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Abstract—The continuously increasing complexity of commu-
nication networks and the increasing diversity and unpredictabil-
ity of traffic demand has led to a consensus view that the
automation of the management process is inevitable. Currently,
network and service management techniques are mostly manual,
requiring human intervention, and leading to slow response
times, high costs, and customer dissatisfaction. In this paper we
present AutoNet, a self-organizing management system for core
networks where robustness to environmental changes, namely
traffic shifts, topology changes, and community of interest
is viewed as critical. A framework to design robust control
strategies for autonomic networks is proposed. The requirements
of the network are translated to graph-theoretic metrics and
the management system attempts to automatically evolve to a
stable and robust control point by optimizing these metrics. The
management approach is inspired by ideas from evolutionary
science where a metric, network criticality, measures the survival
value or robustness of a particular network configuration. In
our system, network criticality is a measure of the robustness
of the network to environmental changes. The control system is
designed to direct the evolution of the system state in the direction
of increasing robustness. As an application of our framework,
we propose a traffic engineering method in which different paths
are ranked based on their robustness measure, and the best
path is selected to route the flow. The choice of the path is
in the direction of preserving the robustness of the network
to the unforeseen changes in topology and traffic demands.
Furthermore, we develop a method for capacity assignment to
optimize the robustness of the network.

Index Terms—Robustness, Graph Theory, Betweenness, Auto-
nomic, Traffic Engineering, Markov Theory.

I. INTRODUCTION

S INCE the inception of networked communication systems,
network and system management has been crucial to

ensure proper operation in regards to configuration, perfor-
mance, fault, security, and accounting. Today, expert human
resources and complex systems are required to control and
manage an increasing plethora of networked devices and
applications, ranging from small sensors to terabit routers. The
explosion of the Internet and the proliferation of networked
devices (peer-to-peer communications, grids, service overlay
networks, sensor networks, mobile and wireless systems, etc.)
create unique challenges for network and system management
through highly dynamic and difficult to predict demand pat-
terns. The complexity of networked systems and the cost of
management are also constantly growing. Classical approaches
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to network management are not up to the task in this complex
and dynamic environment.

Transport networks that can direct the traffic flows accord-
ing to differentiated levels of QoS, availability requirements
and price are key elements to generating revenue by enabling
a rich offering of services and applications. In a general sense
then, one of the principal challenges in network manage-
ment today is to meet the service level agreement (SLA)
requirements of different customers in the presence of highly
unpredictable variations of fundamental network parameters.
One can easily see that by improving the robustness of
the network, the service availability for customers is also
increased. There are three major types of variations that can
affect the performance of the network: network topology and
connectivity (including changes in capacity of the links);
traffic demand matrix (the set of source-destination traffic
flows), and community of interest (the set of active source-
destination traffics). In this paper, we will call a network
control strategy robust if it can accommodate uncertainties that
result from changes in topology, traffic demand or community
of interest.

The majority of traffic control systems in use by service
providers are configured manually by human intervention.
This leads to slow response times, high costs, and customer
dissatisfaction. Furthermore, the continual growth in traffic
volume, diversity, and heterogeneous requirements make it
impossible to continue working with the present network
management systems. Automated service and network man-
agement are essential to creating and maintaining a flexible
and agile service/application delivery infrastructure that also
has much lower operations expense than existing systems.
There is now a consensus that future communication systems
need to be autonomous, managing their own evolution, per-
formance, fault, and security concerns without explicit user or
administrator actions.

In the field of traffic engineering, which is the main focus
of this paper, few automatic traffic management systems have
been proposed in the literature, and most of these address
only a part of the problem and leave other parts unattended.
In this paper we focus on IP transport and we argue that the
above traffic engineering system requirements can be met by a
self-management system based on autonomic computing. We
give an overview of the conceptual design of our autonomic
traffic engineering system, but we focus on a set of essential
graph theoretic algorithms that provide the means for adaptive
management required by the autonomic system. This includes
a traffic engineering algorithm to manage the flow of demands
in the network as well as a weight assignment method to
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allocate optimal weights (capacity is an important special case)
to the links so as to maximize the network robustness.
Our graph-theoretic approach is motivated by Darwin’s

theory of evolution, where every creature has a ”survival
value” quantifying its sensitivity to environmental changes. We
propose a metric, network criticality, to quantify the survival
value of a network with respect to changes in traffic, topology,
and community of interest. We also formulate optimization
problems that maximize the robustness of a network based on
network criticality.
The paper is organized as follows. In the next section we

consider prior related work. Section III presents an overview
of our autonomic management system. Section IV presents a
graph-theoretic analytical model for robustness which provides
the basis for our autonomic algorithms. A robust routing plan
(and flow assignment algorithm) is proposed in Section V and
validated through simulation in Section VI. Conclusions are
presented in Section VII.

II. RELATED WORK

Adaptive system design typically involves striking a balance
between optimal systems that achieve the best performance (at
a cost of high complexity and sensitivity) and robust systems
that achieve good performance (at lower complexity and sensi-
tivity). Given the scale and diversity of current networks, it is
not surprising that the preponderance of resource management
systems opt for robustness [1], [2], [3], [4], [5]. In this paper
we propose a graph theoretic metric for robustness that can
be applied to network design. We then develop a family of
algorithms that enable autonomic management through the
optimization of this robustness metric.
Dekker and Colbert [6] investigate the robustness of net-

work topologies using graph-theoretic concepts. They assess
robustness according to the traffic levels induced in the net-
work by node failures. They argue that ”node connectivity” is
the most useful metric in graph theory to study the robustness
problem, and they examine the relationship between node
connectivity and the degree of symmetry of the network and
they suggest that it is important for robust networks to satisfy
node similarity and optimal connectivity conditions. They also
describe a number of ways to design robust networks that
satisfy these conditions. In [7] the same authors introduce the
symmetry ratio of a network. This metric is the ratio of the
number of distinct eigenvalues of a network to its diameter.
This metric is used to study the robustness of a network
topology in the face of targeted attacks.
In [8] we present an approach for robust routing in core

networks based on the notions of ”link criticality” and ”path
criticality”. Link criticality attempts to measure the impact
of the failure of a particular link on the remainder of the
network. Path criticality uses the criticality of the links in a
path to measure its desirability from a robustness perspective.
Our link criticality measure is inspired by the deterministic
betweenness centrality for nodes in a graph [9]. For node k
the betweenness centrality with respect to flows from source
node i to destination node j is defined as the proportion of
instances of the shortest paths from node i to j that traverse
node k. The overall betweenness centrality of node k is the

sum of the centralities over all source-destination pairs. Link
betweenness is defined similarly.
In traffic management shortest paths are not necessarily the

best path in all circumstances. For this reason in [8], we
modify the notion of link criticality to consider all feasible
paths. Let nij be the number of feasible paths between i and
j, and let nikj be the number of paths between i, j containing
the specific link k . The betweenness of node k for source i
and destination j is then nikj

nij
. The overall betweenness of link

k is the sum of the betweennesses for link k over all i and j.
Betweenness centrality provides a metric of how critical a link
is in the network topology. Based on this metric, we proposed
Path- Criticality Routing (PCR) [8] as a heuristic to select
paths for a given flow in a manner that is robust to changes in
traffic demand or network topology. Simulation results show
that the PCR heuristic performs very well in a wide-range of
network scenarios.
The success of the PCR heuristic convinced us that there

must be a theoretical basis for its excellent performance, and
that this basis must revolve around the notion of betweenness.
Unfortunately the enumeration of paths does not lend itself
to tractable analytic results that explain the behavior of PCR.
However, we have found that the notion of Random Walk
betweenness, introduced by Newman [10], do support the
development of a rich set of tractable network optimization
algorithms. In this paper we present the basic set of theoretical
results that provide the foundation for our proposed traffic
engineering system.

III. CONCEPTUAL ARCHITECTURE OF THE MANAGEMENT

SYSTEM

The conceptual idea underlying our management architec-
ture is inspired the theory of evolution. Evolutionary processes
are good examples of self-organizing systems. Darwin’s theory
describes the process of natural selection by which each slight
variation, if useful, is preserved [11]. Every process receives
a survival value as a result of natural selection that quantifies
its overall sensitivity or robustness to the external variations.
In this paper we are looking for an appropriate survival value
for communication networks. The survival value indicates how
adaptable a system is to unexpected events [12].
Darwin’s theory does not consider any ”final target” for

the evolutionary changes in the nature, but one can see
that viewing survival as the goal can lead to an implicit
optimization problem. Therefore we arrive at the view that
the first goal of the management system is to keep the system
alive under unforeseen circumstances. For our purposes, the
system (network) can be modeled as a weighted graph, and
our main service is data transfer.
In any network, from small designed networks, to large-

scale social networks, and even to the Internet, connectivity is
a crucial factor as it is essential for communication. Therefore,
the first parameter to consider as a candidate for ”survival
value” is the connectivity of the graph. Any communication
network should evolve in a way that maximizes the probability
of future connectivity. This implies that the optimization must
address the real-time efficiency and performance of the whole
network as a short-term goal, while striving to maintain and
improve the survival value of the network as a long-term goal.
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Fig. 1. Conceptual Architecture of AutoNet

To achieve long-term and short-term goals, one needs to
have control mechanisms to monitor the present situation and
make decisions accordingly using a corresponding controller.
A simple model of such a system with two feedback loops,
AutoNet, is shown in Fig. 1. The long-term loop in AutoNet
learns a policy that has evolved as the result of gradual
changes in the controlled system. In this evolutionary process,
sometimes the control system cannot provide an appropriate
policy. In this situation a re-planning process takes place and
the new plan is put in place.
This slow/fast loop approach to the network management

problem is the main building block of our management system.
The main idea is to design appropriate long-term and short-
term control loops to achieve the connectivity and performance
simultaneously. Our performance metric should be the survival
value of the network to directly reflect our goal, the optimiza-
tion of robustness. The short-term part reacts to the network
changes in real-time and the ’slow’ part takes actions over a
longer time-horizon.
The long-term loop develops the evolution based on an

initial knowledge base that consists of the business policy
as well as empirical results from previous experience about
customer demand, network element reliability, price elasticity,
etc. The network plan includes the translation of business
policy into policies that are meaningful to the short-term part
for use in the handling of customer requests. Our methodology
is to convert the SLA to metrics from graph theory to capture
both the topological aspects and SLA requirements. The plan
also includes the synthesis of the SLA templates that will be
offered to customers taking into account forecasted demand,
resource requirements and price elasticity. All these planning
parts are aimed at providing robustness through the long
loop while providing immediate performance with the short-
term loop. Finally, the plan also includes pre-partitioning
of network resources to facilitate the handling of customer
requests by the short-term part. For example, the plan may
include pre-provisioned routes per each (ingress, egress) pair.
Because of the autonomic nature of the overall system, the

short-term part needs to interact with the ’slow’ (long-term)
part when carrying out certain self-healing, self-optimizing,
and self-configuring functions (bringing robustness as the final
result). This mainly occurs when un-predictable events take
place, such as sudden surges in demand or major failures
in the network. In these situations the short-term part will
respond to provide a fast real-time cure, but will act to provide

a long-lasting cure by making a request for re-dimensioning
to the ’slow’ part. The interaction between slow and fast parts
of AutoNet could also be the result of detecting inefficiency
in resource usage in the fast part. In this case a request for
re-dimensioning is sent to the slow part to re-optimize the
allocation of resources.
The short-term or ’fast’ part of the system consists of four

major building blocks that are driven by customer requests.
As shown in Fig. 1, the ’SLA Interpreter’ block is responsible
for negotiating the SLA with the customer and for converting
the SLA contract to an appropriate form understandable by a
’General Topology Manager’ block. This latter block plans the
route and resource allocation based on the converted SLA, the
already allocated resources, and current network demands. The
results are delivered to the ’General Resource Manager’ block
which executes orders that allocate the appropriate amount of
resources. The ’Monitoring’ block continuously monitors the
system to identify possible problems (e.g., SLA violations,
failure alarms and so on). After filtering, it sends information
to the ’General Topology Manager’ to develop an immediate
cure, and in parallel it may send a message to the ’Analysis’
block of the ’slow’ part to report an unpredictable event. If
appropriate, the ’Analyze’ block may initiate new network
planning. In the next section we introduce the theoretical
framework that enables the algorithms we propose for the
General Topology Manager.

IV. ALGORITHMIC DESIGN OF AUTONET

In this section we provide the theoretical results that form
the basis for the design of the resource management algorithms
(routing and flow assignment algorithm) in AutoNet (Fig. 1).
To this end, we first develop a metric, network criticality, to
capture the robustness properties of a communication network.
Then we use this metric to design appropriate algorithms for
AutoNet.

A. Robustness and Network Criticality

To model the robustness in a network, one needs to consider
the topology as well as the effect of load on the different
nodes/links. In particular, the impact of a new flow on existing
ones needs to be modeled. This motivates the use of between-
ness metrics from graph theory. We consider the probabilistic
definition of the node (link) betweenness as the main metric
to quantify the criticality of a node or link and we use the
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criticality metric to model the degree of robustness of the
network.
In [10] a probabilistic interpretation of the betweenness is

defined based on random walks in a graph. A random-walk
starts from a source node s, chooses one of the neighbors
at random with equal probabilities, and uses the link be-
tween source s and that neighbor to get there. The random
walk continues wandering around until reaches at a specified
destination d, where it stops. The betweenness bsk(d) of a
node (link) k for source-destination pair s− d is the expected
number of times that a random walk passes node k in its
journey from source s to destination d. The total betweenness
of node k is the sum of this quantity over all possible
s − d pairs. We use a generalized definition of random-walk
betweenness based on the weighted adjacency matrix of a
graph. We consider a connected network which is shown by
its graph G(N,E,W), where N , E, W are the set of nodes,
links, and link weights of the graph respectively. Each node
has a certain probability to send its data to the adjacent nodes.
Let’s assume a random walk at node s wants to go to node d
as its final destination. Destination node is an absorbing state
for this random walk and the walk is stopped in destination.
The probability of passing node k in next step is shown by
psk(d) and defined as:

psk(d) = {0 if s=d
wskP

q∈A(s) wsq
otherwise

(1)

where A(s) is the set of adjacent nodes of s and wsk is the
weight of link (s, k). The first condition in equation (1) is due
to the fact that the destination node d is an absorbing node,
and any random-walk coming to this state, will be absorbed
or equivalently pdk(d) = 0. Clearly, equation (1) defines a
Markovian system.
Now, we define the node criticality for a weighted network

simply as the random-walk betweenness of that node over the
weight of the node.

ηk =
bk

Wk
, Wk =

∑
j∈A(k)

wkj

where ηk, bk, Wk are the criticality, betweenness, and weight
of node k (or weighted degree of the node) respectively.Wk is
equal to the sum of all link weights incident to node k (weight
of link (k,j) is shown by wkj ). Similarly, the link betweenness
of link (i,j) (bij)is defined as the expected number of times
a random walk traverses the link summed over all source-
destination pairs. The criticality of a link (i,j) (ηij) is defined
as the betweenness of the link over its weight:

ηij =
bij

wij
(2)

We will use criticality of the nodes (and links) to assess
different networks based on their robustness to the changes
in traffic demand, topology, and community of interest
(source-destination pairs).

Observation 4.1: Equation (1) shows that if the weight
increases, the goodness of that link (probability of being
chosen) also increases. This means that for specific definition
of weight, the QoS parameters which are in the direction of

increasing the goodness should be positively related to the
weight. We call these parameters ”beneficial QoS parameters”.
In contrast, the QoS parameters for which increasing value
denotes decreasing goodness, are called ”detrimental QoS
parameters”. For example available bandwidth is a beneficial
QoS parameter while used bandwidth or packet loss are
detrimental QoS parameters.

Observation 4.1 suggests that SLA parameters can be mapped
to the weights. In this paper we are interested in the study
of the weight and its effect on robustness. We assume that
SLA parameters are already mapped to the weights with an
appropriate method. Some of these methods are discussed in
[13]. This permits us to abstract different business policies
and/or SLA’s as parts of the weight definition. This is indeed
the feature of an autonomic system that differentiates it from
an adaptive mechanism [14].
One way of mapping QoS parameters to the link weights

is as follows.

wij = wqos1
ij × wqos2

ij × ...wqosk

ij (3)

=
w

(1)
ij

w
(a1)
ij

× w
(2)
ij

w
(a2)
ij

× ...
w

(k)
ij

w
(ak)
ij

where wq
ij is a beneficial QoS parameter and w

aq

ij is a
detrimental QoS parameter.
In order to find an expression for node betweenness we

note that the path from any node i to j could be of length
0 to infinity. If we specify the probability values psk(d) for
destination d with matrix Pd, then for all k �= d, the probability
of entering node k at qth step for different values of s and k
can be obtained from corresponding entries of the matrix Pd

q

and in case of k = d it would be 0. In our calculations, we
treat the destination d as a fixed point and write all matrices
based on this assumption. At the end we obtain the general
results for our metrics by adding up the results for different
destinations. One can write this relationship in matrix form as
follows:

Bd = [bsk]d = {
P∞

q=0 P q
d

if k �=d

0 otherwise = {(I−Pd)−1 if k �=d
0 otherwise (4)

where Bd is the betweenness matrix for destination d. By
examining equation (4) one can easily see that the removal of
column and row d from betweenness and probability matrices
does not affect the other entries. We use M(i|j) to denote
the reduced matrix obtained by removing the ith row and jth

column of matrix M . Equation (4) can be written as:

Bd(d|d) = (I − Pd(d|d))−1 (5)

Let W = [wij ] be the weight matrix of the graph, D be the
diagonal matrix of weighted degrees or graph nodes, and L
be the Laplacian of the graph [15], [16]. We know that:

L = D − W, D = diag(W1, W2, ..., Wn)
Pd(d|d) = D−1(d|d) × W (d|d)

The last equation is the direct result of equation (1). Now we
have:

I − Pd(d|d) = I − D−1(d|d) × W (d|d)
I − P (d|d) = D−1(d|d) × L(d|d) (6)
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Replacing equation (6) in (5) results in:

Bd(d|d) = L−1(d|d) × D(d|d) (7)

Note that the graph G(N, E, W ) is assumed to be connected
which means that the rank of graph Laplacian L is (n − 1).
As a result, the inverse of reduced Laplacian L(d|d) exists
and equation (7) has a unique solution. Now we need to write
equation (7) in terms of the Laplacian of the original graph.

Lemma 4.2: For entries of the reduced inverse of the Lapla-
cian matrix, one can write:

(L−1(d|d))sk = l+sk − l+sd − l+dk + l+dd (8)

where l+sk shows the entry of row s and column k in Moore-
Penrose inverse of Laplacian matrix L.

Proof: See Appendix A.

According to the equations (7) and (8) , we can obtain the
betweenness of the node k for source-destination pair s − d:

(Bd(d|d))sk = (l+sk − l+sd − l+dk + l+dd) × Wk

bsk(d)
Wk

= l+sk − l+sd − l+dk + l+dd

To obtain the total betweenness of node k, we need to consider
the effect of all source-destination pairs.

bk

Wk
=

1
Wk

∑
s

∑
d

bsk(d) =
1

Wk

∑
s

∑
d

bsk(d) + bdk(s)
2

=
∑

s

∑
d

l+dd − l+sd − l+ds + l+ss

2

or:
bk

Wk
=

1
2

∑
s

∑
d

(l+ss + l+dd − 2l+sd)

=
1
2

∑
s

∑
d

τsd =
1
2
τ (9)

τ =
∑

s

∑
d

τsd =
∑

s

∑
d

(l+ss + l+dd − 2l+sd)

To obtain equation (9) we used the fact that Laplacian matrix
(and its Moore-Penrose inverse) is symmetric. It turns out that
τsd is equal to the resistance distance between two nodes s
and d [17].
A similar result can be derived for a link of the graph as

well. For a link (i,j), one can find the betweenness of the link
based on the betweenness of its two end nodes.

Lemma 4.3: Betweenness of link l = (i, j) is equal to bij =
b(l) = τwij . Equivalently, the criticality of link (i,j) would be
ηij = η(l) = bij

wij
= τ .

Proof: It is enough to note that bij = bipij + bjpji, and
apply equations (1) and (9).

Observation 4.4: Equation (9) and lemma 4.3 show that
the node/link criticality is independent of the choice of
node/link.

Observation 4.4 is a significant result showing that the
betweenness of a node (link) can be written as the product of

two graph values (bk = Wk
τ
2 for a node k or bij = wijτ for

a link (i, j)) one of them is a local metric i.e. the weighted
degree of a node (or weight of a link), and the other one
a network-wide metric τ which is only a function of graph
weight matrix. We call this global metric (τ ) as network
criticality and it will be our main tool to investigate the
robustness of different networks. A smaller value of τ means a
higher level of robustness. Indeed τ is the survival value that
we need to model the robustness because it can be used to
quantify the resistance of a network to the unwanted changes
in network topology or traffic demands, the less the network
criticality, the less the sensitivity to the changes in topology
and traffic.

B. Network Criticality and Communication Networks

Network criticality can also be used to design methods to
engineer the evolution of network flows or network topology.
In the following we will show the importance of network crit-
icality in the context of traffic engineering for communication
networks.
Corollary 4.5: Let T be the average hop length of a

random-walk (or average time that a random-walk is in the
system) for all source-destination pairs, and B be the average
node betweenness of all nodes. Then: B = (n − 1)T .

Proof: See Appendix B.

Corollary 4.6: The normalized betweenness of each node i
of the graph is biPn

k=1 bk
. It can be shown that this quantity is

equal to the stationary probability of that node in a Markov
chain built on the weights of the graph.

Proof: Equation (9) can be used to simplify the normal-
ized betweenness of a node.

Normalized bi =
bi∑n

k=1 bk
=

1
2τWi

1
2

∑n
k=1 τWk

=
Wi

W
= πi

In these equations we have: Wi =
∑

j∈A(i) wij , W =∑n
i=1

∑
j∈A(i) wij .

Now we are ready to investigate the relation between
criticality and input traffic. Let λ be the average input rate
at any individual node of the network, and let the weight
of each link be the capacity of the link (i, j) = l (i.e.
wij = cij = c(l)). Further, let xmax be the average load
on the node which has the maximum betweenness among all
the nodes, and consider the capacity of this node as c∗ . xmax

can be approximated by the total average rate of this node
times the average time that a demand is in the system.

xmax = nλπmaxT =
λ

n − 1
bmax

To obtain this equation, we used corollary 4.5 and 4.6. Hence:

xmax ≤ c∗ ⇒ λ ≤ n − 1
bmax

c∗
⇒ λ ≤ 2(n − 1)

τ

max λ =
2(n − 1)
minW τ

(10)

We used observation 4.4 to get the equation (10) . This result
can be summarized in the following theorem.
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Theorem 4.7: To maximize the capacity of a network, one
needs to minimize the node/link criticality of the network.

Proof: This is a direct result of equation (10) and obser-
vation 4.4.

C. Optimization of Network Criticality

Now we should verify that the minimization of the network
criticality is possible. To answer this question we need lemma
4.8.
Lemma 4.8: Network Criticality τ is equal to 2nTr(L+).
Proof: Since τsd = l+ss + l+dd − 2l+sd, we have

τ =
∑
s,d

τsd =
∑

d

∑
s

l+ss +
∑

s

∑
d

l+dd − 2
∑

s

∑
d

l+sd

= n
∑

s

l+ss + n
∑

d

l+dd − 2 × 0 = 2n
∑

i

l+ii

= 2nTr(L+)

The following theorem proves that the minimization of net-
work criticality is in fact doable.
Theorem 4.9: τ is a strictly convex function of graph

weights. Further, τ is a non-increasing function of link
weights.

Proof:We note that function f(X) = Tr(X−1) is strictly
convex on X , if X is positive definite (see [18]). Therefore,
considering well-known equation L+ = (L + J

n )−1 − J
n [18]

(J is an n×n matrix whose entries are all equal to 1),we can
see that τ = 2nTr(L+) = 2nTr(L + J

n )−1 − 2n is strictly
convex on matrix L + J

n (since L is positive semi-definite,
L + J

n is always positive definite).
It is also not difficult to show that ∂τ

∂wij
= −2n‖L+

i −L+
j ‖2,

where L+
i is the ith column of L+. This is always negative,

therefore, τ is a monotone decreasing function of link weights.

We write the optimization problem to minimize τ ), when
there is a fixed budget for the link weights (the sum of all
weights is fixed). the following theorem provides condition
of optimality for the optimization problem.

Theorem 4.10: Consider the following optimization prob-
lem on graph G(N,E,W):

Minimize τ

Subject to
∑

(i,j)∈L wij ≤ C , C is fixed (11)

wij ≥ 0

For the optimal weight set, W ∗, we have:

C
∂τ

∂wij
+ τ ≥ 0 ∀(i, j) ∈ E

.
Proof: See Appendix C.

We will also need the following lemma later in this paper.
Lemma 4.11: Network criticality is proportional to the sum

of all link betweenness sensitivities, more precisely: τ =

1
m−1

∑
(i,j)∈E

∂bij

∂wij
, where m is the number of links of the

network.
Proof: See Appendix D.

Mapping to our conceptual architecture, theorem 4.10 and
lemma 4.11 provide foundation to build the major blocks of
Fig. 1. We will develop methods and algorithms for network
planning (long loop) as well as flow assignment (fast loop)
for our conceptual architecture. This is the subject of the next
section.

V. DESIGN OF THE FAST AND SLOW CONTROL LOOPS FOR
AUTONET

We now discuss how the analytical results extracted in
previous section can be used to design appropriate algorithms
for long-term and short-term blocks of AutoNet. Theorem 4.10
and lemma 4.11 show the control mechanism that needs to be
implemented to maximize the robustness. The evolution of the
management state should be in the direction of minimizing the
network criticality.
We first notice that the available capacity of a network

is a key element in flow assignment problem. Clearly the
paths with more available capacity are desired since the low
available capacity paths are prone to congestion. Hence an
intelligent routing plan should avoid routing the flows onto the
low available capacity paths and should request for capacity
increases for those paths if possible. In addition, the capacity
planning phase should be done carefully to assign appropriate
capacities to all the links (nodes) of the network. Therefore,
we define weight of link l=(i,j) as its ”available capacity” to
take into account the role of capacity.

A. Slow Loop (Network Planning)

The main job of the slow loop in AutoNet is network
planning. The goal is to find a set of link weights to mini-
mize network criticality when the sum of all link weights is
given. Therefore, the slow loop of AutoNet effectively solves
optimization problem (11).
Optimization problem (11) can be converted to a semi-

definite programming problem. Suppose Γ = (L + J
n )−1.

In order to have a semi-definite program we need to have
the constraints of the optimization as linear functions of
semi-definite matrices. In fact Γ can be written as a semi-

definite inequality. We consider matrix Θ =
(

Γ I
I L + J

n

)
.

The necessary and sufficient condition for positive semi-
definiteness of Θ is that its Schur complement [18] be positive
semi-definite. The Schur complement of Θ is Γ− (L+ J

n )−1.

Θ =
(

Γ I
I L + J

n

)
	 0 ⇔ Γ 	 (L +

J

n
)−1 (12)

where 	 means positive semi-definite. Since the optimization
problem (11) should minimize Tr(Γ), the equality in equation
(12) is chosen which is equal to Γ = (L + J

n )−1.
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Now optimization problem (11) can be converted to a semi-
definite programming.

Minimize 2nTr(Γ) − 2n (13)

Subject to Diag(V ec(W )).
−→
1 = C(

Γ I
I L + J

n

)
	 0

Diag(V ec(W )) 	 0

We have changed the first constraint of optimization problem
(11) to an equality, since the optimal answer is the same. Also,
note that Diag(V ec(W )) is a diagonal matrix with wij ’s in
main diagonal. This matrix is positive semi-definite because
wij ≥ 0 ∀(i, j) ∈ E.
This new optimization problem can be solved with standard

methods of solving semi-definite programs. There are also
some software tools to solve semi-definite programs. The slow
loop of AutoNet implements this semi-definite program to plan
a robust network. This network planning can happen at the
initial step, or in the middle of traffic engineering activities
due to request from fast loop.
An important special case of network planning is the ca-

pacity assignment problem. Consider a network G(N, E, W )
where the link weights are equal to the link capacities (when
network is not loaded the available capacity of a link is
equal to its total capacity), that is, wij = cij ∀(i, j) ∈ E
(cij denotes the capacity of link (i, j)). We investigate the
capacity assignment problem in which network topology and
link traffic loads γij ∀(i, j) ∈ E are assumed known and
fixed. The goal is to find the capacity of the links so as to
minimize the network criticality under the constraint that the
total cost of the planning is fixed. The optimization problem
remains the same unless the constraint set wij ≥ 0 which is
converted to cij ≥ γij . By applying the change of variable
wij = cij = c′ij + γij and C′ = C − ∑

(i,j)∈E γij to the
optimization problem (11), we will have the following convex
optimization problem for capacity assignment problem.

Minimize τ

Subject to
∑

(i,j)∈E c′ij = C′ , C′ is fixed (14)

c′ij ≥ 0

B. Fast Loop (Traffic Engineering)

The main building block of the fast loop of AutoNet is the
”General Topology Manager” (Fig. 1). For this block, we need
to design a robust routing scheme that is able to cope with
unpredicted changes in traffic and topology.
The control loop should always keep the present value of

network criticality, and compare it with a reference value, in
order to provide necessary input for the controller to make
appropriate decisions.
A simple diagram of the control loop for traffic engineering

purposes in AutoNet, including fast and slow loops, is shown
in Fig. 2. The main idea is to find appropriate paths to run the
flow so that the change in network criticality is minimized.
Suppose a demand for source-destination pair S−D needs to
be routed and there are three eligible paths between node S
and D. The controller should choose the path which creates

the least network criticality after the demand is serviced. We
design our controller (or traffic engineering block) based on
this philosophy. Lemma 4.11 provides us with an appropriate
approach. According to lemma 4.11, the network criticality
is proportional to the sum of link betweenness sensitivities.
Therefore, in order to minimize the network criticality, one
should minimize the sum of link betweenness sensitivities.
This suggests the choice of link betweenness sensitivity as
the cost of a link. For a link l=(i,j):

cost(l) = cost(i, j) =
∂bij

∂wij
(15)

Now it is enough to apply the Dijkstra’s algorithm to find the
shortest path(s) between every two nodes. This will find the
paths that have the minimum impact on criticality. In case of
more than one shortest path the one that causes less changes
in network criticality, will be chosen.
It is worth mentioning that the dynamics of the network

are summarized in the random-walk link betweenness, and
by using the value of random-walk link betweenness we in
fact apply a kind of implicit control law in the form of a
policy. According to this policy, if the betweenness of a link
increases, the risk of using the link also increases and the
traffic engineering block tries to find a path which does not
include this risky link. In other words, an adaptive control
mechanism in implicitly used in the fast control loop.
The explicit control error signal in Fig. 2 determines

whether the demand can be accepted. Suppose the initial value
of network criticality when the network is not loaded is τini.
We accept the new demand only if there will be a path with
enough available capacity and if the new network criticality
after running the demand won’t be more than tr×τini, where
tr is a threshold factor. Therefore, the reference value of our
control loop is τref = tr × τini. The choice of tr depends
on the level of accuracy and robustness that we need. We
found that tr = 4 works well in our tests. Note that according
to lemma 4.11 network criticality is a monotone decreasing
function of link weights, therefore, as long as we do not add
to the initial capacity of the links (by network replanning via
slow loop), the initial value of the network criticality is the
minimum one and decreasing the available capacity of a link
(i.e. link weight) will increase the value of τ , hence τini can
be used as the reference.
In this paper we use a binary control error as the input

to the controller (traffic engineering block). We reject a flow
and possibly ask for replanning if there won’t be any path to
guarantee τref −τ ≥ 0, otherwise we select the path and send
it to the resource manager block for resource allocation. This
process provides a simple call admission control mechanism
for the traffic engineering block. In the resource block all the
parameters will be updated and new values of network critical-
ity as well as link parameters including weight, betweennesses,
and betweenness sensitivities will be approximated.
To approximate the time complexity of the algorithm, we

note that the running time to get the Moore-Penrose inverse
is O(mn

1
2 ) [18], where m and n are the number of links and

nodes in the graph respectively (we need to have the Moore-
Penrose inverse of Laplacian matrix to find betweenness of
the links and network criticality). The main part of the traffic
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Fig. 2. Autonomic Loop for Traffic Engineering

(a) ELG (b) FGG

(c) Variations of τ (d) Variations of λ2

Fig. 3. Behavior of Network Criticality and Algebraic Connectivity for ELG and FGG

engineering block can be obtained in O(nlog(n)) as it is just a
shortest path algorithm with link costs. Hence the complexity
of the algorithm would be O(mn

3
2 log(n)).

VI. EVALUATION

In this section we conduct some experiments to show the
validity of AutoNet blocks. We start with a discussion on
the importance of network criticality by comparing τ with
algebraic connectivity which is another metric to measure the
robustness of a graph.

A. Network Criticality and Algebraic Connectivity

Fiedler [19] defined algebraic connectivity as the first non-
zero eigenvalue (λ2) of the Laplacian matrix of a connected
graph (the first eigenvalue of Laplacian matrix for a connected
graph is zero). Algebraic connectivity is a lower bound for
node connectivity and link connectivity. Therefore, increasing
λ2 will improve the connectivity of a graph.

In first experiment we consider extended linear graph
(ELG), and flat grid graph (FGG) (see Fig. 3)and we compare
the behavior of network criticality and algebraic connectivity
in ELG and FGG for different network sizes. In this experi-
ment we assume all the link weights are equal to 1. Fig. 3-(c)
shows the behavior of network criticality for ELG and FGG.
The criticality of ELG grows much faster than FGG. Fig. 3-
(d) reveals that the algebraic connectivity of FGG is always
better than ELG, that is, the flat grid has better connectivity
but the speed of decreasing the connectivity of the graph is
much slower than increasing the network criticality.

The main finding of this experiment is that while the
changes in algebraic connectivity of ELG and FGG are
relatively similar, there is a huge change in the behavior of net-
work criticality, which means that network criticality captures
some robustness properties of the graph that cannot be found
in algebraic connectivity. Indeed this experiment reveals that
increasing topological dimension of a network will increase its
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TABLE I
CAPACITY ASSIGNMENT AND LINK DELAY USING 3 DIFFERENT

METHODS

Link Load Kl(C) Me(C) Cr(C) Kl(D) Me(D) Cr(D)
1 3.15 27.93 27.00 29.63 40.36 41.93 37.76
2 3.55 29.85 27.40 33.31 38.02 41.93 33.60
3 0.13 5.16 23.98 12.67 198.67 41.93 79.71
4 3.64 30.28 27.49 32.95 37.54 41.93 34.12
5 0.82 13.46 24.67 13.36 79.10 41.93 79.71
6 3.88 31.38 27.73 33.64 36.36 41.93 33.60
7 9.95 53.99 33.80 36.43 22.71 41.93 37.76

TABLE II
AVERAGE NETWORK DELAY AND NETWORK CRITICALITY USING

DIFFERENT METHODS

Method Average Network Delay Network Criticality
Kleinrock 44.72 1.06
Meister 55.01 0.80

Criticality Method 49.30 0.56

robustness. Note that FGG expands in two dimensions whereas
ELG grows in one dimension. A more detailed comparison of
network criticality and algebraic connectivity can be found in
[20].

B. Network Planning (Slow Loop)

In the following example our proposed optimal weight
assignment method for long loop of AutoNet is compared
with Kleinrock’s method for capacity assignment [21], [22]
and Meister’s extension [23]. We use the telegraph network
from Kleinrock’s book (see [21], pp. 22-23).
Kleinrock’s method finds capacities of the links in such a

way to minimize the average delay of the network under the
independence assumption and when the link loads are known.
One problem with Kleinrock’s approach is that it assigns
very long delays to the links with small loads. Meister’s
method is an alternative approach which assigns equal delays
to all the links, of course at the expense of a large deviation
from optimal average network delay that can be achieved by
Kleinrock’s solution.
The proposed solution in this paper assigns capacity of the

links in a way to balance the individual link delays so as to
have acceptable link delays while still we have a good average
network delay. Table I shows the capacity assigned to the links
using all the methods. The second column of table I shows
the individual link loads. Columns 3, 4, and 5 show the opti-
mal capacity assignment using Kleinrock’s method, Meister’s
method, and our proposed method (which we call criticality
method) respectively. The minimum average network delay
for these methods are given in second column of table II.
The third column also shows the value of network criticality.
In the criticality method we actually optimize the robustness
(not the average delay as it is the case in Kleinrock’s and
Meister’s method), therefore it is not surprising to see that
the average delay obtained by criticality method is between
two extremes of Kleinrock (to minimize the average network
delay) and Meister (to minimize the maximum link delay).
Columns 6, 7, and 8 of table I show individual link delays

for three methods. Kleinrock’s method assigns very large delay

Fig. 4. Result of applying Proposed Method (PM) (capacities are not
optimal), Proposed Method when capacities are optimal (PM-OPT), MIRA,
and CSPF to the network under test

to link 3 because the demand on link 3 is much less than the
other links. Meister’s method assigns equal delays to all the
links. This resolves the issue with Kleinrock’s method, but
introduces a fairness problem. In our proposed method, the
link delays are not equal to allow for fairness based on the
demand for each link, and at the same time the individual link
delay are kept in a reasonable range.

C. Traffic Engineering (Fast Loop)

In order to investigate the effectiveness of our traffic
engineering algorithm, we ran a set of simulations on an
anonymized version of a real network whose topology and
sample traffic matrices are given in [24]. We apply our
traffic engineering method to create LSPs (Label Switch Path)
assuming that MPLS is used in the network to create the paths.
In the first experiment the requests for LSP arrive between

each source-destination point (which is chosen at random)
according to a Poisson process with an average rate λ, and
the holding times are exponentially distributed with mean
μ. We set λ

μ = 1800 in our experiments (this provides a
”heavily loaded” scenario in our test). We generate 10000
requests and measure the rejections or blocking for each one
of the algorithms. In our tests the bandwidth requests for
paths (LSPs) are taken to be uniformly distributed between
1 to 3 units. In Fig. 4 we show the blocking probability and
compare the performance of our proposed method (PM) with
Minimum Interference Routing Algorithm (MIRA) [1], a well-
known MPLS path setup algorithm, and Constrained Shortest
Path First (CSPF) [25], where the constraint in our case is the
minimum bandwidth required per link . The test is performed
20 times and each time with 10000 path requests. One can
easily see that the proposed method has the best performance,
the CSPF is in second place and MIRA is in next position.
To investigate the effect of slow loop, we conducted another

set of experiments. We found the optimal capacity assignment
to minimize the network criticality by solving the optimization
problem (13), and then repeated the same set of experiments
for dynamic traffic. The results of this part are also shown
in Fig. 4 (PM-OPT) . According to the results of this last
experiment, we observe that starting with optimal capacities
pre-planned in slow loop of AutoNet decreases the blocking
probability of our proposed traffic engineering method.
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Fig. 5. Failure Test: Load distribution on different links while failure happens,
comparing our method with CSPF

In order to study the effect of link failure, we conducted
the following test scenario. We shut down 10 links from
the network under test, and then measured the utilization of
different links by applying a traffic matrix given in [24]. Fig.
5 compares the distribution of the load on different links of
the network in our proposed traffic engineering method with
that of CSPF. The x-axis shows the link utilization, and the
y-axis shows the percentage of the links with the specified
link utilization range.
It can be seen the number of links with more than 50%

utilization in our method is much smaller than CSFP. We have
used TOTEM toolbox [26] to find the test results for MIRA
and CSPF.
Our proposed system is self-optimizing in the sense that

its control loop is designed to engineer the traffic in such a
way to minimize the network criticality. If a failure happens,
the proposed control mechanism tries to locate the links with
less utilization and assigns the demands to these links, so
as to optimize the robustness (this shows the self-healing
mechanism of our method as well). Further, if the fast loop of
the system cannot find appropriate resources to assign to the
demand, it will notify the long-term part of the management
process, and appropriate resources will be assigned to the
network accordingly. This provides for the self-configuring
property of the system.

VII. CONCLUSION

In this paper we proposed an architecture to engineer the
traffic of the network in a self-managed way. We used the
concept of autonomic computing to build a two-loop control
system which is capable of self-organizing, self-configuring,
and self-healing. We have also analyzed the robustness of a
network to the unexpected changes in different parameters and
proposed an approach for path setup and routing of flows in
our proposed system.
The essence of our work is based on determining a crit-

icality index for each link/path showing how critical that
link/path is to the changes in the topology and traffic demand

of a network. We gave an analytical expression for the link
and node criticality, and then proposed a heuristic for flow
assignment based on it. Our algorithm identifies the least
critical paths for allocation of new traffic flow requests. The
results from applying the proposed algorithm to networks
that are difficult to handle by existing approaches are very
encouraging.
There are many issues that remain to be investigated in the

new approach. We need to analyze the optimization problem of
theorem 4.10 in detail and calculate the solution for criticality
to the extent possible. This may give directions to provide
a decentralized algorithm for flow-assignment. As another
research challenge we need to look into the back up paths
and the efficient algorithms to find them again with the goal
of having less critical paths and back up paths. Finally, the
SLA to weight mapping which is the main function of SLA
interpreter is a complex task which needs to be carefully
investigated.

APPENDIX A
PROOF OF LEMMA 4.2

We use small English letters to show column vectors and
small Greek letters to show row vectors. We also use subscript
to show the order of a vector. For example zn−1 is a n−1×1
column vector and υn−1 is a 1 × n − 1 row vector.
Without loss of generality, we rename the nodes so that

the removed node becomes the last node of the graph (node
n). Now, in order to write L−1(n|n) in terms of L, we use
the Moore-Penrose generalized inverse matrix of L ([18]). The
Moore-Penrose inverse of L(n|n) and the L−1(n|n) are equal
since L(n|n) is an (n− 1)× (n− 1) matrix with rank n− 1.
In other words, L(n|n) is full-rank and its inverse is the same
as its Moore-Penrose inverse. To obtain L from L(n|n), we
first add a column to L(n|n) to get Q = [L(n|n) zn−1]. The
column-vector zn−1 has to be chosen in a way to make the
sum of every row of the matrix Q equal to zero. We use the
following formula from [18] which is a recursive formula to
obtain the Moore-Penrose inverse of a matrix when a column
is added to the original matrix. Let A ∈ F

p×q be a p × q
matrix and b ∈ F

p be a p × 1 column vector.

(
A bp

)+ =
(

A+(I − bpζp)
ζp

)
(16)

ζp = {(bp−AA+bp)+ if bp �=AA+bp

b∗p(AA∗)+

1+b∗p(AA∗)+bp
bp=AA+bp

where ∗ means conjugate transpose. To satisfy the requirement
of Laplacian matrix we need to have

[L(n|n) zn−1]
−→
1 n−1 = 0 (17)

where
−→
1 n−1 is a (n − 1) × 1 vector of all ones:

−→
1 n−1 =

[1 1 1 ... 1]t. From (17) one can easily see that:

L(n|n)
−→
1 n−1 + zn−1 = 0 ⇒ zn−1 = −L(n|n)

−→
1 n−1 (18)

Now from (16) by replacing A = L(n|n) and using (18), one
can see:

Q+ =
(
L(n|n) zn−1

)+ =
(

L(n|n)+

0

)
+
−→
1 n−1ζn−1
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It immediately follows that:

⇒ (L+(n|n))sk = q+
sk − q+

nk (19)

With the same approach , we add the nth row to Q to obtain

the n × n Laplacian matrix L: L =
[

Q
d

]
With similar

reasoning and using equation (16) one can obtain:

⇒ q+
sk = l+sk − l+sn (20)

Using equations (19), (20) we have: (L+(n|n))sk =
(L−1(n|n))sk = l+sk − l+sn − l+nk + l+nn. A more detailed
derivation can be found in [27].

APPENDIX B
PROOF OF COROLLARY 4.5

The average time that a random-walk starting at node s
is in the system before reaches to its destination node d is
equal to Tsd =

∑
k bsk(d). Now, the average time in system

considering all possible source-destination pairs would be

T =
1

n(n − 1)

∑
s,d

Tsd =
1

n(n − 1)

∑
s,d

∑
k

bsk(d)

=
1

n(n − 1)

∑
k

∑
s,d

bsk(d) =
1

n(n − 1)

∑
k

bk =
B

n − 1

APPENDIX C
PROOF OF THEOREM 4.10

In order to proceed we need the following fact:
Lemma C.1: For any weight matrix W : ∇τ.V ec(W ) +

τ = 0, where V ec(W ) is a vector obtained by concatenating
all the rows of matrix W to get a vector of wij ’s..

Proof: In lemma 4.3 we scale all the link weights with t

τ(tV ec(W )) =
b(l)
w(l)

=
b(l)

tw(l)
=

1
t
τ(V ec(W )) (21)

By taking the derivative of τ with respect to t, we will have

∇τ(tV ec(W )).V ec(W ) =
−1
t2

τ(V ec(W )) (22)

It is enough to consider equation (22) at t = 1 to get
∇τ.V ec(W ) + τ = 0.

In general, one can apply the condition of optimality [28],
[29] on optimization problem (11) to get necessary condition
for a weight vector to be optimal. Let W ∗ be the optimal
weight matrix, and let Wt be another weight matrix satisfying
the constraints of optimization problem (11), then according to
the condition of optimality: ∇τ.(V ec(Wt) − V ec(W ∗)) ≥ 0.
Now, we choose Wt as follows:

Wt = [wuv ] =

⎧⎨
⎩

C
2 if u = i & v = j
C
2 if u = j & v = i
0 otherwise

Clearly, Wt satisfies the constraints of optimization problem
(11), therefore, using the condition of optimality and consid-
ering lemma C.1 we have:

∇τ.(V ec(Wt) − V ec(W ∗)) ≥ 0
∇τ.V ec(Wt) −∇τ.V ec(W ∗) ≥ 0

C
∂τ

∂wij
+ τ ≥ 0 ∀(i, j) ∈ E (23)

The constraints of optimization problem (11) and inequality
(23) state necessary and sufficient conditions for the optimality
of any weight matrix.

APPENDIX D
PROOF OF LEMMA 4.11

Since τ = bij

wij
, we have for wij > 0:

∂τ

∂wij
=

1
wij

∂bij

∂wij
− τ

wij
or wij

∂τ

∂wij
=

∂bij

∂wij
− τ (24)

By adding the results of equation (24) for different links of
the network one can see:

∑
(i,j)∈E

wij
∂τ

∂wij
=

∑
(i,j)∈E

∂bij

∂wij
− mτ (25)

Now it is enough to combine equation (25) and lemma C.1.
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