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Networks of Queues

Many communication systems must be modeled as a
set of interconnected queues — which is termed a
queueing network.
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Systems modeled by queueing networks can roughly
be grouped into four categories
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Open networks
Closed networks
Networks with population constraints (Loss Networks)

Mixed network \-




Open Networks

+ Customers arrive from outside the system are served
and then depart.

+ Example: Packet switched data network.
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Closed Networks

+ Fixed number of customers (K) are trapped in the
system and circulate among the queues.

+ Example: CPU job scheduling problem
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Loss Networks with Population Constraints

+ Customers arrive from outside the system if there is
room in the system. They enter, served and then depart.

+ Example: queues sharing a common buffer pool —
customers are lost when arriving to full system
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Mixed Network

+ Any combination of previous types.

+ Example: simple model of virtual circuit that is
window flow controlled.
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Open network for
background traffic

A

Closed network for VCs
foreground traffic




Properties in Queueing Networks

Queueing Networks exhibit behavior not seen in single queue
scenarios
+ Jockeying: Customers moving among parallel queues.

+ Blocking — Customer waiting depart a server and join next queue is
unable to due to limited waiting space, and therefore stays in server

(blocking it.)
+ Routing - Customer leaving a queue may have options as to where
to go next

+ Forking — Customer leaving a queue clones into multiple customers
possibly going along different routes.
+ Joining — Multiple customers are combined into a single customer

>  Forking and joining are used in models of parallel processing systems, packet
fragmentation and reassembly.

Open Networks
+ Consider an open network
> Assume arbitrary network of M queues with infinite waiting space

> Customers arrive from outside the system are served and then
depart. Note customer my visit several queues before departing
including possibly visiting some queues more than once.

> Service time of queue i is non-negative generally distributed with
rate y,

> Arrivals from outside the network to queue i occur according to
general i.i.d. process with mean rate

> The total mean customer arrival rate to queue i is denoted 4

> Queues are G/G/1
e
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Open Networks

An arbitrary queue i can be represented as

Into network Out of network
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From other queues | ;
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Feedback

To other queues

I‘ij — routing probability that a customer completing service at queue i goes to queue j.

I‘i(m+1) — routing probability that a customer completing service at queue i leaves the
network. (customer sink is dummy queue m+1)

Open Networks

m+1
Z ri,j = 1 routing fractions sum to one
j=1
+ Let Jj be the total mean customer arrival rate to queue i.
m+1
i - A A = 7/i+2rji/1j
A= [’11’/121“-’}%] y = [}/1’72""77m]
R = |_riJJ 1<i<m 1<j<m € Routing matrix — doesn’t include sink

+ The flow conservation equation can be written in matrix vector form as
A = 7+AR

A(I-R) = y = 2 = y(-R™

Relates external arrival rates and routing to determine the total flow at each queue




Jackson Networks

+ James Jackson (UCLA Math professor) did the basic work on
queueuing networks
+ Jackson Networks — special class of open queueing networks
> Network of M queues
> There is only one class of customers in the network
> A job can leave the network from any node
> All service times are exponentially distributed with rate 4 at queue i
> The service discipline at all nodes is FCFS.

> All external customer arrival processes are Poisson processes with
rate y atqueue i

Open Jackson Networks

Now consider queue i in the Jackson network, %
from previous analysis we know

Poisson Process

1. Merging of independent Poisson processes
A=+ A+ + 2

is Poisson with rate equal to the sum of the
individual rates.

1. The departure process of an M/M/1 queue is )
. . . Poisson Process
Poisson with rate equal to input rate of the ! ip

queue A 1p2

2. Probabilistic splitting of a Poisson process
results in a Poisson process.




Open Networks

Combining these results, we can see that the input and output processes of
each queue i in the network is a Poisson process.

Let Nj(t) be the number of customers in the system at queue i at the time t.

The state of the network is defined by the vector (i (t), Fip (t),..., A (t) )

{(R (), Ap(®),...,An(t) ), t=0} is am dimensional Markov process

P(n) denote steady state probability.
P = limP{R® =, =n,...An®) =nn, |
t—o0
P(N-1) = lim P{M(t) =n Ma(®) =Ny ..., 1) = =LA (t) =y |
towo

=decrease by 1 in the ith queue

Open Networks
P(+1) = lim P{f(t) =g, Mp(t) = np,..., i (t) = 0 +1, A (t) = Ny |
t—>w

=sincrease by 1 in the ith queue

Writing the steady state flow balance equation
rate into staten = rate out of state n

m m m m m m
27 PN =2)+ 4t - imar - PN+ 1) + 2 D i - - P(n+1; _1i)=|:z/1i +Z,Ui:|' P(n)

i=1 i=1 i=1j=1 i=1 i=1
The solution to the steady state flow balance equation is the Product Form Solution

m
P(n) = Cptpp?2-ppm = C[A"
.

where pj = A
|

and C is a constant.




Open Networks

0 [ [ [ n n
X X X Xcptep?eem =1

Nnm=0npn—-1=0 np2=0n1=0

m
resultsin  C =H(1_pi)
i=1

m
Hence, P(n)= H(l— £ )pin' |:> pi <1 Vi for stability
i=1

Essentially the product of M independent M/M/1 queues steady state probabilities,

a7y =0-p)p" C—)  (MIM/1 steady state)
m
P(n)= Hﬂ'ni
i1

Jackson’s Theorem

+ Ifin an open network (4; < 4) holds for all queues i=1,...,M

> the arrival rates 4j can be computed by
_ -1
A = y(-R)

> The steady-state probability of the network can be expressed as the
product of the state probabilities of the individual queues.

(K, Kg e k) =71 (k) - 2 (K2) - my (K )

» The nodes of the network can be considered at independent
M/M/1 queues with arrival rate j and service rate z; .




Open Networks — Performance Measure

Since each queue i is a M/M/1 queue with i

=2

i

iy = d-pi)p"

|:> all M/M/1 measures apply (e.g., percentile
of delay distribution, etc.)

For the network as a whole

LN — Average number of customers in network.
m m _
Z L| - Pi
i=1 i1 A

/N — total average load on network.

m
D7
i=1

Open Networks — Performance Measure

WN - Average delay through network.

m
WN=ﬂ=iZ
7N 7N 4

Z

Note that in applying this solution to packet switched networks

o= % where p~average packet length, C;—capacity of link i
i
Can extend model to includde deterministic delay d; corresponding to the time it
takes a customer to move from the i th queue to the j th queue (propagation delay) still

get Jackson network results as above, only WN changes.

m
WN Z/I—NW+Zr,J ij
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Open Networks — Example

Three node network shown below

Poisson external arrivals with , =0.5, % =0.25, »=0.25
Exponential service at each queue with =1, w1, =1, =1
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From the diagramr, = 0.4, r;3=0.6, r;,=0.25,r,,=1.0, r3,=0.75

Example

+ Given 5, =05, 5,=025 5,=025 = 7 = [05 025 0.25]
+ Solving the flow conservation equation for 4

0 04 06
R=1[0 0 0 i = y(1-R)™
0 025 0

using Matlab A =[0.5, 0.5875, 0.55] = p,=0.5, p,=0.5875, p,=0.55
+ The resulting average delay is

¢

1< pi

WN —
yN i=ll_ Pi

= 3.646
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Example 2 B

Consider a node in the SITA network (circa 1992) shown below

The interarrival of local and long distance jobs are exponentially distributed
with rates 1/y,= 10 and 1/y,= 60. The processing time of jobs at the CPU,
X.25, Printer and Disk queues are exponentially distributed with rates p, = 10,
L, = 1/6, uz=1/5, and p, = 0.5 respectively. (a) Determine the average delay W
(b) Determine the requirements on y, for maintaining system stability

local - :

e L =
9 . ,

—._:E_‘] M e Yamote (1ors J,vl{'wé) ‘fy

Jobs
3
a0
"
Example 2
y=[1,1/60,0,0] > N=.1167
9 .01 .06 .03
R_ |90 00
10 00 2 = y(1-R)™"=[15753,.0324,.0945, .0473]
4 0 0 0

p=[M/u]=[.1575, .1945, 4726, .0945]

WN = LZ P 122484
YN T 1-p
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Example 2

From the network diagram we get the following set of equations

(1) Ay =7, + 9% + .90, + .10, + 42,

() Ay =7, +.01%, =1/60+ 012,

(3) Ay =.061,

4) A, =.03%,

Solving for &, results in A, = 13.698y, + .2055, since p,= A/ <1 for stability
Get for p; 2 v, <0.715

Similarly from (2) get A, =.0187 + .13698y, = p, =.1123 +.822y, 2y, < 1.08
Similarly from (3) get A, =.061, = p; =4.1y,+.0616 = vy, <0.2283

Similarly from (4) get A, =.03%, = p, = .8219y,+.0123 >y, <1.2

The most restrictive constraint is at queue 3 the printer and is v, <0.2283

23

Additional Open Networks

+ Many extensions to Jackson Networks exist — focus on cases were
one gets a product form solution

m
P(n)=C[] A"
i=1

+ Form of C depends on the Isystem modeled

+ Some of the additional features that can be modeled include:
multiple classes of jobs, state dependent exponential servers,
multiple servers, coxian service distribution with co number of
servers, fixed path routing, etc. See Chapter 6 in text

+ Baskett, Chandy, Muntz and Palacios (BCMP) Networks are a
widely used extension — different service disciplines (e.g., processor
sharing, LIFO)

24
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Closed Queueing Networks

Simplest case K customers circulating among M queues.
Each queue i has exponentially distributed service time

The routing probability for a customer completing service at queue i to go to queue j is rij
m
2N =1
j=1

State of network defined by (i (t), Ap (t),..., i () )

which is M dimensional Markov process. The state space S is determined by

S = {(nl,nz,...,nm): 0<n <K Vi; >, =K}

i=1

25
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Closed Queueing Networks

For example, M=2,K =3 T H‘@_. @4.

K customers

(n4, n,) state diagram

Steady state probabilities

P(n) = tin;P{ﬁl(t)znl,ﬁz(t)znz,...,ﬁm(t):nm}

Flow balance equation in steady state

ratein = rate out

m
TRy 'P(n+1j—1i)=[§#iJ'P(n)

M=
Ms

i=1j=1

26
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Closed Queueing Networks
The solution of the flow balance equation is once again a product form with

P(n)

where 0= A and
Hi
G(K,M) is a normalization constant so that Zpi =1 isgiven by

M ) neS
G(K.M)= Y [TA"

nes i=1

B S o P
_G(K,M)gp'l

In order to determine G(K,M) and P(n) need 4 ;Vi

Flow conservation equation is
m+1
A = z Iji4j < same as open network case without external arrivals or departures.
i=1
arrival rates are found relative to each other, set A,= 1 orset A, = ;= p; =1

27

Closed Queueing Networks

For example, consider the tandem queue model with K=3.

Customer with sy=1 | =2 ’_, jﬂ:@—»jﬂ:@j
K

From the diagramr, = 1, =1= 41 =4

State space S ={(0,3), (1,2), (2,1), (3,0)}
M

GKM) = 632 = XIIA" = p+pps+pioy+ot

nes i=1
choosing 41 =1= Ah=1 = p=1, /=05

1 Mo
G(3,2) =1.875and P(nN)=———11po" i
(32) G(K,M)g d results in
P(03)=p3/G(32)=00667  P(L2)=p p3/G(32)=01333

P(21) = p P, 1G(3,2) =0.2667 P(30) = p{/G(3,2) = 0.5333

28
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Closed Queueing Networks

To illustrate the arbitrary value for 4

Let 4=05=k=05 = m=05, /=025 [y G(32) =05333

From P(n), one can compute the standard mean performance measures

|_i=_K [ ZP(n)J |:> gLi=K

j
=0 {nj=j;nes

From the example above,
Ly =1P(1,2) + 2P(2,1) + 3P(3,0) = 2.2667

L, =1P(21) + 2P(L,2) + 3P(0,3) = 0.7333

29
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Closed Queueing Networks

Note that to find W,, one needs to find the effective arrival rate i = ﬂi[l -
. e €
The effective server utilization Pox = :(1 - Zp(n)J note p, < 1
H n,=0; neS
For the two queues example above
1=l -P(0,3))=0.9333 pey =0.9333

e, = 1p(1 —P(3,0))=0.9333 Pe, =0.4667
Wy =Ly /e =2.4286

W2 = L2/62 =0.7857

nj=0;neS

ZP(H)]

30
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Closed Queueing Networks

The computation of G(K,M) is difficult when the state space become large.

For a closed network of M queues with K customers the number of states is given by

K+M -1
Number of states = M —1

For even small networks, this is large. For example K =9, M = 2 = 3,628,800 states

One popular technique to determine G(K,M) is Buzen’s algorithm
(also called the convolution algorithm.)

G(K,M) = G(K,M=1)+ pyG(K—-1,M)

31
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Closed Queueing Networks
Note that G(O,m) =1 m=12,....M
GkD=p k=12..K

This can be computed in a simple tabular form

AL P2 P3 Py
1 2 3 M

o [1 1 1 w1

1|~ PP P+ P2+ 3

2 pf pf+pz(p1+pz)

K | pf

The i j element in the table is computed by taking the i,(j-1) element adding
p;-(i=1 j) element

32
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Closed Queueing Networks

For the two queue example previously discussed.

41=05=h=05 = m=05, /=025

P1 P2

1 2
0 1 1
1| 05 0.75
2| 025 0.4315
3| 0125  0.2344

33
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Closed Queueing Networks

One of the advantages of this technique is that the performance measures can be

written in terms of G(K,M)

l K

. — -k —
= Ry A M)
 G(K-1M)

& =AM

P2k = pl S

34
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Example

Consider the simple model of a computer system shown below,
queue 1-the CPU, queue 2-disk drive, and queue 3-1/0O.
Given yy =10, 1#,=5, y3=1,K=4 jobs

0.6 @
0.2

K customers

>
v

From the diagram

ry=02, =06, r3=02,ry=r5=1,

35
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Example
¢ Choosing A=10 = A,=6,A3=2,and p; =1, p,=1.2,p; =2
+ Computing G(4,3)

p =1 p,=1.2 p3=2
1 2 3
0 1 1 1
1 1 2.2 4.2
2 1 3.64 12.04
3 1 5.368 29.448
4 1 7.4416 66.3376

36
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Example
+ Computing the effective arrival rates
G(33 29448
& =4 B3 =10x =44391 e —26635 , e,=0.8878

G(43) 663376

+ The mean number in system at each queue

1

3 1
G(43)f

4
k — =
P G(4-k,3) 543

=1

L

L,=07038 , L,=09347, L3=23615

Wy =Ly /e =0.1585 W, =0.3509 W3 =2.6599

[plG(3,3) + pPG(2.3) + piG(L3) + pfe(o,s)]

37

Summary

+ Overview of basic queueing networks
» Categories
- Open Networks
- Closed Networks

» Focused on queueing networks cases that yield a
Product Form for state probabilities

m -
P =C[]A"
i=1

» Efficient algorithms for closed networks
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