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Networks of Queues
♦ Many communication systems must be modeled as a  

set of interconnected queues – which is termed aset of interconnected queues which is termed a 
queueing network. 

♦ Systems modeled by queueing networks can roughly 
be grouped into four categories
 Open networks

 Closed networks 
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 Networks with population constraints (Loss Networks)

 Mixed network 



2

Open Networks 
♦ Customers arrive from outside the system are served 

and then depart.and then depart. 

♦ Example: Packet switched data network.
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Closed Networks 

♦ Fixed number of customers (K) are trapped in the 
t d i l t thsystem and circulate among the queues.

♦ Example: CPU job scheduling problem

1 2 k
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Loss Networks with Population Constraints 
♦ Customers arrive from outside the system if there is 

room in the system. They enter, served and then depart. y y p

♦ Example: queues sharing a common buffer pool –
customers are lost when arriving to full system 

1

5


2

3

Mixed Network 
♦ Any combination of previous types.

♦ Example: simple model of virtual circuit that is♦ Example: simple model of virtual circuit that is 
window flow controlled.

1 2 k
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Properties in Queueing Networks
Queueing Networks exhibit behavior not seen in single queue 

scenarios
♦ Jockeying:  Customers moving among parallel queues.

♦ Blocking  Customer waiting depart a server and join next queue is 
unable to due to limited waiting space, and therefore stays in server 
(blocking it.)

♦ Routing - Customer leaving a queue may have options as to where 
to go next

♦ Forking Customer leaving a queue clones into multiple customers
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♦ Forking  Customer leaving a queue clones into multiple customers 
possibly going along different routes.

♦ Joining  Multiple  customers are combined into a single customer
 Forking and joining are used in models of parallel processing systems, packet 

fragmentation and reassembly.

Open Networks 
♦ Consider an  open network 

 Assume arbitrary network of M queues with infinite waiting space

 Customers arrive from outside the system are served and then 
depart.  Note customer my visit several queues before departing 
including possibly visiting some queues more than once.

 Service time of queue i is  non-negative  generally distributed with 
rate i

 Arrivals from outside the network to queue i occur according to 
general i i d process with mean rate

8

general i.i.d. process with mean rate i

 The total mean customer arrival rate to queue i is denoted i

 Queues are G/G/1
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Open Networks 
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rij  routing probability that a customer completing service at queue i goes to queue j.

ri(m+1)  routing probability that a customer completing service at queue i leaves the 
network. (customer sink is dummy queue m+1)

mimr imr

Open Networks

routing fractions sum to one1
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♦ Let        be the total mean customer arrival rate to queue i.i
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 m ,,, 21 

  mjmirR ji  11  Routing matrix – doesn’t  include sink

 m ,,, 21 
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♦ The flow conservation equation can be written in matrix vector form as

Relates external arrival rates and routing to determine the total flow at each queue

R 

  )( RI 1)(  RI



6

Jackson Networks
♦ James Jackson (UCLA Math professor) did the basic work on 

queueuing networks

♦ Jackson Networks – special class of open queueing networks
 Network of M queues

 There is only one  class of customers in the network

 A job can leave the network from any node 

 All  service times are exponentially distributed with rate i at queue i 

 The service discipline at all nodes is FCFS.

 All external customer arrival processes are Poisson processes with 

11

rate i at queue i

Open  Jackson Networks 
Now consider queue i in the Jackson network, 
from previous analysis  we know

1

2
1. Merging of independent Poisson processes
is Poisson with rate equal to the sum of the
individual rates.

1. The departure process of an M/M/1 queue is
Poisson with rate equal to input rate of the
queue 

n

n  21

1p

2p
1p
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queue 

2. Probabilistic splitting of a Poisson process
results in a Poisson process.


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2p

np
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Open Networks 
Combining these results, we can see that the input and output processes of 
each queue i in the network is a Poisson process.

Let )(~ tni be the number of customers in the system at queue i at the time t.

The state of the network is defined by the vector  )(~,),(~),(~
21 tntntn m

  0,)(~,),(~),(~
21 ttntntn m is a m dimensional Markov process

)(nP denote steady state probability.

 
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 mm
t
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

)(~,1)(~,,)(~,)(~lim)1( 2211 

 decrease by 1 in the ith queue

Open Networks 
 mmii

t
i ntnntnntnntnPnP 


)(~,1)(~,,)(~,)(~lim)1( 2211 

 increase by 1 in the ith queue

Writing the steady state flow balance equation 
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The solution to the steady state flow balance equation is the Product Form Solution
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Open Networks 

12
2

1
1

0102010


















mn
m

nn

nnnn

C  
0102010  nnmnmn

results in 



m

i
iC

1

)1( 

Hence, in
i

m

i
inP 




1

)1()( for stability ii  ;1
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n  )1(  (M/M/1 steady state)
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Jackson’s Theorem

♦ If in an open network (i < i) holds for all queues i=1,…,M

 the arrival rates i can be computed by the arrival rates i can be computed by

 The steady-state probability of the network can be expressed as the 
product of the state probabilities of the individual queues.

)()()()( 221121 NNN kkkkkk  

1)(  RI
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 The nodes of the network can be considered at independent 
M/M/1 queues with arrival rate i and service rate i .

)(...)()(),...,,( 221121 NNN kkkkkk 
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Open Networks  Performance Measure
Since each queue i is a M/M/1 queue with i
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all M/M/1 measures apply (e.g., percentile 
of delay distribution, etc.)
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LN  Average number of customers in network.
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Open Networks   Performance Measure

WN  Average delay through network.
m

i
m

iLN 1 

Can extend model to includde deterministic delay  dij corresponding to the time it 

takes a customer to move from the i th queue to the j th queue (propagation delay) still
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Note that in applying this solution to packet switched networks 

i

i
i C

  where average packet length, Cicapacity of link i
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takes a customer to move from the i th queue to the j th queue (propagation delay)  still 

get Jackson network results as above, only WN changes.
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Open Networks   Example

Three node network shown below

P i t l i l ith 0 5 0 25 0 25Poisson external arrivals with 1 = 0.5 ,  2 = 0.25 ,  3 = 0.25

Exponential service at each queue with 1 = 1,  2 = 1,  3 = 1  

11

2

2

19

1 31

3

From the diagram r12 = 0.4,  r13 = 0.6,  r32 = 0.25, r24 = 1.0,  r34 = 0.75

Example
♦ Given  1 = 0.5,  2 = 0.25,  3 = 0.25  
♦ Solving the flow conservation equation for i

 25.0,25.0,5.0

♦ using Matlab   = [ 0.5, 0.5875, 0.55]  1= 0.5,  2= 0.5875 ,  3 = 0.55

♦ The resulting average delay is   
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
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Example 2
Consider a node in the SITA network (circa 1992) shown below
The  interarrival of local and long distance  jobs are exponentially distributed 
with rates 1/1 = 10 and 1/2 = 60.  The processing time of jobs at the CPU, 
X.25, Printer and Disk queues are exponentially distributed  with rates 1 = 10, 
2 = 1/6, 3 = 1/5, and  4 = 0.5 respectively. (a) Determine the average delay W 
(b) Determine the requirements on 1  for maintaining system stability

21

[.1, 1/60, 0,0]     

Example 2

 0306019

ii





















0004.

0001.

0009.

03.06.01.9.

R  0473.,0945.,0324.,5753.1)( 1  RI
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Example 2
From the network diagram we get the following set of equations

    
  


Solving for results in  since  ii  for stability

Get for 1  

Similarly from (2) get    2   

Similarly from (3) get          Similarly from (3) get   3   

Similarly from (4) get   4   

The most restrictive constraint is at queue 3  the printer and is    

23

Additional Open Networks
♦ Many extensions  to Jackson Networks exist – focus on cases were 

one gets a product form solution

♦ Form of C depends on the system modeled

♦ Some of the additional features that can be modeled include: 
multiple classes of jobs, state dependent exponential servers,  
multiple servers, coxian service distribution with  number of 





m

i

in
iCnP

1

)( 

servers, fixed path routing, etc. See Chapter 6 in text

♦ Baskett, Chandy, Muntz and Palacios (BCMP)  Networks are a  
widely used extension – different service disciplines (e.g., processor 
sharing, LIFO) 

24
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Closed Queueing Networks 
Simplest case K customers circulating among M queues. 

Each queue i has exponentially distributed service time i

The routing probability for a customer completing service at queue i to go to queue j is  ijr

1
1




m

j
ijr

State of network defined by  )(~,),(~),(~
21 tntntn m

which is M dimensional Markov process. The state space S is determined by 

25
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
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i
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1
21 ;0:),,,( 

Closed Queueing Networks 
For example, M = 2, K = 3 1 2

(n1, n2) state diagram 

1

2

1

2

Steady state probabilities 

 mm
t

ntnntnntnPnP 


)(~,,)(~,)(~lim)( 2211 

Flow balance equation in steady state
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2
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








 

 


rate in    = rate out
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Closed Queueing Networks 

The solution of the flow balance equation is once again a product form with
M1 



i

in
iMKG

nP
1),(

1
)( 

where 
i

i
i 

  and 

),( MKG is a normalization constant so that 1
Sn

i is given by


 


Sn

M

i

in
iMKG

1

),( 

I d t d t i d d)( MKG )(P 

27

In order to determine                 and           need),( MKG )(nP ii ;

Flow conservation equation is 







1

1

m

j
jiji r   same as open network case without external arrivals or departures.

arrival rates are found relative to each other, set 1= 1 or set 1 = 1  1 = 1

Closed Queueing Networks 
For example, consider the tandem queue model with K=3. 

Customer with 1 = 1  ,  2 = 2 1 21 , 2 1 2

From the diagram r12 =  r21 = 1  21  

State space S = { (0,3),  (1,2),  (2,1),  (3,0) }

),( MKG = )2,3(G = 
 Sn

M

i

in
i

1

 = 3
12

2
1

2
21

3
2  

choosing  1 = 1  2 = 1   1 = 1 ,  2 = 0.5

28

= 1.875 and  



M

i

in
iMKG

nP
1),(

1
)( )2,3(G results in 

0667.0)2,3(/)3,0( 3
2  GP  1333.0)2,3(/)2,1( 2

21  GP 

2667.0)2,3(/)1,2( 2
2
1  GP  5333.0)2,3(/)0,3( 3

1  GP 
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Closed Queueing Networks
To illustrate the arbitrary value for 

)2,3(G = 0.5333Let  1 = 0.5  2 = 0.5   1 = 0.5 ,  2 = 0.25

1

),3(G  0.53331 2 1 , 2

From )(nP , one can compute the standard mean performance measures

 
 
















K

j Snjin
i nPjL

0 ;

)( KL
M

i
i 

1

From the example above,

29

p

2667.2)0,3(3)1,2(2)2,1(11  PPPL

7333.0)3,0(3)2,1(2)1,2(12  PPPL

Closed Queueing Networks 

Note that to find Wi , one needs to find the effective arrival rate 












 

 Snin
ii nPe

;0

)(1
 Snin ;0

The effective server utilization 1)(1
;0









 


i

i

i e
Snni

i
e notenP

e





For the two queues example above

  9333.0)3,0(111  Pe  9333.01 e

  9333.0)0,3(122  Pe  4667.02 e

30

4286.2/ 111  eLW

7857.0/ 222  eLW
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Closed Queueing Networks 
The computation of ),( MKG is difficult when the state space become large. 

For a closed network of M queues with K customers the number of states is given by











1

1

M

MK

For a closed network of M queues with K customers the number of states is given by

Number of states = 

For even small networks, this is large. For example K = 9, M = 2  3,628,800 states

One popular technique to determine                is Buzen’s algorithm

(also called the convolution algorithm )
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(also called the convolution algorithm.)

Closed Queueing Networks 
Note that MmmG ,,2,11),0( 

KkkG k ,,2,1)1,( 1  

This can be computed in a simple tabular form
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The i j element in the table is computed by taking the i,(j-1) element adding 
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Closed Queueing Networks 

For the two queue example previously discussed. 

1 2

0 1 1

1 0 5 0 75

1 = 0.5  2 = 0.5   1 = 0.5 ,  2 = 0.25

1 2

33

1 0.5 0.75

2 0.25 0.4315

3 0.125 0.2344

Closed Queueing Networks 
One of the advantages of this technique is that the performance measures can be 

written in terms of ),( MKG
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Example 
Consider the simple model of a computer system shown below,
queue 1 the CPU, queue 2disk drive, and queue 3I/O. 
Given 1 = 10,  2 = 5,  3 = 1 , K = 4 jobs 1 2 3

1 3

2

35

From the diagram 

r11 = 0.2 ,  r12 = 0.6 ,  r13 = 0.2 , r21 = r31 = 1,

Example

♦ Choosing 1= 10  2= 6, 3 = 2, and 1 = 1, 2 = 1.2, 3 = 2

123

♦ Computing G(4,3)

 = 1  = 1.2  = 2

1 2 3

0 1 1 1

1 1 2 2 4 2

36

1 1 2.2 4.2

2 1 3.64 12.04

3 1 5.368 29.448

4 1 7.4416 66.3376
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Example
♦ Computing the effective arrival rates

43914
448.29
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♦ The mean number in system at each queue

,4391.4
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,7038.01 L ,9347.02L 3

1585.0/ 111  eLW 3509.02 W 6599.23 W

Summary

♦ Overview of basic queueing networks
 Categories Categories

 Open Networks

 Closed Networks

 Focused on queueing networks cases that yield a 
Product Form for state probabilities 

m

 Efficient algorithms for closed networks 
38
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