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Networks of Queues
♦ Many communication systems must be modeled as a  

set of interconnected queues – which is termed aset of interconnected queues which is termed a 
queueing network. 

♦ Systems modeled by queueing networks can roughly 
be grouped into four categories
 Open networks

 Closed networks 
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 Networks with population constraints (Loss Networks)

 Mixed network 
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Open Networks 
♦ Customers arrive from outside the system are served 

and then depart.and then depart. 

♦ Example: Packet switched data network.

1
1

2

2

3

3

3

Closed Networks 

♦ Fixed number of customers (K) are trapped in the 
t d i l t thsystem and circulate among the queues.

♦ Example: CPU job scheduling problem
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Loss Networks with Population Constraints 
♦ Customers arrive from outside the system if there is 

room in the system. They enter, served and then depart. y y p

♦ Example: queues sharing a common buffer pool –
customers are lost when arriving to full system 
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Mixed Network 
♦ Any combination of previous types.

♦ Example: simple model of virtual circuit that is♦ Example: simple model of virtual circuit that is 
window flow controlled.
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Properties in Queueing Networks
Queueing Networks exhibit behavior not seen in single queue 

scenarios
♦ Jockeying:  Customers moving among parallel queues.

♦ Blocking  Customer waiting depart a server and join next queue is 
unable to due to limited waiting space, and therefore stays in server 
(blocking it.)

♦ Routing - Customer leaving a queue may have options as to where 
to go next

♦ Forking Customer leaving a queue clones into multiple customers

7

♦ Forking  Customer leaving a queue clones into multiple customers 
possibly going along different routes.

♦ Joining  Multiple  customers are combined into a single customer
 Forking and joining are used in models of parallel processing systems, packet 

fragmentation and reassembly.

Open Networks 
♦ Consider an  open network 

 Assume arbitrary network of M queues with infinite waiting space

 Customers arrive from outside the system are served and then 
depart.  Note customer my visit several queues before departing 
including possibly visiting some queues more than once.

 Service time of queue i is  non-negative  generally distributed with 
rate i

 Arrivals from outside the network to queue i occur according to 
general i i d process with mean rate
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general i.i.d. process with mean rate i

 The total mean customer arrival rate to queue i is denoted i

 Queues are G/G/1
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Open Networks 
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r

i

ir11

ir22

i

i i

1ir

2ir

)1( mi

iir

ri(m+1)

9

rij  routing probability that a customer completing service at queue i goes to queue j.

ri(m+1)  routing probability that a customer completing service at queue i leaves the 
network. (customer sink is dummy queue m+1)
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Open Networks

routing fractions sum to one1
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♦ Let        be the total mean customer arrival rate to queue i.i
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♦ The flow conservation equation can be written in matrix vector form as

Relates external arrival rates and routing to determine the total flow at each queue
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Jackson Networks
♦ James Jackson (UCLA Math professor) did the basic work on 

queueuing networks

♦ Jackson Networks – special class of open queueing networks
 Network of M queues

 There is only one  class of customers in the network

 A job can leave the network from any node 

 All  service times are exponentially distributed with rate i at queue i 

 The service discipline at all nodes is FCFS.

 All external customer arrival processes are Poisson processes with 
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rate i at queue i

Open  Jackson Networks 
Now consider queue i in the Jackson network, 
from previous analysis  we know

1

2
1. Merging of independent Poisson processes
is Poisson with rate equal to the sum of the
individual rates.

1. The departure process of an M/M/1 queue is
Poisson with rate equal to input rate of the
queue 
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2. Probabilistic splitting of a Poisson process
results in a Poisson process.
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Open Networks 
Combining these results, we can see that the input and output processes of 
each queue i in the network is a Poisson process.

Let )(~ tni be the number of customers in the system at queue i at the time t.

The state of the network is defined by the vector  )(~,),(~),(~
21 tntntn m

  0,)(~,),(~),(~
21 ttntntn m is a m dimensional Markov process

)(nP denote steady state probability.
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 decrease by 1 in the ith queue

Open Networks 
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 increase by 1 in the ith queue

Writing the steady state flow balance equation 

)()11()1()1(
1 1 111

1
1

nPnPrnPrnP
m

i

m

i

m

i
i

m

i
i

m

j
ijjijimii

m

i
ii 












   

  





rate in to state n =     rate out of state n
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The solution to the steady state flow balance equation is the Product Form Solution
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Open Networks 
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)1()( for stability ii  ;1

Essentially the product  of M independent M/M/1 queues steady state probabilities,  
n

)1(

15

n  )1(  (M/M/1 steady state)
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Jackson’s Theorem

♦ If in an open network (i < i) holds for all queues i=1,…,M

 the arrival rates i can be computed by the arrival rates i can be computed by

 The steady-state probability of the network can be expressed as the 
product of the state probabilities of the individual queues.
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 The nodes of the network can be considered at independent 
M/M/1 queues with arrival rate i and service rate i .
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Open Networks  Performance Measure
Since each queue i is a M/M/1 queue with i
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all M/M/1 measures apply (e.g., percentile 
of delay distribution, etc.)
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LN  Average number of customers in network.
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Open Networks   Performance Measure

WN  Average delay through network.
m

i
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Can extend model to includde deterministic delay  dij corresponding to the time it 

takes a customer to move from the i th queue to the j th queue (propagation delay) still
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Note that in applying this solution to packet switched networks 
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  where average packet length, Cicapacity of link i
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takes a customer to move from the i th queue to the j th queue (propagation delay)  still 

get Jackson network results as above, only WN changes.
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Open Networks   Example

Three node network shown below

P i t l i l ith 0 5 0 25 0 25Poisson external arrivals with 1 = 0.5 ,  2 = 0.25 ,  3 = 0.25

Exponential service at each queue with 1 = 1,  2 = 1,  3 = 1  
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From the diagram r12 = 0.4,  r13 = 0.6,  r32 = 0.25, r24 = 1.0,  r34 = 0.75

Example
♦ Given  1 = 0.5,  2 = 0.25,  3 = 0.25  
♦ Solving the flow conservation equation for i

 25.0,25.0,5.0

♦ using Matlab   = [ 0.5, 0.5875, 0.55]  1= 0.5,  2= 0.5875 ,  3 = 0.55

♦ The resulting average delay is   
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Example 2
Consider a node in the SITA network (circa 1992) shown below
The  interarrival of local and long distance  jobs are exponentially distributed 
with rates 1/1 = 10 and 1/2 = 60.  The processing time of jobs at the CPU, 
X.25, Printer and Disk queues are exponentially distributed  with rates 1 = 10, 
2 = 1/6, 3 = 1/5, and  4 = 0.5 respectively. (a) Determine the average delay W 
(b) Determine the requirements on 1  for maintaining system stability
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[.1, 1/60, 0,0]     

Example 2

 0306019

ii





















0004.

0001.

0009.

03.06.01.9.

R  0473.,0945.,0324.,5753.1)( 1  RI

22

2484.12
1

1

1




 


m

i i

i

N
WN








12

Example 2
From the network diagram we get the following set of equations

    
  


Solving for results in  since  ii  for stability

Get for 1  

Similarly from (2) get    2   

Similarly from (3) get          Similarly from (3) get   3   

Similarly from (4) get   4   

The most restrictive constraint is at queue 3  the printer and is    
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Additional Open Networks
♦ Many extensions  to Jackson Networks exist – focus on cases were 

one gets a product form solution

♦ Form of C depends on the system modeled

♦ Some of the additional features that can be modeled include: 
multiple classes of jobs, state dependent exponential servers,  
multiple servers, coxian service distribution with  number of 
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servers, fixed path routing, etc. See Chapter 6 in text

♦ Baskett, Chandy, Muntz and Palacios (BCMP)  Networks are a  
widely used extension – different service disciplines (e.g., processor 
sharing, LIFO) 
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Closed Queueing Networks 
Simplest case K customers circulating among M queues. 

Each queue i has exponentially distributed service time i

The routing probability for a customer completing service at queue i to go to queue j is  ijr
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State of network defined by  )(~,),(~),(~
21 tntntn m

which is M dimensional Markov process. The state space S is determined by 
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Closed Queueing Networks 
For example, M = 2, K = 3 1 2

(n1, n2) state diagram 
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Steady state probabilities 
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Flow balance equation in steady state
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Closed Queueing Networks 

The solution of the flow balance equation is once again a product form with
M1 
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In order to determine                 and           need),( MKG )(nP ii ;

Flow conservation equation is 
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jiji r   same as open network case without external arrivals or departures.

arrival rates are found relative to each other, set 1= 1 or set 1 = 1  1 = 1

Closed Queueing Networks 
For example, consider the tandem queue model with K=3. 

Customer with 1 = 1  ,  2 = 2 1 21 , 2 1 2

From the diagram r12 =  r21 = 1  21  

State space S = { (0,3),  (1,2),  (2,1),  (3,0) }

),( MKG = )2,3(G = 
 Sn
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choosing  1 = 1  2 = 1   1 = 1 ,  2 = 0.5
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= 1.875 and  
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Closed Queueing Networks
To illustrate the arbitrary value for 

)2,3(G = 0.5333Let  1 = 0.5  2 = 0.5   1 = 0.5 ,  2 = 0.25

1

),3(G  0.53331 2 1 , 2

From )(nP , one can compute the standard mean performance measures
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2667.2)0,3(3)1,2(2)2,1(11  PPPL

7333.0)3,0(3)2,1(2)1,2(12  PPPL

Closed Queueing Networks 

Note that to find Wi , one needs to find the effective arrival rate 
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For the two queues example above

  9333.0)3,0(111  Pe  9333.01 e

  9333.0)0,3(122  Pe  4667.02 e
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4286.2/ 111  eLW

7857.0/ 222  eLW
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Closed Queueing Networks 
The computation of ),( MKG is difficult when the state space become large. 

For a closed network of M queues with K customers the number of states is given by
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For a closed network of M queues with K customers the number of states is given by

Number of states = 

For even small networks, this is large. For example K = 9, M = 2  3,628,800 states

One popular technique to determine                is Buzen’s algorithm

(also called the convolution algorithm )

),( MKG
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(also called the convolution algorithm.)

Closed Queueing Networks 
Note that MmmG ,,2,11),0( 

KkkG k ,,2,1)1,( 1  

This can be computed in a simple tabular form
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Closed Queueing Networks 

For the two queue example previously discussed. 

1 2

0 1 1

1 0 5 0 75

1 = 0.5  2 = 0.5   1 = 0.5 ,  2 = 0.25

1 2

33

1 0.5 0.75

2 0.25 0.4315

3 0.125 0.2344

Closed Queueing Networks 
One of the advantages of this technique is that the performance measures can be 

written in terms of ),( MKG
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Example 
Consider the simple model of a computer system shown below,
queue 1 the CPU, queue 2disk drive, and queue 3I/O. 
Given 1 = 10,  2 = 5,  3 = 1 , K = 4 jobs 1 2 3

1 3

2

35

From the diagram 

r11 = 0.2 ,  r12 = 0.6 ,  r13 = 0.2 , r21 = r31 = 1,

Example

♦ Choosing 1= 10  2= 6, 3 = 2, and 1 = 1, 2 = 1.2, 3 = 2

123

♦ Computing G(4,3)

 = 1  = 1.2  = 2

1 2 3

0 1 1 1

1 1 2 2 4 2

36

1 1 2.2 4.2

2 1 3.64 12.04

3 1 5.368 29.448

4 1 7.4416 66.3376
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Example
♦ Computing the effective arrival rates

43914
448.29

10
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♦ The mean number in system at each queue

,4391.4
3376.66
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70380L ,9347.02 L 3615.23 L
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,7038.01 L ,9347.02L 3

1585.0/ 111  eLW 3509.02 W 6599.23 W

Summary

♦ Overview of basic queueing networks
 Categories Categories

 Open Networks

 Closed Networks

 Focused on queueing networks cases that yield a 
Product Form for state probabilities 

m

 Efficient algorithms for closed networks 
38





m

i

in
iCnP

1

)( 


