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Stochastic Processes

» A stochastic process is a mathematical model for
describing an empirical process that changes in
time according to some probabilistic forces.

* A stochastic process is a family of random variables {X(t),

t e T} defined on a given probability space S, indexed by
the parameter t, where tis in an index set T.
* ForeachteT, X(t) is a random variable with F(x,t) =
P{X(t) < x}
* Avrealization of X(t) is called a sample path
»  Characterization of a stochastic process.
1. State Space S,

2. IndexsetT
3. Stationarity
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Characteristics of Stochastic Processes

» State Space

— The values assumed by a random variable X(t) are
called “states” and the collection of all possible values
forms the “state space S” of the process.

— If X(t)=i, then we say the process is in state i.

— Discrete-state process
» The state space is finite or countable for example the non-
negative integers {0, 1, 2,...}.
— Continuous-state process

» The state space contains finite or infinite intervals of the real
number line.

Characteristics of Stochastic Processes {

Index parameter
— The index T is usually taken to be the time parameter.

— Discrete-time process

» A process changes state (or makes a “transition”) at discrete
or finite countable time instants.

— Continuous-time process

* A process may change state at any instant on the time axis.
The probability that stochastic process X takes on
avalue i(ies)attime =tis P[X(t)=]]

Stationarity

— A stochastic process X(t) is strict sense stationary if
the statistical properties are invariant to time shifts

f(x,t) = f(x) for all t.




Characteristics

» A stochastic process X(t) is wide sense stationary if
1. Mean is constant E{X(t)} =K forall t
2. The autocorrelation R is only a function of the time difference
R(t, t) = Rt~ t)) = R(7)

« Ergoditcity

— A stochastic process X(f) is ergodic if it's ensemble averages
equal time averages

— => Any statistic of X(t) can be found from a sample path
T

E{X(t)}:ixf (x,t)ydx = lim,_, lex(t)dt

0
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Categories of Stochastic Processes

State Space

Time
Parameters '
Discrete State Continuous
State
) ) Discrete time
. ) Discrete time )
Discrete Time . . stochastic
stochastic chain
process

Continuous time
stochastic
process

Continuous | Continuous time
Time stochastic chain
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Stochastic Processes
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Stochastic Processes

+ Important Stochastic Processes for Queueing System
Analysis
> Markov Chains
> Markov Process
> Counting Process - Poisson Process
> Birth Death Process

+ In 1907 A.A. Markov defined and investigated a
particular class of stochastic processes — now know as
Markov processes/chains




Markov Process

« For a Markov process {X(1), t €T, S}, with state
space S, its future probabilistic development is
dependent only on the current state, how the
process arrives at the current state is irrelevant.

* Mathematically

— The conditional probability of any future state given
an arbitrary sequence of past states and the present
state depends only on the current state

» Memoryless property - The process starts afresh
at the time of observation and has no memory of
the past.
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Discrete Time Markov Chains

» The Discrete time and Discrete state stochastic process
{X(t), keT} is a Markov Chain if the following conditional
probability holds for all /, j and k. (note X; means X(t))

Pl Xysr =J | Xo=igy Xq=igyeeey Xyog =ty Xp =11
=P[ Xyer =) | X =il
= p;j(k) < state transition probability at ki time step

» The future probability development of the chain depends
only on its current state (k" instant) and not on how the
chain has arrived at the current state (i.e., memoryless)

|
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Discrete Time Markov Chains (2)

* p;; (k) is (one-step) transitional probability, which is
the probability of the chain going from state i to
state j at time step ¢,

* p;;(k) is a function of time ¢,. If it does not vary with
time (independent of k), then the chain is said to
have stationary transition probabilities and is time
homogeneous p;;(k) =p; for all k

p; is the one step transition probability of going
from state i to state j

* The state transition matrix P = [p;] characterizes
the Markov chain.
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Discrete Time Markov Chains (2)

* The one step state transition matrix P = [p;] is a
stochastic matrix
1. 0=<p;<1 Allelements between zero and one
2. Zpij = 1 Eachrow sums to one and is a density function

jeS

3. A, =1isan eigenvalue of P and |7le <1j=23,...

[P P P Pss Poy oo o Pocs  Pox |
Po Pu P Pz Py - Pka P
© Pu Pn Ps P oo Poka  Pax
P = : : Py Psz Py o o
| Pko Pki P2 Pxs Pxa -0 Peka Prk |

Telcom 2130 12




Discrete Time Markov Chains (2)

» For small state space can represent state
transition matrix P = [p;] as a state transition

diagram
Consider the Time Homogeneous Markov Chain with one step
transition matrix for the states {0, 1, 2, 3} given below.

2 5 3 0] A

13 .60 : :
P:

0 4 3 3 TN L

00 5 5]
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Markov Chain Analysis Summary

Markov chain fx(t,):keN]}
—  one step transition matrix P =[ny ]
—  state probabilities 7" = p{x(t,)= j}

e General/transient behavior

1) 2™ =z0p™ =70 (py" with computation © nN®)
2) 2" =79 with computation O((log,n)N?)
3) 2" =np =707 diag(2") [T with computation O(N°)

where T=m" « [modal matrix]"
Also P(™ the n step transition matrix is P(™ = (P)"

»  Steady state behavior z=lim 7"
4) m=7np and X7 =1
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Markov Chain Analysis Summary

» 5. First Passage Time

The first passage time T; is the number of transitions required to go
from state j to state j for the first time (recurrence time if i = ).

Let £ = P{T; = n}. That is probability the first passage time is n steps
(M _ — ir— —i
fij - P{X(tkm) =) X(tk+r) =) _11 21 1 n_ll X(tk) _I}
O _
fij = pij

@ _ A2 _£0
fi” =p" — 7Py

(=B SR n=23..

k=1
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Markov Chain Analysis Summary

* 6. Mean First Passage Time

The Mean First Passage Time E{T;} is the average number of
transitions required for the Markov Chain to go from state i to state j for
the first time (recurrence time if i =}).

o0
— (n)
E{T}=2 nf

n=1

Using probability generating function approach get
0 -1

Where p° =0, ...0, 1, 0, ...0] is one only in the i"" element and
R; =[Pyl i#j k#j € one step transition matrix P without row j and

column j
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Markov Chain Analysis Summary

« 7 Transform approach to n(™ and P®
2" =7"p
7(2) =2}z }=2{z" P
(Z) -7 =z27(Z)P
= 2(Z) =7l -zP|"
=P® =[1 —zP[*
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Markov Chain Analysis Summary

+ 8. State Holding Times

Let H, be the random variable that represents the
number of time slots the Markov Chain spends in state i

P{Hi :n}: P{X(t1<+n) = jlx(tk+r) =i,r=12,, n_1| X(tk) :I}
=F{X(tn) = 11 Xt ) =P ) =1 X 2) =13 P =1 () =1}
:(1_ni) ﬂ?_l

Note the holding time has a geometric distribution which
is the only memoryless discrete distribution.
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Markov Chain Example

One model of a discrete time bursty ATM traffic source is a two state markov
chain with one state representing ON and the other state representing OFF.
When the source is in the ON state a cell is generated in every slot, when the
source is in the OFF state no cell is generated.

Let a be the probability of transition from ON to OFF

Let t be the probability of transition from OFF to ON

The probability of making a transition from a state back to itself are 1—a and
respectively for ON and OFF 1-t

The state transition diagram and state transition matrix P are

ON  OFF
on (1-a) a
BFF t (1-t)
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Markov Chain Example

Determining the steady state probabilities 7 =[7z,, , 7oy |

Ton = Ton (1_a)+ﬂ-OFFt _a

7 fon

T=rp = = o =
Torr = Ton @+ Toee (1_t) t

1+2 )21
re=1 = 7, +my e =1 Ton (T )7

substituting from above
_ = Mo = a
a+t T a+t

ﬂ-ON
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Example

Consider the Time Homogeneous Markov Chain with one step
transition matrix for the states {0. 1. 2. 3} aiven below.

2 5 30 o)
1l 3 6
0 4 3
0 0 .5

Find P@, P@® and P(®)  what is noticeable about P(16>_?
From C-K equation P™ = (P)n

P=

U W o

P@ = PP = 009 037 045 0.09
|0.05 038 0.39 0.18|
|0.04 024 048 0.24|
0 02 04 04|
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Example

Find P@, P@® and P(®  what is noticeable about P(16)?
From C-K equation P = (P)"

P@#=P@*PR)=10.0446 0.2999 0.4368 0.2187|
|0.0391 0.2925 0.4299 0.2385|
|0.0348 0.2692 0.438 0.258 |
[0.026 0.252 0.43 0.292 |

P(16)= (P)16 =
034015 0.272114 0.433674 0.2601960
034015 0.272112 0.433674 0.2602000
034014 0.272109 0.433674 0.2602040
034012 0.272104 0.433674 0.260210

Notice all rows become about the same and
approach steady state probability
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Example

Determine (™ for n =1, 2,... 10 given the initial condition =(® = [0,0,0,1]
From 7™ =7zYp

7= rOP=[0, 0, 0.5, 0.5]

@@= 7MP=[0, 0.2, 0.4, 0.4]

n®=nP=[0.02, 0.22, 0.44, 0.32]

= n®P=[0.026, 0.252, 0.43, 0.292]

7= nP=[0.0304, 0.2606, 0.434, 0.275]

n®= n®P=[0.03214, 0.26698, 0.43318, 0.2677]

7= n®)P=[0.033126, 0.269436, 0.433634, 0.263804]
n®= n(MP=[0.033569, 0.270847, 0.433592, 0.261992]
7= n®P=[0.033799, 0.271475, 0.433653, 0.261074]
n10= 1®P=[0.033907, 0.271803, 0.433658, 0.260633]
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Example

Consider the Time Homogeneous Markov Chain with one step
transition matrix for the states {0, 1, 2, 3} given below.

2 5 30
1 3 6 0
P =
0 4 3 3
0 0 5 5
Determining the steady state probability vector we get 7 = lim 7"

n—oo

Soling 7=zp and Y 7 =1

ieS

Resultsint =[0.034013, 0.27210, 0.43367, 0.260204]
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Example

Find the probability of the first passage time from state 3 to state 1 in 3 steps

f31(3) 0z
2 5 3 0 2
1 3 6 0 os| |o ,
P =
0 4 3 3
0 0 5 .5

Determining the first passage times we use fij(l) =P
@ _n3? ®
f,,(N=0 fi” =py =1 Py
f3,@= P4,@ - f,,(OP,, (1) =0.2

£, B=Py,B)- (f,, (WP, @+f,,@P, (1) =0.16 i 1

Telcom 2130

n-1
F0=p0 -3 F0pY =23,
k=1
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Exampe
» Determine the mean first passage time from 3 to 1
7,0=[0, 0, 1] P=l0 4 3 23
R= [02 03 o0 |t 9 *°
0 03 0.3
0 05 0.5

E[T3,]=m,O(-R)"e =6
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Markov Chain Example

* Analyze N x N non-blocking output buffered switch

S 10—
2 10 -
[ J NxN [ ]
[ ] [ J
[ ] [}
— Rl S

» Assumptions

— Arrival streams are independent
Bernoulli arrival process
Service time deterministic — D
Buffer size fixed — SS
Uniform distribution of traffic
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Performance Evaluation

* Define embeded Markov Chain at slot times
75 = Prob{ i class ‘1’ cells, j class ‘2’ cells}
Tt = [Zon 1,01, ..., Tn0]
T =70, 701,702, ..., 7ik]

« Solve for steady-state probabilities

T=m P Qo 1 %2 g 8 """ g g
where P is state transition matrix 0?0 4@z T Y e

a21 %2 a23 O ...... 0 0

P=|: o a3 0 0 0

Also use normalization condition 00 0 0 0 «n-n ora K

T-e=1whereeT=[1,1,1,..,1]

» Exact form of P depends on space priority scheme modeled - for details

see posted Infocom paper
Telcom 2130
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Performance Evaluation

» No Priority Scheme

— Cells accepted into the buffer in FCFS
fashion.

— When buffer is full, all packets are rejected.

o o—
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Performance Evaluation

« Partial Buffering Scheme — (Nested Thresholds)
— Define a threshold T; for each class i

— If number in the system > T; ,all new class i packets
dropped

— Heretwo class [T1, T2] Set T1 =K

%.5? ‘@—>

g>H @_>

T

T

1 2
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Performance Evaluation

» Pushout with overwrite probability (Pow)
— Admit all packets until buffer full

— If buffer full class ‘1’ pushout class ‘2’ with
probability 7-Pow

— If buffer full class 2’ pushout class ‘1’ with
probability Pow

Pow ‘
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Performance Evaluation

» Validate Analytical
Model with
Simulation

« Experiment 1

p1=05

o= O—

0<p2<1.0

Paruad Baffer Shacicg, Hu 2,85 = 7 [Tia?, T2ed]

Figure 5: Average Number Curves: Nested Threshold Scheme (h=0.5)
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Performance Evaluation

« Experiment 2
— Define grade of service requirements

— A1 Acceptable Loss Probability for class ‘1’
cells

— A2 Acceptable Loss Probability for class ‘2’
cells

* For specific traffic mixture (% class 1, %
class 2)

— Determined maximum offered load (MOL)
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Performance Evaluation

~10
A4 =10 MOL for ( % class 1, % class 2 ) traffic mix

iy
A2 =10 | 1090 | 2080 | 3070 | 4060 | 50550 | 60.40 | 7030 | 80,20 | 90.10

NoPriority | 043052 | 035350 | 032219 | 030939 | 030829 | 031776 | 034042 | 038569 | 0.48840)

P"{'_',“;]B“"" 067295 | 0.55555 | 0.49824 | 0.46794 | 045435 | 045439 | 046928 | 0.50654 | 0.59414
Pushout 0.73945 | 0.62802 | 0.57086 | 0.54019 | 0.52667 | 0.52749 | 0.54407 | 0.58386 | 0.67303
Threshold

Pushout Pow | 0-73945 | 0.62802 | 0.57086 | 0.54019 | 0.52667 | 0.52749 | 0.54407 | 0.58386 | 0.67303

/e Improvement

gvol:Panial 9.88% | 13.04% | 14.57%| 1544%| 1592%| 16.08%| 1594%| 1544%] 13.67%
uffer
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