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Time Varying Behavior

+ Teletraffic typically has large time of day variations
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Time Varying Behavior

* However queueing results thus far are for steady state
— Focus on steady state probabilities z; = lim,_ , P{n(t) =i}
— Steady state mean behavior L, W, etc.

* What about behavior as a function of time?
— Transient:
« System going from one stationary state to another

— Nonstationary:
« System with continuous variation in arrival and/or service rates

*  When does time varying/transient behavior matter?
— Ifload is dynamic in comparison to queue settling times

— Iftime varying service rate from resources being switched on and off, dynamic
bandwidth allocation, etc. Service rate must change as rapid as queue

— After failure conditions

Approximation Approaches

» Simple Stationary Approximation (SSA)
— ignore variations in load/service rates
— use average values in steady state

queueing model

» simple and applicable to a wide range of
queueing systems

¢ Good for small systems with low variation

» Peak Approximation (PA)

— use peak/maximum value instead of the
average load T

g

— widely used approach in telecom
* Quasi-Static Approximation (QSA)

— Monitor time varying parameters over a set
of time intervals

Pointwise Stationary
Approximation (PSA)

* Use sampled values of time
varying parameters to evaluate
steady state at each sampled
timepoint

— Assume static conditions during each time
interval and apply steady state results for
each period using mean of parameters in
each period




Example

* Consider M/M/1 with p=2, A =1 +.5 sin(2nt)
* Focus on mean number in system L = p /(1-p)

Mean number in System L
Method Time (0.25) Time(.25, .5) Time(.5, .75) Time(.75, 1)
SSA 1 1 1 1
p=2,A=1
PA 3 3 3 3
p=2,A=15
QSA 1.667 1.667 .666 .6666
p=2,A=1.25,
1.25,.75,.75
PSA 2.0938 2.0938 4776 4776
p=2,1=135, T=.125 T=375 T=.625 T= 2875
1.35,.646, .646

Steady State Behavior

*  Remember basic approach is to solve system of equations derived from
Markov Process model of queue together with normalization condition
— Example: Erlang B queueing model — M/M/C/C queue
» Cidentical servers process customers in parallel.
» Customers arrive according to a Poisson process with mean rate A that is independent of time
» Customer service times exponentially distributed with mean rate p that is independent of time

+ The system has a finite capacity of size C, customers arriving when all servers busy are dropped =
Blocked calls cleared model (BCC)
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M/M/C/C Steady State

+ Analyze using Markov Process of 7(?) — number of customers in the system at time ¢
* Let 7z be the steady state probability of i customers in the system, then the state transition
diagram and flow balance equations are given below
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M/M/C/C

Solving the equations for 7 , note that the basic equations are the
same as for the M/M/C with j< C. Following the analysis in previous
slide set
T, = aT”o 1<i<C

1.

C
Plugging into the normalization condition Z T, = 1
j=0

One gets




Erlang B Formula

Basic QoS metric is probability of a customer being blocked B(c,a)

aC‘

c! :
B(C, a) =7, = . < Valid for M/G/c/c queue

|
n=0 n:

B(c,a) < Erlang’s B formula
Erlang’s blocking formula
Erlangs first formula

In the telephone system,
B(c,a) represents a blocked call cleared (BCC) model.

Time Varying Behavior

» Very limited set of exact results for time varying analysis

* Basic approach is to study system of differential equations
derived from Markov Process model of queue
— Example: Erlang B queueing model — M/M/C/C queue

C identical servers process customers in parallel.
» Customers arrive according to a Poisson process with mean rate A(t) that is a function of time
» Customer service times exponentially distributed with mean rate p(t) that is a function of time

+ The system has a finite capacity of size C, customers arriving when all servers busy are dropped =
Blocked calls cleared model (BCC) Y74

NN
2 e ( b>) /'Le

25, )




M/M/C/C/ Time Varying Model

Let pi(t) denote the state probability of i customers in the system,
from the state transition diagram for n(t)
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Rate of change of probability of being in state j = - flow out state j + flow in state |
dp, (1) dt = =A(t) po (1) + (1) p, (1) /=0
dp; )/ dt=AO)p; (1) = (AO) + ju@®)p; O+ +DuO)p;, (1) 1= j<C
dp.(6)/dt = A(0)p, (1) - Cu(t) p, (1) j=C

+ The Chapman-Kolmogorov differential equation model
* Note, if set left hand side to zero get steady state flow balance
equations and can solve for steady state results

Time Varying Model

* Closed form analytical solution of C-K model not possible due to time
varying coefficients

* Can be solved numerically to determine state probabilities vs. time using a
standard numerical integration technique like Runge-Kutta

* Numerical solution technique can be written in algorithmic form over [#, 7]
1) Initialization: set current time ¢, to ¢ = ¢, establish the initial state probabilities p(z,) = [pi(t,),
i=0, 1, ... C] and specify a time step A¢
2) Approximate the arrival rate 1(2) by a constant A over [¢, t+4¢t] with A = A(t+41/2)
and z4?) by a constant g over [¢, t+At] with u = p(t+A4t/2)

3) Numerically solve the system of differential equations over the small time interval A¢, and
get the new system state probabilities p(?) at time +A4¢; p(t+A1).

4) Increment time, ¢ = t+4t. If't <1, go to 2, else stop.

» Note, number of equations grows with systems capacity C ( C > 1000 in an
optical network link)

»  Will be difficult to study networks of links

* Need an accurate approximation




Fluid Flow modeling

» Consider a single transmission link

Transmission Line

Arriving Packets =

Buffer Transmitter

« f (t) = flow in to the queueing systems
* Xx(#) = mean number of customers at queue at time ¢
* .= flow out of queueing system

X == fou @)+ 13 ()

Expression for flow in and flow out will depend on system under study (e.g.,
M/M/1, M/G/1, etc.)

Can approximate flow in/flow out by matching equilibrium point of fluid model
with equivalent queueing model steady state result

See W. Wang, et.al., IEEE Infoccom 95

Fluid Flow model

* For M/M/C/C queue
X (1) = = fo (1) + f, (1)
Ju (1) = 2()(1 = pc (1))
Souw (1) = up, (£) + 2pup, (1) +..Cup (1) = ux(t)
i(t) = —px(t) + A ()1 = pe (1) (1)

How to find p (¢) ?
Match Steady state results = Pointwise Stationary Fluid Flow Approximation

(PSFFA)
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Fluid Flow Model

At steady state dx/dt = 0 and probability of a customer being blocked
p.(t) = B(c,a) € Erlang B Model

0= —ux () + A()(1= po(t) = a(t) = —_ 2)
1-p. (1)
aL‘
|
Ble.a)=p.= s 3)
a
; n!

Fixed point problem only one value of a and p(t) will work - solve
iteratively until converges or until change in a in two iteration < €

*Can numerically solve fluid model (1) together with fixed point
equations (2) and (3) to study queue behavior

Fluid Model Solution

Numerical solution technique can algorithmic form over [7,, #/]

1) Initialization: set current time ¢, to ¢ = ¢, establish the initial system occupancy
X(t) = x(t,), and specify a time step At

2) Approximate the arrival rate A(¢) by a constant A over [t, t+At] with 1 =
Met+A4t/2)
and u(t) by a constant u over [t, t+A4¢] with u = p(t+4t/2)

3) Approximate p(t) over [t, t+At] by a constant p by solving (2) and (3)
iteratively until the change in an iteration a(x(?)) does not exceed a pre-
specified € value.

4) Utilizing x(2), A and u (from step 2), p. (from step 3), numerically solve the
differential equation given by (1) over the small time interval Az, and get the
new system occupancy at time t+A4¢; x(t+A4¢).

5) Increment time, ¢ = 1+4¢. If t <, go to 2, else stop.




Flow Chart of Solution method

@ Set current time 7 =¢,

Initial value x(¢) = x(¢,) and

Initializaton specify time step At

>

Approximate

Increment time
t=t+At

Solve diff.
equations

Over small interval

arrivalrateand | A =A(t+At/2) H=put+A/2)
service rate

Solve fixed pointegs | Determine pc

Using x(t), A, . pc
Solve for x(z + Af)

Numerical Results

Check the accuracy of fluid flow model vs. exact Chapman-Kolmogrov model
Numerically integrate exact model — compare results with fluid flow model
Results shown for C =24 (e.g., T1 link) A(t) = 15 + 3 sin(0.1(t+20)
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Fluid Flow Model Model

+ In general for infinite capacity queues

Transmission Line

Arriving Packets =

Buffer Transmitter

+ f,(t) =flow in to the queueing systems
+ X(t) = mean number of customers at queue attimet
+ T, ()= flow out of queueing system

x = _fou[ (t) + .f;n (t)
+ For infinite buffer queues : f,(t) = A(t), f,,(t)=up(t) then
X =—pup(t) + A1)
at steady state have dx/dt=0 and x = G,(p)
Assuming G,(.) is numerically invertible = p=G,;1(x) get

i = G, (x(1) + A(0)

"
Fluid Flow Model Model

+ Consider M/G/1 queue at steady state

x_p+p(1+C§) x+1-4/x?+2C2x+1

T 21-p) 2 P 1-C?
which yields
) x+1— x> +2Cix+1
X=-u + A

1-C;

i = — UG, (x(1) + A(0)
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M/G/1 Model
x+1-4/x7 +2CJx+1 R B

+ A

J— Figure 1: Comparison of the M/D/1 model
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Figure 3: Comparison of the M/M/1 model
with simulation for nonstationary traffic

Time Varying Queueing Models

+ Many other queueing models in the literature for time varying
behavior — focus on numerical solution not closed form results

> Multiple traffic classes

> General Service times

» General arrival process

> Network results for simple Jackson type networks

23




