

Networks of Queues

- Many communication systems must be modeled as a set of interconnected queues - which is termed a queueing network.
- Systems modeled by queueing networks can roughly be grouped into four categories
> Open networks
> Closed networks
> Networks with population constraints (also called Loss Networks)
> Mixed network

Networks with Population Constraints

 (Loss Networks)Consider M queue system
Customers arrive from outside the network according to a Poisson process with rate λ_{i} to queue i.

Exponential service distribution with rate μ_{i} at queue i
Total system size (waiting space) is B
Simple example: M output queues at an output buffer of a packet switch.

Networks with Population Constraints

This process is a finite state space M dimensional Markov process with state space

$$
S=\left\{\left(n_{1}, n_{2}, \ldots, n_{m}\right): 0 \leq n_{i} \leq B \forall i ; \sum_{i=1}^{m} n_{i} \leq B\right\}
$$

The steady state probability

$$
P(n)=\lim _{t \rightarrow \infty} P\left\{\widetilde{n}_{1}(t)=n_{1}, \widetilde{n}_{2}(t)=n_{2}, \ldots, \widetilde{n}_{m}(t)=n_{m}\right\}
$$

$P(n)$ has a product form

$$
P(n)=\frac{1}{G} \prod_{i=1}^{m} \rho_{i}^{n_{i}}
$$

where G is the normalization constant found by $\sum_{n \in S} P(n)=1$

$$
G=\sum_{n \in S} \prod_{i=1}^{m} \rho_{i}^{n_{i}}
$$

Networks with Population Constraints

From $P(n)$ one can determine various mean performance measures.
L_{i} - Average number of customers in queue i.

$$
\begin{aligned}
& L_{i}=\sum_{j=0}^{B} j\left(\sum_{n_{i}=j ; n \in S} P(n)\right) \\
& L N=\sum_{i=1}^{M} L_{i}
\end{aligned}
$$

W_{i} - Average delay at queue i found by Little's Law

Networks with Population Constraints

Example: $B=3, M=2$
State diagram $\left(n_{1}, n_{2}\right): S=\left\{\left(n_{1}, n_{2}\right) ; 0 \leq n_{1} \leq 3,0 \leq n_{2} \leq 3, n_{1}+n_{2} \leq 3\right\}$

Networks with Population Constraints

$P\left(n_{1}, n_{2}\right)=\frac{1}{6.125}(0.5)^{n_{1}}(1)^{n_{2}}$
$P(2,1)=0.0408$
$L_{1}=\sum_{n_{1}=0}^{3} n_{1}\left(\sum_{j=n_{1} ; n \in S} P\left(j, n_{2}\right)\right)=1(P(1,0)+P(1,1)+P(1,2))+1(P(2,0)+P(2,1))+3 P(3,0)$
$L_{1}=0.4694$
Similarly $L_{2}=1.2653 \quad \Rightarrow L N=1.7347$

Networks with Population Constraints

Multirate loss system : Multi-dimensional loss systems
Consider a single link in a multi-rate circuit switched network
Various services are offered and each service has different characteristics (call arrival rate, holding time, bandwidth.)

Assume K types of connections each type i arrives according to a Poisson process rate λ_{i}
and have holding time exponentially holding time with a rate μ_{i}
(results hold for general holding time.)
Each type i connection requires m_{j} basic units of bandwidth.
The total bandwidth available is C units.
Chapter 7 or ITU Teletraffic Handbook

Networks with Population Constraints

Let $\widetilde{n}_{i}(t)=$ number of type i connection in system at time t.
K dimensional Markov process with finite state space $S\left(\widetilde{n}_{1}(t), \widetilde{n}_{2}(t), \ldots, \widetilde{n}_{m}(t)\right)$

$$
0 \leq n_{i} \leq\left\lfloor C / m_{i}\right\rfloor \quad \text { and } \quad \sum_{i=1}^{K} n_{i} m_{i} \leq C
$$

Loss Networks

Networks with Population Constraints

The steady state probabilities

$$
P\left(n_{1}, n_{2}, \ldots, n_{K}\right)=\lim _{t \rightarrow \infty} P\left\{\widetilde{n}_{1}(t)=n_{1}, \widetilde{n}_{2}(t)=n_{2}, \ldots, \widetilde{n}_{K}(t)=n_{K}\right\}
$$

The product form exists where $\rho_{i}=\frac{\lambda_{i} m_{i}}{\mu_{i}}$
$P\left(n_{1}, n_{2}, \ldots, n_{K}\right)=\frac{1}{G(k)} \prod_{i=1}^{K} \frac{\rho_{i}^{n_{i}}}{n_{i}!} \quad \square \begin{aligned} & \text { when } K=1 \text {, get Erlang B model M/G/C/C } \\ & \text { Sometimes called Generalized Erlang eq }\end{aligned}$
$G(k)=\sum_{n \in S} \prod_{i=1}^{K} \frac{\rho_{i}^{n_{i}}}{n_{i}!}$
Connection blocking rates $\quad P B_{i}=\sum_{n \in S} P\left(n_{1}, n_{2}, \ldots, n_{K}\right)$
n where type i blocked \Leftarrow sum over states where $\quad C-m_{i}<\sum_{j=1}^{K} n_{j} m_{j}$

Networks with Population Constraints

$$
\begin{aligned}
& P B_{2}=P(0,5)+P(1,4)+P(2,4)+P(3,3)+P(4,3)+P(5,2)+P(6,2)+P(7,1)+P(8,1) \\
& \quad+P(9,0)+P(10,0) \\
& P B_{1}=P(0,5)+P(2,4)+P(4,3)+P(6,2)+P(8,1)+P(10,0) \\
& \text { Numerical example: } \\
& C=48, K=2, \quad \begin{array}{l}
k=1 \text { voice } 64 \mathrm{Kbps} \Rightarrow m_{1}=1 \\
\\
k=2 H_{232} \text { video } 384 \mathrm{Kbps} \Rightarrow m_{2}=6
\end{array} \\
& \begin{array}{l}
\lambda_{1}=15, \quad \lambda_{2}=0.125, \mu_{1}=1, \mu_{2}=0.5 \\
\text { Offered load } \quad \sum_{i=1}^{K} \frac{\lambda_{i} m_{i}}{\mu_{i}}=30 \\
P B_{1}=0.0248, \quad P B_{2}=0.086
\end{array} \\
& \hline
\end{aligned}
$$

Circuit Switched Networks

- Model each link by Erlang B or multi-class loss system
- How to determine end-to-end blocking?
- Consider case of single traffic class (e.g., voice) of N nodes and L links . Let C_{i} be the capacity of link i and a_{i} be the load in Erlangs at link i, $B_{i}\left(C_{i}, a_{i}\right)$ is the call blocking rate on link i End to End Call Blocking along a path $P_{i j}$

End to end Blocking $\leq 1-\prod_{i \in P_{j}}\left(1-B_{i}\left(C_{i}, a_{i}\right)\right)$
Assumes load independent on each link if load of single flow is small fraction on each link O.K. approximation

End to End Blocking

- Two T1 line example, offered load $\gamma_{1}=20, \gamma_{2}=6$ Erlangs, $C_{1}=C_{2}=24$

$B_{1}=B(20,24)=.066, \quad B_{2}=B(26,24)=.189$
Estimate end to end blocking $\leq 1-\left(1-B_{1}\right)\left(1-B_{2}\right)=.2425$
Note assumes traffic is independent on each link
Can improve approximation by reducing the load on link 2 to account for blocking at link 1
Thus load on link $2=20^{*}\left(1-B_{1}\right)+6=24.68$ Erlangs $\rightarrow B_{2}=B(24.68,24)=0.161$
This is called a Modified Load Approximation or Reduced Load Approximation
Yields \rightarrow End to end blocking $\leq 1-\left(1-\mathrm{B}_{1}\right)\left(1-\mathrm{B}_{2}\right)=.2164$
Assumes load from source 1 thinned on first line before being carried on second line

Erlang Fixed Point Approximation

- Let A^{i} be the offered load in Erlang sfrom source i to a path from i to j
- In reality the number of calls active from source i to destination must be the same on each link along the path as signaling will reserve end to end resources before call is connected
- Use reduced load approximation to get estimate of load at each link

$$
a_{s}^{l} \leq A^{i} \prod_{i \in P_{i}}\left(1-B_{i}\left(C_{i}, a_{i}\right)\right) /\left(1-B_{s}\left(C_{s}, a_{s}\right)\right)
$$

- Get a set of coupled non-linear equations - that are solved iteratively for a solution until B_{i} converge at each link - initialize by computing every link independently
- Can be extended to multi-class of traffic, routing etc.
- See Chapter 5. `K. Ross , Multiservice Loss Models for Broadband Communication Networks," Springer-Verlag, 1995.

Loss Networks

- Many generalizations of Loss Systems
- General Service Times, PS queueing discipline etc.
- Several algorithms for efficient computation of G(K)

Networks of Queues

- Systems modeled by queueing networks can roughly be grouped into categories
> Open networks
> Networks with population constraints
> Closed networks

- Looked at cases where state probabilities $\mathrm{P}(\mathrm{n})$ have a product form solution. Where C determined from normalization condition

$$
P(n)=C \prod_{i=1}^{m} \rho_{i}^{n_{i}}
$$

- What about networks without product form?
> Limited results - mainly special cases or approximations

Remember G/G/1 KLB Approximation

- KLB approximation based on two moments of the arrival and service time distributions.
- This approximation is often used to determine the effects of increased utilizations on systems where measurement data is available to determine $C_{a}{ }^{2}$ and $C_{s}{ }^{2}$

$$
L \approx \rho+\frac{\rho^{2}\left(C_{a}^{2}+C_{s}^{2}\right) J}{2(1-\rho)}
$$

where
$J=$ scaling factor
$J= \begin{cases}e^{\frac{-2(1-\rho)\left(1-C_{a}^{2}\right)^{2}}{3 \rho\left(C_{a}^{2}+C_{s}^{2}\right)}} & ; C_{a}^{2} \leq 1 \\ e^{\frac{-(1-\rho)\left(C_{a}^{2}-1\right)}{\left(C_{a}^{2}+4 C_{s}^{2}\right)}} & ; C_{a}^{2}>1\end{cases}$

Assume arbitrary network of M queues, define

$$
\begin{aligned}
& \lambda_{i} \text { - Total mean customer arrival rate to queue } i . \\
& \gamma_{i} \text { - Mean arrival rate from outside of network to queue } i, \nleftarrow \text { external arrivals } \\
& r_{i j} \text { - Routing probability customer leaving queue } i \text { goes to queue } j . \\
& r_{i(m+1)} \text { - Probability customer leaving queue } i \text { exits the network. } \\
& \mu_{i} \text { - Mean service rate at queue } i . \\
& C o_{i}^{2} \text { - Squared coefficient of variation of outside arrivals to } \underline{\underline{i}} . \\
& C s_{i}^{2} \text { - Squared coefficient of variation of service process at } \underline{i} . \\
& C_{A_{i}}^{2} \text { - Squared coefficient of variation of arrival process at } \underline{\underline{i} .}
\end{aligned}
$$

Open Network of G/G/1 Queue

Whitt's method for open's network of G/G/1 queues - Queueing Network Analysis (QNA)
> The basic idea is to use the KLB G/G/1 two moment approximation at each queue i in the network.
$>$ The model of queue i is similar to the arbitrary queue studied in Jackson networks.

QNA
As in the Open Jackson network case, find mean arrival rate at each queue i by the flow conservation equation

$$
\lambda_{i}=\gamma_{i}+\sum_{j=1}^{m} r_{j i} \lambda_{j} \quad \Rightarrow \quad \lambda=\gamma(I-R)^{-1}
$$

To apply KLB equation need $C_{A i}^{2}$ at each queue.
This requires the application of three approximations (similar to Jackson network approach) for

1. Departure process approximation
2. Spitting process approximation
3. Merging process approximation

Mean departure rate $=\lambda$
$C_{d}^{2}=$ Squared coefficient of variation of departure process.

Based on renewal process approximation

$$
C_{d}^{2} \approx \rho^{2} C_{s}^{2}+\left(1-\rho^{2}\right) C_{A}^{2}
$$

QNA - Splitting Process Approximation

If a process with mean λ and C^{2} is probabilistically split into K stream with probabilities

$$
p_{i} \quad \Rightarrow \quad \sum_{i=1}^{K} p_{i}=1
$$

$$
\begin{gathered}
\text { We can approximate } C_{i}^{2} \text { as below } \\
\lambda_{i}=p_{i} \lambda \\
C_{i}^{2} \approx p_{i} C^{2}+\left(1-p_{i}\right)
\end{gathered}
$$

QNA - Merging Process Approximation

The C^{2} of a merger of K streams is approximated by $\quad \lambda=\sum_{i=1}^{K} \lambda_{i}$

Combining the three approximations to determine $C_{A i}{ }^{2}$ at each queue i

QNA - Merging Process Approximation

$C_{A i}^{2}=1-W_{i}+W_{i}\left[\frac{\gamma_{i}}{\lambda_{i}} C_{o i}^{2}+\sum_{j=1}^{M} \frac{\lambda_{j} r_{j i}}{\lambda_{i}}\left[r_{j i}\left(\rho_{j}^{2} C_{s j}^{2}+\left(1-\rho_{j}^{2}\right) C_{A j}^{2}\right)+\left(1-r_{j i}\right)\right]\right]$
yields a system of linear equations to solve for $C_{A_{i}}{ }^{2}$
where

$$
W_{i}=\left[1+4\left(1-\rho_{i}\right)^{2}\left(\sum_{j=1}^{M} \frac{\left(\lambda_{i} r_{j i}\right)^{2}}{\lambda_{i}^{2}}-1\right)\right]^{-1}
$$

Once $C_{A i}{ }^{2}$ approximation solved can treat each queue independently and determine the mean metrics for each queue from the KLB approximation for $\mathrm{G} / \mathrm{G} / 1$ queue and the network-wide measures $L N, W N$, etc

QNA Summary

- Given $\gamma_{i j}, C_{o i}{ }^{2}, \mu_{i j}, C_{S i}{ }^{2}, r_{i j}$
- Solve for $\lambda_{i} \rightarrow \rho_{i}$
$\lambda={ }_{\text {for }}{ }_{A i}{ }^{2}(I-R)^{-1}$

$$
\begin{aligned}
C_{A i}^{2} & =1-W_{i}+W_{i}\left[\frac{\gamma_{i}}{\lambda} C_{o i}^{2}+\sum_{j=1}^{M} \frac{\lambda_{j} r_{j i}}{\lambda}\left[r_{j i}\left(\rho_{j} C_{s j}^{2}+\left(1-\rho_{j}^{2}\right) C_{A j}^{2}\right)+\left(1-r_{j i}\right)\right]\right] \\
W_{i} & =\left[1+4\left(1-\rho_{i}\right)^{2}\left(\sum_{j=1}^{M} \frac{\left(\lambda_{i} r_{j i}\right)^{2}}{\lambda_{i}^{2}}-1\right)\right]^{-1}
\end{aligned}
$$

- Use KLB approximation to find mean behavior for each queue
- QNA approximation tends to do pretty well on network-wide measures $L N$, WN, etc..., but not so well for individual queues.
- QNA implemented in several software packages (QNAP), (RAQS)

Example

- Consider tandem queueing model below.
- Customers arrive to the first queue according to a Poisson process with mean rate γ_{1} $=1.0$, and $C_{01}{ }^{2}=1$
- Outside customers arrive to the second queue according to a deterministic process with mean rate $\gamma_{2}=1.0$, and $C_{02}{ }^{2}=0$
- Service process at queue one is Erlang_{2} distributed with $\mu_{1}=1.2, C_{S 1}{ }^{2}=1 / 2$ Service process at queue two is exponential with rate $\mu_{2}=2.2, C_{S 2}{ }^{2}=1$

$$
\lambda=\gamma(I-R)^{-1} \quad \lambda_{1}=1.0, \lambda_{2}=2, \rightarrow \rho_{1}=1 / 1.2=.833 \rho_{2}=2 / 2.2=.9091
$$

Example

From the figure $C_{A 1}{ }^{2}=C_{01}{ }^{2}=1$
$W_{i}=\left[1+4\left(1-\rho_{i}\right)^{2}\left(\sum_{j=1}^{M} \frac{\left(\lambda_{i} r_{j i}\right)^{2}}{\lambda_{i}^{2}}-1\right)\right]^{-1} \quad \rightarrow W_{2}=1 / .9752=1.0254$
$C_{A i}^{2}=1-W_{i}+W_{i}\left[\frac{\gamma_{i}}{\lambda_{i}} C_{o i}^{2}+\sum_{j=1}^{M} \frac{\lambda_{j} r_{j i}}{\lambda_{i}}\left[r_{r_{i i}}\left(\rho_{j}^{2} C_{s j}^{2}+\left(1-\rho_{j}^{2}\right) C_{A j}^{2}\right)+\left(1-r_{j i}\right)\right]\right] \quad \rightarrow C_{A 2}=.3093$
From KLB equation get

$$
L \approx \rho+\frac{\rho^{2}\left(C_{a}^{2}+C_{s}^{2}\right) J}{2(1-\rho)} \rightarrow J_{1}=1, L_{1}=3.9583, \quad J_{2}=.9023, L_{2}=2.1774
$$

where
$J=$ scaling factor
$J= \begin{cases}e^{\frac{-2(1-\rho)\left(1-C_{a}^{2}\right)^{2}}{3 \rho\left(C_{a}^{2}+C_{S}^{2}\right)}} & ; C_{a}^{2} \leq 1 \\ e^{\frac{-(1-\rho)\left(C_{a}^{2}-1\right)}{\left(C_{a}^{2}+4 C_{s}^{2}\right)}} & ; C_{a}^{2}>1\end{cases}$

$$
\text { Get } L N=L_{1}+L_{2}=6.1358, \gamma N=2
$$

$$
W N=L N / \gamma N=3.067
$$

Summary

- Networks with Population Constraints

Multi-class links
Multi-rate links

- Networks of multi -class or rate systems
- QNA Approximation for G/G/ 1 networks

