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Time Varying Behavior 
♦ Teletraffic typically has large time of day variations   

Mean number of calls per minute at a central
office switch – measured in 15 minute
intervals averaged over 10 work days

Associated Mean call holding times

Source: ITU Teletraffic Handbook
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• However queueing results thus far are for steady state 
– Focus on steady state probabilities πi =  limt ∞ P{n(t) = i} 

– Steady state mean behavior L, W, etc. 

Time Varying Behavior

• What about behavior as a function of time?
– Transient: 

• System going from one stationary state to another

– Nonstationary:
• System with continuous variation in arrival and/or service rates

• When does time varying/transient behavior matter?
– If load  is dynamic in comparison to queue settling times

– If time varying service rate from resources being switched on and off, dynamic 
bandwidth allocation,  etc.  Service rate must change as rapid as  queue 

– After failure conditions 

Approximation Approaches
• Simple Stationary Approximation (SSA)

– ignore variations in load/service  rates

– use average values in steady state 
queueing model

xPeak Value

q g
• simple and applicable to a wide range of 

queueing systems

• Good for small systems with low variation

• Peak Approximation (PA)
– use peak/maximum  value instead of the 

average load

– widely used approach in telecom

Q i S i A i i (QSA)
Pointwise Stationary

• Quasi-Static Approximation (QSA)
– Monitor time varying parameters over  a set 

of time intervals

– Assume static conditions during each time 
interval and apply steady state results for 
each period using mean of parameters in 
each period  

Pointwise Stationary 
Approximation (PSA)
• Use sampled values of time 
varying  parameters  to evaluate 
steady state at each sampled 
timepoint
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Example
• Consider M/M/1 with  = 2,  = 1 +.5 sin(2πt)

• Focus on mean number in system L = /(1-

Mean number in System L 

Method Time (0.25) Time(.25, .5) Time(.5, .75) Time(.75, 1)

SSA  
 = 2,  = 1 

1 1 1 1

PA
 = 2,  = 1.5 

3 3 3 3

QSA
 = 2,  = 1.25, 
1 25 75 75

1.667 1.667 .666 .6666

1.25 , .75, .75

PSA
 = 2,  = 1.35, 
1.35 , .646, .646

2.0938
T = .125

2.0938
T = .375

.4776
T = .625

.4776
T = .875

• Remember basic approach is to solve system of  equations derived from  
Markov Process model of queue together with normalization condition

– Example: Erlang B queueing model – M/M/C/C queue
• C identical servers process customers in parallel.

Steady State Behavior

• Customers arrive according to a Poisson process with mean rate that is independent of time

• Customer service times exponentially distributed with mean rate that is independent of time

• The system has a finite capacity of size C, customers arriving when all servers busy are dropped 
Blocked calls cleared  model (BCC)
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M/M/C/C Steady State 

 

• Analyze using Markov Process of n(t) – number of customers in the system at time t
• Let i be the steady state probability of i customers in the system, then the state transition 
diagram and flow balance equations are given below
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M/M/C/C 

Solving the equations for i , note that the basic equations are the 
same as for the M/M/C with j< C. Following the analysis in previous 
slide set 
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Erlang B Formula

ca

Basic QoS metric is probability of a customer being blocked B(c,a)
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B(c,a)  Erlang’s B formula
Erlang’s blocking formula

 Valid for M/G/c/c queue 

Erlang s blocking formula
Erlangs first formula

In the telephone system, 
B(c,a) represents a blocked call cleared (BCC) model.

• Very limited set of exact results for time varying analysis

• Basic approach is to study system of differential equations 
derived from  Markov Process model of queue

Time Varying Behavior

– Example: Erlang B queueing model – M/M/C/C queue
• C identical servers process customers in parallel.

• Customers arrive according to a Poisson process with mean rate t) that is a function of time

• Customer service times exponentially distributed with mean rate t) that is a function of time

• The system has a finite capacity of size C, customers arriving when all servers busy are dropped 
Blocked calls cleared  model (BCC) 
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M/M/C/C/ Time Varying Model 

 

Let  pi(t) denote the state probability of i customers in the system, 
from the state transition diagram for n(t)

32 C)1( C

Cj 1)()()1()())()(()()(/)( 11 tptjtptjttptdttdp jjjj   

)()()()(/)( 100 tpttptdttdp   0j
Rate of change of probability of being in state j =  - flow out state j + flow in state j

Cj )()()()(/)( 1 tptCtptdttdp ccC   

• The Chapman-Kolmogorov differential equation model
• Note, if set left hand side to zero get steady state flow balance

equations and can solve for steady state results

Time Varying Model

• Closed form analytical solution of C-K model not possible due to time
varying coefficients

• Can be solved numerically to determine state probabilities vs. time using a
standard numerical integration technique like Runge-Kuttag q g

• Numerical solution technique can be written in algorithmic form over [t0, tf ]
1) Initialization: set current time t, to t = t0 establish the initial state probabilities  p(t0) = [pi(t0), 

i= 0, 1, … C] and specify a time step Δt

2) Approximate the arrival rate λ(t) by a constant λ over [t, t+Δt] with λ = λ(t+Δt/2)  

and  (t) by a constant  over [t, t+Δt] with  = (t+Δt/2)

3) Numerically solve the system of differential equations over the small time interval Δt, and 
get the new system state probabilities p(t) at time t+Δt; p(t+Δt).

4 ) Increment time t = t+Δt If t < tf go to 2 else stop4 ) Increment time, t  t+Δt.  If t < tf , go to 2, else stop.

• Note, number of equations grows with systems capacity C ( C > 1000 in an
optical network link)

• Will be difficult to study networks of links
• Need an accurate approximation
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Fluid Flow modeling

• Consider a single transmission link

• fin(t)  = flow in to the queueing systems
• x(t) =  mean number of customers  at queue  at time t
• fout(t)= flow out of queueing system

)()( tftfx inout 

Expression for flow in and flow out will depend on system under study (e.g., 
M/M/1, M/G/1, etc.) 
Can approximate  flow in/flow out  by matching equilibrium point of fluid model 
with equivalent queueing model steady state result
See W. Wang,  et.al.,  IEEE Infoccom 95

Fluid Flow model

• For M/M/C/C queue

)()()( tftftx inout 


))(1)(()( tpttf Cin  

)()(...)(2)()( 21 txtpCtptptf Cout  

))(1)(()()( tpttxtx C 

How to find pc(t)  ?    

(1)

 

32 C)1( C

pc( )
Match Steady state results  Pointwise Stationary Fluid Flow Approximation 
(PSFFA)
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Fluid Flow Model 

At steady state dx/dt = 0 and probability of a customer being blocked 
pc(t) = B(c,a)  Erlang B Model
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(2)

Fixed point problem only one value of a and pC(t) will work - solve 

iteratively until converges or until change in  a in two iteration  <  ϵ

•Can numerically solve fluid model (1)  together with fixed point 
equations (2) and (3)   to study queue behavior

Fluid Model Solution

Numerical solution technique can algorithmic form over [t0, tf ] 

1) Initialization: set current time t, to t = t0 establish the initial system occupancy 
x(t) = x(t0), and specify a time step Δt

2) A i h i l λ( ) b λ [ Δ ] h λ2) Approximate the arrival rate λ(t) by a constant λ over [t, t+Δt] with λ = 
λ(t+Δt/2)

and  (t) by a constant  over [t, t+Δt] with  = (t+Δt/2)

3) Approximate pC(t) over [t, t+Δt] by a constant pC by solving (2) and (3) 
iteratively until the change in an iteration a(x(t)) does not exceed a pre-
specified ϵ value.

4) Utilizing x(t), λ and (from step 2), pC (from step 3), numerically solve the 
differential equation given by (1) over the small time interval Δt, and get the 
new system occupancy at time t+Δt; x(t+Δt).

5) Increment time, t = t+Δt. If t < tf , go to 2, else stop.
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Flow Chart of Solution method

Start

Initializaton

Set current time 0t t
Initial value                    and 0( ) ( )x t x t

specify time step t

Approximate
arrival rate and 

service rate

Over small interval
( / 2)t t   

Increment time
t t t  

Solve diff.
equations

Using x(t), pC

Solve for ( )

)2/( tt  

Solve fixed point eqs Determine pC

END

End of
simulation?

Yes

No

Solve for                ( )x t t 

Numerical Results

Check the accuracy of fluid flow model vs. exact Chapman-Kolmogrov model
Numerically integrate exact model – compare results with fluid flow model
Results shown for C = 24 (e.g., T1 link)  (t) = 15 + 3 sin(0.1(t+20) 



10

Fluid Flow Model  Model

♦ In general for infinite capacity queues

♦ fin(t)  = flow in to the queueing systems
♦ x(t) =  mean number of customers  at queue  at time t
♦ fout(t)= flow out of queueing system

♦ For infinite buffer queues : fin(t) = (t), fout(t)=(t) then

)()( tftfx inout 
♦ For infinite buffer queues : fin(t)   (t), fout(t) (t)   then 

at steady state have  dx/dt = 0 and x = G1() 

Assuming G1()  is numerically invertible    = G1
-1(x)  get 

)()( ttx  

)())((1
1 ttxGx   

Fluid Flow Model  Model

♦ Consider M/G/1  queue at steady state

)1( 2 C 22 121 C
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M/G/1 Model
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Time Varying Queueing Models
♦ Many other queueing models in the literature for time varying 

behavior – focus on numerical solution not closed form results 

 Multiple traffic classes

 General Service times

 General arrival process 

 Network results for simple Jackson type networks
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