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Networks of Queues
♦ Many communication systems must be modeled as a  

set of interconnected queues – which is termed aset of interconnected queues which is termed a 
queueing network. 

♦ Systems modeled by queueing networks can roughly 
be grouped into four categories
 Open networks

 Closed networks 
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 Networks with population constraints  (also called Loss 
Networks)

 Mixed network 
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Networks with Population Constraints 
(Loss Networks) 

Consider M queue system 
Customers arrive from outside the network according to a Poisson process with rate 

Exponential service distribution with rate i at queue i
Total system size (waiting space ) is B

Simple example: M output queues at an output buffer of  a packet switch.
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Networks with Population Constraints 

This process is a finite state space M dimensional Markov process with state space 
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Networks with Population Constraints 

From P(n) one can determine various mean performance measures.

Li   Average number of customers in queue i.
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Wi   Average delay at queue i found by Little’s Law

Networks with Population Constraints 
Example: B = 3, M = 2

State diagram (n1, n2) : S = { (n1, n2) ; 0  n1  3, 0  n2  3, n1+n2 ≤ 3 }
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Let 1 = 0.5  , 2 = 1 ,  

1 = 1  ,  2 = 1 

1 = 0.5 , 2 = 1
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Networks with Population Constraints 
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Similarly L2 = 1.2653  LN = 1.7347

Networks with Population Constraints 
Multirate loss system : Multi-dimensional loss systems
Consider a single link in a multi-rate circuit switched network 

Assume K types of connections 

each type i arrives according to a Poisson 

process rate 

and have holding time exponentially 

holding time with a rate

Various services are offered and each service has different characteristics (call 

arrival rate, holding time, bandwidth.)

i
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holding time with a rate i

Each type i connection requires mi basic units of bandwidth. 

The total bandwidth available is C units.

Chapter 7 or ITU Teletraffic Handbook

(results hold for general holding time.) 
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Networks with Population Constraints 

Let )(~ tni = number of type i connection in system at time t.
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Loss Networks

n2

C = 10,     K = 2,      m1 = 1,     m2 = 2  

TELCOM 2120: Network Performance 10
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Networks with Population Constraints 
The steady state probabilities
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when K=1, get Erlang B model M/G/C/C
Sometimes called Generalized Erlang eq
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Networks with Population Constraints 
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Numerical example:

C = 48,  K=2,  k=1 voice 64 Kbps  m1 = 1

k=2  H232 video 384 Kbps  m2 = 6

1 = 15  , 2 = 0.125 ,  1 = 1  ,  2 = 0.5

12

30
1


 i

ii
K

i

m




PB1 = 0.0248,   PB2 = 0.086

Offered load



7

Circuit Switched Networks
♦ Model each link by Erlang B or multi-class loss system

♦ How to determine end-to-end blocking? 

♦ Consider case of single traffic class (e.g., voice) of N nodes and L links .

Let Ci be the capacity of link i and ai be the load in Erlangs at link i , 

Bi(Ci, ai ) is the call blocking rate on link i

End to End Call Blocking along a path Pij

Assumes load independent on each link
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Assumes load independent on each link

if load of single flow is small fraction on each link 

O.K. approximation 
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End to End Blocking
♦ Two T1 line example, offered load Erlangs, C1 = C2 = 24



B1 = B(20, 24) =  .066 ,   B2 = B(26, 24) =  .189 

Estimate end to end blocking   ≤ 1 – (1- B1 )(1- B2 ) = .2425

Note assumes traffic is independent on each link

Can improve approximation by reducing the load on link 2 to account for blocking at link 1

Thus load on link 2  = 20*(1- B1 ) + 6   = 24.68 Erlangs  B2 = B(24.68, 24)  = 0.161

 C1 C2
Destination

This is called a Modified Load Approximation  or Reduced Load Approximation

Yields  End to end blocking ≤  1 – (1- B1 )(1- B2 ) = .2164 

Assumes load from source 1 thinned on first line before being carried on second line 

14
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Erlang Fixed Point Approximation
♦ Let Ai be the offered load  in Erlang sfrom source i to  a path from i to j

♦ In reality  the number of calls active from source i to destination must y
be the same on each link along the path as signaling will reserve end to 
end resources before call is connected  

♦ Use reduced load approximation to get estimate of load at each link

♦ Get a set of coupled non-linear equations – that are solved iteratively 
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for a solution until Bi converge at each link  - initialize by computing 
every link independently

♦ Can be extended to multi-class of traffic, routing etc.

♦ See Chapter 5. ``K. Ross , Multiservice Loss Models for Broadband 
Communication Networks,” Springer-Verlag, 1995.  
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Loss Networks

♦ Many generalizations of Loss Systems 

♦ General Service Times, PS queueing discipline etc.

♦ Several algorithms for efficient computation of G(K)

16
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Networks of Queues
♦ Systems modeled by queueing networks can roughly be 

grouped into  categories

 Open networks

 Networks with population constraints 

 Closed networks 

♦ Looked at cases where state probabilities P(n) have a product 
form solution. Where C determined from normalization condition 
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♦ What about networks without product form?  

 Limited results – mainly special cases or approximations
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utilizations on systems 
where measurement data is 
available to determine Ca
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QNA 

Assume arbitrary network of M queues, define

i  Total mean customer arrival rate to queue i.

i  Mean arrival rate from outside of network to queue i,  external arrivals

ijr  Routing probability customer leaving queue i goes to queue j.

)1( mir  Probability customer leaving queue i exits the network.

i  Mean service rate at queue i.

2C Sq ared coefficient of ariation of o tside arri als to i

TELCOM 2120: Network Performance 19

2
iCo  Squared coefficient of variation of outside arrivals to i.

2
iCs  Squared coefficient of variation of service process at i.

2
iAC  Squared coefficient of variation of arrival process at i.

Open  Network of G/G/1 Queue 
Whitt’s method for open’s network of G/G/1 queues  - Queueing Network 

Analysis (QNA) 

 The basic idea is to use the KLB G/G/1 two moment approximation at The basic idea is to use the KLB  G/G/1 two moment approximation at      

each queue i in the network. 

 The model of queue i is similar to the arbitrary queue studied in Jackson 

networks.
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QNA 
As in the Open Jackson network case, find mean arrival rate at each queue i by the 

flow conservation equation
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To apply KLB equation need            at each queue.2
iAC

This requires the application of three approximations (similar to Jackson network

approach) for

21

1. Departure process approximation

2. Spitting process approximation

3. Merging process approximation

QNA - Departure Process Approximation

2, sC2
aC , aC

Mean departure rate = 

2
dC =  Squared coefficient of variation of departure process.

Based on renewal process approximation
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QNA   Splitting Process Approximation

If a process with mean  and 2C is probabilistically split into K stream with probabilities 
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QNA   Merging Process Approximation
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QNA  Merging Process Approximation
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Once CAi
2 approximation solved can treat each queue independently and determine the 

mean metrics for each queue from the KLB approximation for G/G/1 queue

and the network-wide measures LN, WN, etc

QNA Summary
♦ Given i, Coi

2, i, CSi
2, rij 

♦ Solve for i  i

♦ Then solve for CAi
2
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♦ Use KLB approximation to find mean behavior for each queue

♦ QNA approximation tends to do pretty well on network-wide measures LN, 

WN, etc…, but not so well for individual queues.

♦ QNA  implemented in several software packages (QNAP) , (RAQS)
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Example
♦ Consider tandem queueing model below. 

♦ Customers arrive to the first queue according to a Poisson process with mean rate 1

= 1 0 and C 2 = 1= 1.0, and Co1
2 = 1

♦ Outside customers arrive to the second queue according to a deterministic process 
with mean rate 2 = 1.0, and Co2

2 = 0

♦ Service process at queue one is Erlang2 distributed with 1 = 1.2, CS1
2 = ½  Service 

process at queue two is exponential with rate 2 = 2.2, CS2
2 = 1



1 = 1.0, 2 = 2,  1 = 1/1.2 = .833 2 = 2/2.2 = .9091 
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From the figure CA1

2 = Co1
2 = 1

 W 1/ 9752 1 0254
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 CA2 = .3093

From KLB equation get 

 J1 = 1, L1 = 3.9583,          J2 = .9023, L2 = 2.1774    
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Get LN = L1 + L2 = 6.1358, N =  2 

WN  = LN/N = 3.067
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Summary

♦ Networks with Population Constraints

Multi-class links

Multi-rate links

♦ Networks of  multi –class or rate systems

♦ QNA Approximation for G/G/ 1 networks 
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