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Markov Process

• In 1907 A.A. Markov defined and investigated a 
particular class of stochastic processes – now know as 
Markov processes/chains

• For a Markov process {X(t) t T} with state space S• For a Markov process {X(t), t T}, with state space S,
its future probabilistic development is dependent only on 
the current state, how the process arrives at the current 
position is irrelevant. 

• Memoryless property - The process starts afresh 
at the time of observation and has no memory of 
the past.
P i l l k d t Di t Ti M k
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• Previously looked at Discrete Time Markov 
Chain (DTMC)

• Continuous Time Markov Chain (CTMC) – often 
called Markov Process 
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Markov Process

• The continuous time discrete state stochastic process {X(t), tT}  
with state space S is a Markov Process or CTMC  if the Markov 
property holds for all states and all time 

P[ X(t+s) = j | X(t) = i X(u) = g(u) 0 < u < t ]P[ X(t+s) = j  | X(t) = i, X(u) = g(u),  0 < u < t ]

= P[X(t+s) = j  | X(t) = i ]
• This is just the continuous version of the memoryless property
• The state space is discrete but now the state transitions can occur at 

any point in time.

•Example
X(t) N b f k t
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X(t): Number of packets 
in the system at time t at 
a router output port

Markov Process

• The state probabilities are defined as

The state transition probabilities are defined as

})({)( jtXPtj 

• The state transition probabilities are defined as
pij(t,s) = P{X(t+s) = j | X(t) = i} 

if the state transitions are independent of time t
the Markov Process is time homogenous  and 

pij(t) = P{X(t) = j | X(0) = i} , P(t) = [pij(t)]
th t t t iti b biliti b h
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the state transitions probabilities can be shown 
to follow 



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Markov Process

• A time homogeneous Markov Process is 
characterized by the generator matrix Q = [qij] 
where

qij = flow rate from state i to j 

qjj = - rate of which leave state j 

Rows  of Q sum to 0  Qe = 0

The generator matrix can be related to the state

transition probabilities as
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transition probabilities as

)0()()(
)(

PetPQtP
dt

tdP Qt

Example



Consider a two state Markov Process model of a speaker  
Ref: H. Heffes and D. Lucantoni, IEEE JSAC, Sept., 1986 
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Example
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Talk Silent



A precise model of voice sources includes the fact that speech typically has short 
pause periods as well as inter-speech silence periods. Here  each are assumed 
exponentially distributed with parameters      ,       and       respectively. 

The state transition diagram of the Markov process model of a single voice 


1 2

Markov Process Example

g p g
source is shown below. In the diagram,      represents the probability of that a 
transition from the talkspurt state goes to the pause state and                     .

p

 1q p 


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The generator matrix Q of the Markov Process is given below : T : talkspurt,  p: 
pause,  s: interspeech silence

        p q   
 

T
T

p s

Markov Process Example

Determine the steady state probabilities from               and

1) 

1 1

2 2

          0

      0   

Q  
 

   
  

p

s

0Q  1e 

1 2 0T p s       
p
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3)
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Substituting from 2) and 3) into 4) yields
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Markov Process Example

from 2) and 3)
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from 2) and 3)
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Typical values for the model parameters as determined from 
measured speech are :

1

1
105.6 msec




2

1
2.712 sec




1
284 msec




Markov Process Example

, and                     .  

When the model is in the talkspurt state digitized speech is created 
a fixed rate of 64 kbps. Using these values determine the mean rate 

f th i

0.8563p  0.1437q 

 1 29.4697,  0.3687,  3.5211    
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of the voice source. 

Plugging into   on the previous slide  yields 

Mean rate

 0.3717,  0.1183,  0.51 

64 23.7862 Tkbps kbps  

Markov Process Analysis

• The state holding time – that is the amount of 
time the Markov Process spends in state  i is 
exponentially distributed with parameter qii.exponentially distributed with parameter qii. 
Specifically, let Hi denote the holding time in 
state i then

 iiq
i eHP  1}{
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Markov Process Analysis

• Basic Analysis results for Markov Process
1. Behavior of state transition probabilities

)0()()(
)(

PetPQtP
tdP Qt

2. Behavior of state probabilities

3. Steady state values of state probabilities

QtetQt
dt

td
)0()()(

)( 


)0()()( PetPQtP
dt

Q

Telcom 2130 13

y p

4. State Holding Time

)(lim)( tt
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 iiq
i eHP  1}{


