

7

Properties in Queueing Networks

Queueing Networks exhibit behavior not seen in single queue scenarios

- Jockeying: Customers moving among parallel queues.
- Blocking Customer waiting depart a server and join next queue is unable to due to limited waiting space, and therefore stays in server (blocking it.)
- **Routing** Customer leaving a queue may have options as to where to go next
- Forking Customer leaving a queue clones into multiple customers possibly going along different routes.
- Joining Multiple customers are combined into a single customer
 Forking and joining are used in models of parallel processing systems, packet fragmentation and reassembly.

	۲
Example	
• Given $\gamma_1 = 0.5$, $\gamma_2 = 0.25$, $\gamma_3 = 0.25 \Rightarrow \gamma = [0.5, 0.25, 0.25]$ • Solving the flow conservation equation for λ_i	
$R = \begin{bmatrix} 0 & 0.4 & 0.6 \\ 0 & 0 & 0 \\ 0 & 0.25 & 0 \end{bmatrix} \qquad \lambda = \gamma (I - R)^{-1}$	
• using Matlab λ = [0.5, 0.5875, 0.55] $\Rightarrow \rho_1$ = 0.5, ρ_2 = 0.5875, ρ_3 = 0.55 • The resulting average delay is	5
$WN = \frac{1}{\gamma N} \sum_{i=1}^{3} \frac{\rho_i}{1 - \rho_i} = 3.646$	
	20

	0
Example 2	
$\gamma = [.1, 1/60, 0,0] \rightarrow \gamma N = .1167$	
$R = \begin{bmatrix} .9 & .01 & .06 & .03 \\ .9 & 0 & 0 & 0 \\ .1 & 0 & 0 & 0 \\ .4 & 0 & 0 & 0 \end{bmatrix} \qquad \lambda = \gamma (I - R)^{-1} = \begin{bmatrix} 1.5753, .0324, .0945, \end{bmatrix}$.0473]
$\rho = [\lambda_i / \mu_i] = [.1575, .1945, .4726, .0945]$	
$WN = \frac{1}{\gamma N} \sum_{i=1}^{m} \frac{\rho_i}{1 - \rho_i} = 12.2484$	
	22

From the network diagram we get the following set of equations (1) $\lambda_1 = \gamma_1 + .9\lambda_1 + .9\lambda_2 + .1\lambda_3 + .4\lambda_4$ (2) $\lambda_2 = \gamma_2 + .01\lambda_1 = 1/60 + .01\lambda_1$ (3) $\lambda_3 = .06\lambda_1$ (4) $\lambda_4 = .03\lambda_1$ Solving for λ_1 results in $\lambda_1 = 13.698\gamma_1 + .2055$, since $\rho_1 = \lambda_1/\mu_1 < 1$ for stability Get for $\rho_1 \rightarrow \gamma_1 < 0.715$ Similarly from (2) get $\lambda_2 = .0187 + .13698\gamma_1 \rightarrow \rho_2 = .1123 + .822\gamma_1 \rightarrow \gamma_1 < 1.08$ Similarly from (3) get $\lambda_3 = .06\lambda_1 \rightarrow \rho_3 = 4.1\gamma_1 + .0616 \rightarrow \gamma_1 < 0.2283$ Similarly from (4) get $\lambda_4 = .03\lambda_1 \rightarrow \rho_4 = .8219\gamma_1 + .0123 \rightarrow \gamma_1 < 1.2$ The most restrictive constraint is at queue 3 the printer and is $\gamma_1 < 0.2283$

Note that	G(0,m) = 1	$m = 1, 2, \dots, M$		
	$G(k,l) = \rho_l^k$	k = 1, 2,, K		
This can be comp	uted in a simple tabul $\begin{array}{c} \rho_1 & \rho_2 \\ 1 & 2 \end{array}$	lar form $ ho_3 \ 3$	$\begin{array}{c} \rho_M \\ \dots & M \end{array}$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1 & 1 \\ \rho_{2} & \rho_{1} + \rho_{2} + \rho_{1} \\ (\rho_{1} + \rho_{2}) & \dots \\ \vdots & \vdots \\ \dots & \dots \end{array}$	1 ² 3 1 ² 3 1 ² 3 1 ² 3 1	

0				(\bigcirc)				
Example								
• Choosing $\lambda_1 = 10 \Longrightarrow \lambda_2 = 6$, $\lambda_3 = 2$, and $\rho_1 = 1$, $\rho_2 = 1.2$, $\rho_3 = 2$								
• Computing $G(4,3)$								
	$\rho_1 = 1$	$\rho_2 = 1.2$	$\rho_3=2$					
	1	2	3	_				
0	1	1	1	-				
1	1	2.2	4.2					
2	1	3.64	12.04					
3	1	5.368	29.448					
4	1	7.4416	66.3376					
, i				36				

