 1998,
  - NIPC 1998, etc.
  - FCC mandates outage reporting for phone network

Fall 03



Ph.D. Seminar

David Tipper

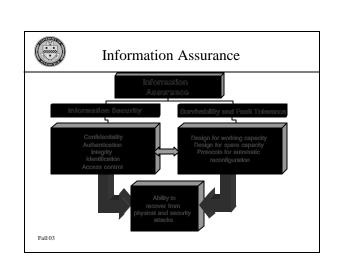
Associate Professor

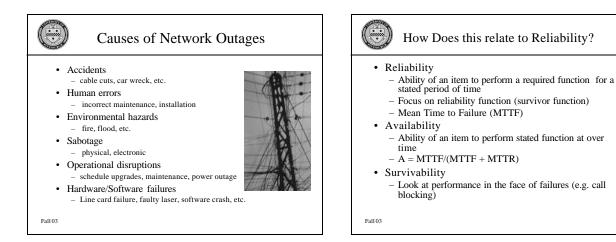
Department of Information Science and

Telecommunications

University of Pittsburgh

tipper@tele.pitt.edu http://www.tele.pitt.edu/tipper.html


- Survivability
  - Continuous adequate performance of services and functions after a failure or successful attack
- · Survivability Components
  - Analysis: understand system functionality after failures.
  - Design: adopt network procedures and architecture to prevent and minimize the impact of *failures/attacks* on network services.
  - Goal: maintain service for certain scenarios at reasonable cost
- Self Healing network




# What is Information Assurance?

## • Definition<sup>1</sup>:

- "Operations undertaken to protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality and nonrepudiation"
- Availability
  - Survivability and Fault Tolerance
    - Sufficient Working & Spare Capacity
    - Traffic Restoration Protocols, Alarms and Network
    - Management
- Security
  - Integrity, authentication, confidentiality and nonrepudiation
     'From the Information Assurance Advisory Council (IAAC)





| Wetrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Survivable Network Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Failure Influence <ul> <li>User Lost Erlang</li> <li>ULE=log<sub>10</sub>(E×H), where E: Erlang lost, H: duration</li> <li>Logarithmic measure</li> <li>One-dimension metric, not enough</li> </ul> </li> <li>Unservability, Duration and Extent <ul> <li>Unservability: ratio of service lost over service requested</li> <li>Duration: time during which the service is unavailable</li> <li>Extent: the number of users affected or isolated from the service</li> <li>Failures are categorized into <i>catastrophic</i>, <i>major</i>, and <i>minor</i></li> </ul> </li> </ul> | <ul> <li>Adopt network procedures and architecture to prevent and minimize the impact of <i>failures/attacks</i> on network services.</li> <li>Three steps towards a survivable network</li> <li>Prevention: <ul> <li>Robust equipment and architecture (e.g., backup power supplies)</li> <li>Security (physical, electronic)</li> <li>Intrusion detection, etc.</li> </ul> </li> <li>Topology Design and Capacity Allocation <ul> <li>Design network with enough resources in appropriate topology.</li> <li>Spare capacity allocation – to recover from failure</li> </ul> </li> <li>Network Management and traffic restoration procedures <ul> <li>Detect and route around failure</li> </ul> </li> </ul> |

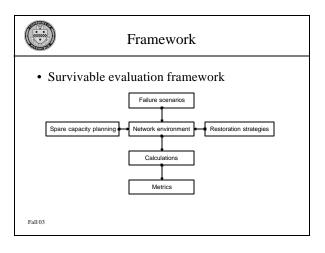
State water

Fall 03

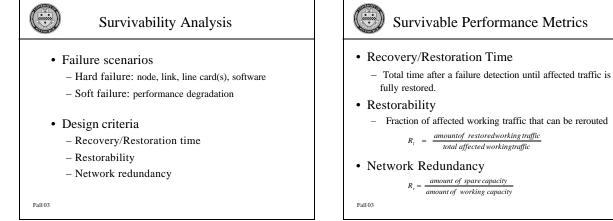
. . . .

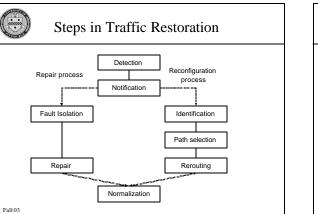
Fall 03

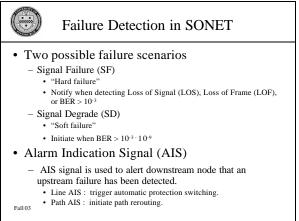
Surrent of


# Network Survivability

• Goal: maintain service for certain scenarios at minimum cost


. .


- Not only connectivity
- But also QoS guarantee: bandwidth, call blocking, security
- Survivable network design problem:
  - Design network (or virtual network) topology and provision spare capacity for tolerance of a set of failure scenarios
- Network Management/Restoration problem:
  - Detect Failure, take advantage of remaining network resources to restore service


Fall03



31



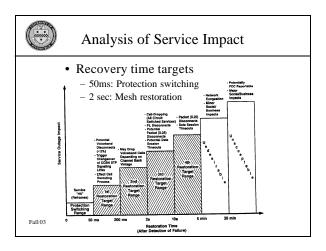


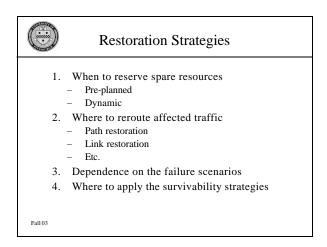


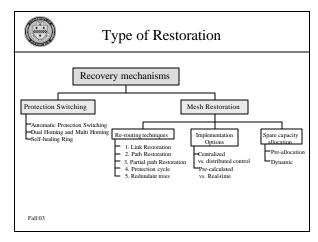
amountof restoredworking traffic

total affected workingtraffic

# 4


| ß  | STT |   | 0                |
|----|-----|---|------------------|
| (( | ŵ   | ŵ | $\left( \right)$ |
| 6  |     |   | , D              |


# Detection capabilities

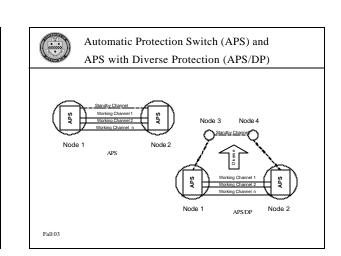

# • STM and ATM detection (J. Anderson [3])

| Bit Error Rate<br>Discrimination | STM Time<br>Interval | ATM Time<br>Interval | Threshold for ATM<br>Based Detection | Threshold for STM<br>Based Detection |
|----------------------------------|----------------------|----------------------|--------------------------------------|--------------------------------------|
| 10-6 - 10-7                      | 100ms                | 100 ms               | 8                                    | 100                                  |
| 10-5 - 10-6                      | 10ms                 | 10 ms                | 8                                    | 50                                   |
| 10-4 - 10-5                      | 2 s                  | 1 ms                 | 8                                    | 15310                                |
| 10-3 - 10-4                      | Not possible         | 0.1 ms               | 8                                    |                                      |

Time interval needed for achieving given confidence levels on OC48 (2.4GBps) P{False alarm} < 0.1\% ; P{Miss} < 0.1%







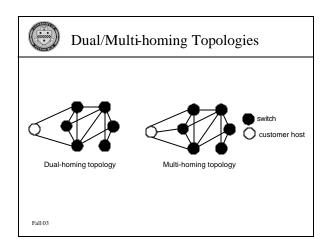

# Protection Switching

- Automatic Protection Switch (APS) – Provide a mechanism for link-failure tolerance.
- APS 1:1
- One standby cable for each working cableAPS 1:N
  - One standby cable for N working cable
- APS/DP (APS with diverse protection)

   Standby cable is placed on a different physical route than the working cable
- Fully restorable APS/DP system requires 100% capacity redundancy.

Fall 03



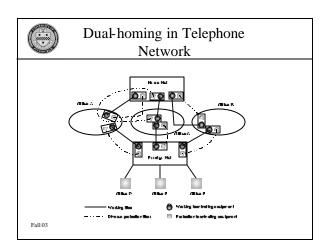

# Dual-homing and Multi-homing

# • Dual-homing

- Customer host is connected to two switched-hubs.
- Traffic may be split between primary and secondary paths connecting to the hubs.
- Each path is served as a backup for another.

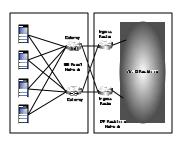
# • Multi-homing

- Customer host is connected to more than two switched hubs.
- Greater protection against a failure.






# Dual-homing Restoration Capability

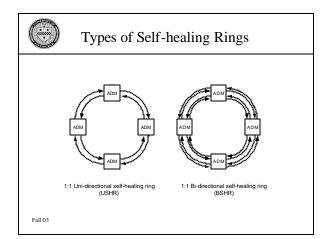

- Dual-homing doesn't accomplish restoration by itself, must be used in conjunction with dynamic restoration techniques.
- 100% restoration can be achieved for a single link or a single switch failure via path rearrangement given that there is enough spare capacity at the link to alternate switched hub.
- Dual-homing approach guarantees surviving connectivity, but it may take time to restore priority circuits via path rearrangement.

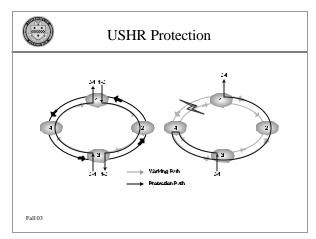
Fall 03

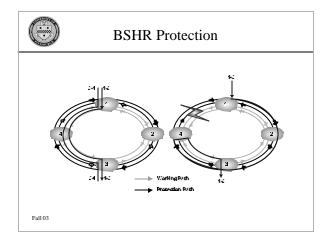




# Dual-homing in Data Network





Fall 03




# Self-healing Rings (SHRs)

- SHR is a topology connecting a set of nodes by one (or more) rings.
- Two types of SHRs :
  - Uni-directional ring (USHR)
    - Nodes are connected to two rings forwarding traffic in opposite direction.
  - Bi-directional ring (BSHR)
    - Four rings are used as two working and two standby routes.
    - An extension to 1:1 APS



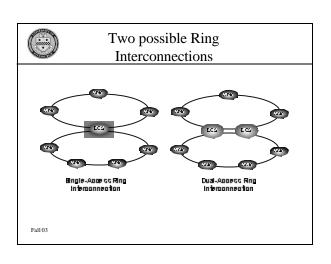


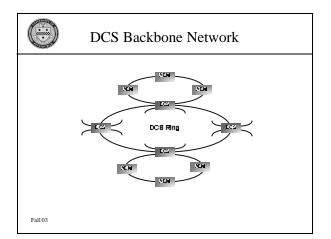


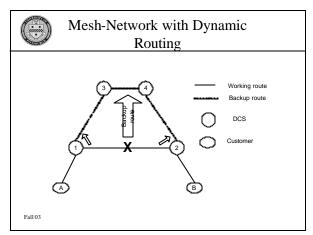


# • USHR

 100% restoration for a single link failure but no protection against a node failure.


# • BSHR

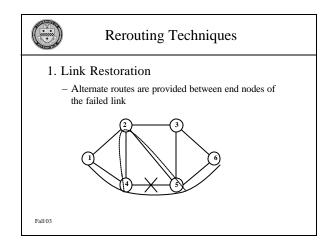

- 100% restoration for a single link or ADM failure.
- Fully automatic for a fast restoration.
- Spare capacity of each link can be shared between two working paths.
- Expensive.

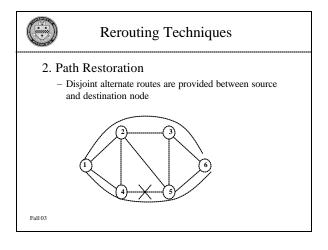


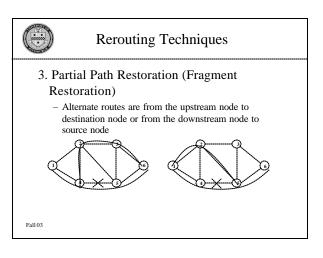

# SHRs Interconnection Architecture

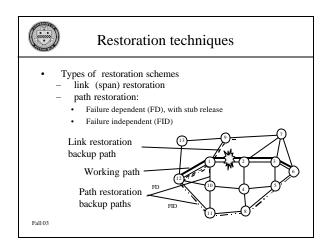
- Due to geographical/bandwidth limitation, multiple, interconnected rings are deployed.
- Capacity assignment at all links on the ring can be largely reduced.
- For traffic restoration, a larger logical selfhealing ring can be formed from an interconnection of two or more rings.

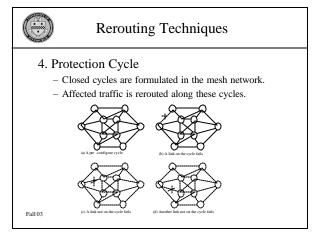


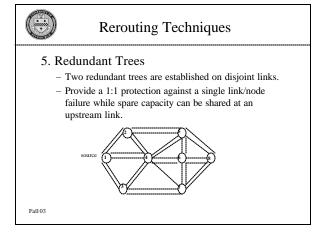




# Benefits of Mesh Restoration

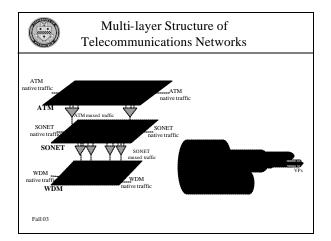

- Digital cross-connected switches (DCS) are used to reroute traffic, thus no dedicated facility is required like APS or SHR technique.
- The link spare capacity and/or working resources are used for traffic restoration.
- Dynamic routing feature can make an efficient use of available capacity of the network.
- · Redundancy Saving over dedicated restoration














# Comparison of Rerouting Techniques

| Rerouting<br>Techniques        | Failure<br>Scenarios | Recovery<br>Time | Resource<br>Utilization | Complexity | Length<br>of Backup<br>Paths |
|--------------------------------|----------------------|------------------|-------------------------|------------|------------------------------|
| 1.Link Restoration             | Link                 | Short            | Poor                    | Low        | Short                        |
| 2.Path restoration             | Node or<br>link      | Medium/<br>long  | Medium                  | Medium     | Medium                       |
| 3. Partial path<br>restoration | Node or<br>link      | Medium           | Good                    | High       | Medium                       |
| 4. Protection cycle            | Node or<br>link      | Long             | Poor                    | low        | Long                         |
| 5. Redundant trees             | Node or<br>link      | Long             | Good                    | High       | Long                         |



| Starner mit |
|-------------|

Different Characteristics of Network Layers

| characteristic aggregation <sup>multiplexing</sup> multiplexing multiplexing<br>Restoration Wavelength Digital path Virtual path LSF<br>unit (STS) Virtual path (STS)<br>Managed Number of Discrete Variable Var<br>resources wavelengths number of bandwidth band | MPLS                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| characteristic aggregation <sup>multiplexing</sup> multiplexing multiplexing<br>Restoration Wavelength Digital path Virtual path LSF<br>unit (STS) Virtual path (STS)<br>Managed Number of Discrete Variable Var<br>resources wavelengths number of bandwidth band | ets                     |
| unit (STS)<br>Managed Number of Discrete Variable Var<br>resources wavelengths number of bandwidth band<br>STS-1s                                                                                                                                                  | stical<br>iplexing      |
| resources wavelengths number of bandwidth band<br>STS-1 s                                                                                                                                                                                                          |                         |
| Traffic type One One Several Sev                                                                                                                                                                                                                                   | able<br>lwidth          |
|                                                                                                                                                                                                                                                                    | eral<br>silver, bronze) |
|                                                                                                                                                                                                                                                                    | 'P-TE,<br>LDP, LMP      |

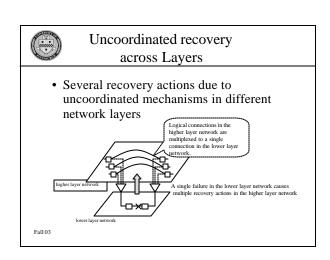
# Where to Perform Restoration ?Single layers

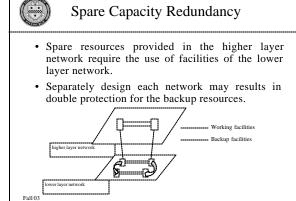
- WDM, SONET, ATM, IP/MPLS
- Multiple layers
  - Escalation among layers
- Interconnected sub-networks – Escalation between peer gateways

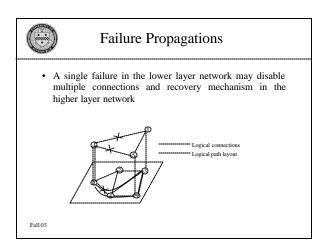
Fall 03



# **Restoration Performance**


| Low                                             | er layer protection | Higher lay | er protection |  |
|-------------------------------------------------|---------------------|------------|---------------|--|
|                                                 | WDM SDH/SONE        | T ATM      | IP/MPLS       |  |
|                                                 | <u>م</u> ـــــ      |            | N             |  |
|                                                 | A                   |            | <i>v</i>      |  |
| Sapre resource<br>required                      | Higher              |            | Lower         |  |
| Restorability                                   | Lower               |            | Higher        |  |
| Controlability<br>(multi-reliability)           | Lower               |            | Higher        |  |
| Restoration speed                               | Faster              |            | Slower        |  |
| Number of entities to<br>be restored (e.g., VP) | Smaller             |            | Larger        |  |
| Fall 03                                         |                     |            |               |  |





# Multi-layer Survivability

- Recovery scheme in the lower layer cannot protect against a failure in the higher layer.
- Different reliability requirement for different network layers.
- New transport technologies raise a need for new survivability mechanism.
- Survivability problem in multi-layer networks
  - Several recovery actions
  - Wasted spare capacity
  - Failure propagation

Fall 03





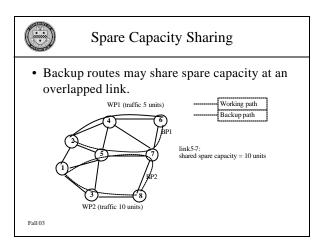


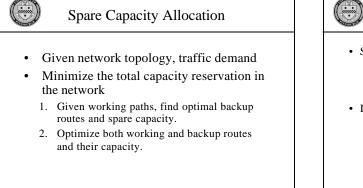
# 13




# Multilayer Survivable Strategy

- Make failure invisible to the higher layer network
  - Implement fast recovery mechanism in the lower layer network
     Solve failure propagation and unnecessary recovery action problem
  - Inefficient resource utilization
  - memcient resource utilization


## • Incorporate design between layers


- Design lower layer network in order to support recovery mechanism in the higher layer network
- Solve failure propagation and unnecessary recovery action problem
- Remain scalability problem

Fall 03



<image><image>





Fall 03



# Bpare Capacity Design in Multilayer Network

- · Sequential design approach
  - Divide design problem into sub-problems and solve sequentially
  - Pure sequential design cause redundant protection
- Integrated design approach
  - Tackle the problem as a single entity
  - Simultaneously design all network layers
  - Solve redundant protection problem
  - Remain complexity and scalability problem

| Summary                        |
|--------------------------------|
| rview of Network Survivability |
| t Detection                    |
| oration                        |
| ti-Layer Network Issues        |
| e Capacity Allocation          |
|                                |
|                                |
|                                |
|                                |