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Abstract 
The proliferation of data acquisition devices like 3D laser scanners had led to the burst of large-scale spatial terrain 
data which imposes many challenges to spatial data analysis and computation.  With  the  advent  of  several  emerging  
cloud technologies, a natural and cost-effective approach to managing such large-scale data  is  to  store  and  process  
such  datasets in a publicly hosted cloud service using modern distributed computing paradigms such as MapReduce. 
For several key spatial data analysis and computation problems, polygon retrieval is a fundamental operation which is 
often computed under real- time constraints. However, existing sequential algorithms fail to meet this demand 
effectively given that terrain data in recent years have witnessed an unprecedented growth in both volume and rate. 
In this work, we present a MapReduce-based parallel polygon retrieval algorithm which aims at minimizing the IO and 
CPU loads of the map and reduce tasks during spatial data processing. Our proposed algorithm first hierarchically 
indexes the spatial terrain data using a quad-tree index, with the help of which, a significant amount of data is filtered 
out in the pre- processing stage based on the query object. In addition, a prefix tree based on the quad-tree index is 
built to query the relationship between the terrain data and query area in real time which leads to significant savings 
in both I/O load and CPU time. The performance of the proposed techniques is evaluated in a Hadoop cluster and the 
results demonstrate that the proposed techniques are flexible and scalable. Our quad tree indexing with prefix tree 
acceleration lead to more than 35% reduction in execution time of the polygon retrieval operation over existing 
distributed algorithms while the quad tree indexing without prefix tree works best for the proximity query. 
Keywords:  [MapReduce, Polygon Retrieval, Proximity Query, Quad-Tree Indexing, Prefix Tree] 

__________________________________________________________________________________________________________________ 

1. INTRODUCTION 
The proliferation of cost-effective data acquisition devices 

like 3D laser scanners has enabled the acquisition of massive 

amounts of terrain data at an ever-growing volume and rate. 

With the advent of several emerging collaborative cloud 

technologies, a natural and cost-effective approach to managing 

such large-scale data is to store and share such datasets in a 

publicly hosted cloud service and process the data within the 

cloud itself using modern distributed computing paradigms 

such as MapReduce. Examples of applications that process such 

terrain data include urban environment visualization, shadow 

analysis, visibility computation, and flood simulation. Many 

geo-spatial queries on such large datasets are intrinsically 

complex to solve and are often computed under real-time 

constraints, thus requiring fast response times for the queries. 

However, most existing sequential algorithms fail to meet this 

demand effectively given that terrain data in the recent years 

have witnessed an unprecedented growth in both volume and 

rate. Therefore, a common approach to speed up spatial query 

processing is parallelizing the individual operations on a cluster 

of commodity servers. 

In GIS applications, there are several common spatial query 

algorithms such as polygon retrieval and proximity query. 

Polygon retrieval is a fundamental geospatial operation which 

is often computed under real-time constraints. Polygon retrieval 

involves retrieval of all terrain data within a given polygon’s 

boundary of interest for further analysis (Mark de Berg, 2008; 

Willard, 1982). As for proximity query, it retrieves all spatial 

entities within a distance from a target location. We note that 

terrain data is usually represented using one of the common data 

structures to approximate surface, for example, digital elevation 

model (DEM) and triangulated irregular network(TIN). Among 

these existing structures, TIN (Peucker, Fowler, Little, & Mark, 

1978) is a widely used model and it consists of irregularly 

distributed nodes and lines arranged in a network of non-

overlapping triangles. Compared to other spatial data structures, 

TIN requires considerably higher storage as it can be used to 

represent surfaces with much higher resolution and detail. For 

instance, a TIN dataset for the state of Pennsylvania would 

require up to 60TB. Therefore, real-time processing of such a 

large amount of data is not possible through sequential 

computations and a distributed parallel computation is needed to 

meet the fast response time requirements. 

We argue that such large scale spatial datasets can effectively 

leverage the MapReduce programming model (Dean & 

Ghemawat, 2008) to compute spatial operations in parallel. In 

doing so, key challenges include how to organize, partition and 

distribute a large scale spatial dataset across 10s of 100s of nodes 

in a cloud data center so that applications can query and analyze 

the data quickly and cost-effectively. Furthermore, polygon 

retrieval is a CPU-intensive operation whose performance 

heavily depends on the computation load causing performance 
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bottlenecks when dealing with very large datasets. Therefore, a 

suitable algorithm needs to minimize the computation load on 

the individual map and reduce tasks as well. In this paper, we 

develop a MapReduce-based parallel algorithm for distributed 

processing of polygon retrieval operation in Hadoop 

("Hadoop,"). Our proposed algorithm first hierarchically 

indexes the spatial terrain data using a quad-tree index, with the 

help of which, a significant amount of data is filtered out in the 

pre-processing stage based on the query object. In addition, a 

prefix tree based on the quad-tree index is built to query the 

relationship between the terrain data and query area in real time 

which leads to significant savings in both I/O load and CPU 

time. We evaluate the performance of the proposed algorithm 

through experiments on our Hadoop cluster consisting of 6 

servers. Our experiment results show that the proposed 

algorithm is flexible, scalable and performs faster than existing 

distributed algorithms. 

The rest  of  the  paper  is  organized  as  follows:  Section 2  

reviews  the  related  work  and  in  Section  3,  we  provide a 

background on TIN and overview the polygon retrieval 

problem. Section 4 describes our proposed MapReduce based 

algorithms and the optimization techniques. We discuss the 

experiment results in Section 5 and conclude in Section 6. 

 

2. RELATED WORK 
Polygon retrieval is a common operation for a diverse 

number of spatial queries in many GIS applications. 

( W i l l a r d ,  1 9 8 2 ) proposed the polygon retrieval 

problem formally and devised an algorithm that runs in 

𝑂(𝑁𝑙𝑜𝑔6
4
)  time in the worst-case. To speed up this query 

further, several efficient sequential algorithms have been 

proposed. The most notable among these include the 

algorithms presented in (Mark de Berg, 2008; Paterson & Frances 

Yao, 1986; Sioutas, Sofotassios, Tsichlas, Sotiropoulos, & Vlamos, 

2008; Tung & King, 2000). However, with the recent massive 

growth in terrain data, these sequential algorithms fail to meet 

the demands of real- time processing. 

As cloud computing has emerged to be a cost-effective 

and promising solution for both compute and data intensive 

problems, a natural approach to ensure real-time processing 

guarantees is to process such spatial queries in parallel 

effectively leveraging modern cloud computing technologies. In 

this context, some earlier work (Karimi, Roongpiboonsopit, & 

Wang, 2011) had explored the feasibility of using Google App 

Engine, the cloud computing technology by Google, to 

process TIN data. Since MapReduce/Hadoop has become the 

defacto standard for  distributed  computation on a massive 

scale, some recent works have developed several 

MapReduce-based algorithms for GIS problems. The authors 

in ( P u r i ,  A g a r w a l ,  H e ,  &  P r a s a d ,  2 0 1 3 )  propose 

and implement a MapReduce algorithm for distributed 

polygon overlay computation in Hadoop. The authors in (Ji et 

al., 2012) present a MapReduce-based  approach that construct 

inverted grid index and processes kNN query over large 

spatial data sets. The technique presented in (Akdogan, 

Demiryurek, Banaei-Kashani, & Shahabi, 2010) creates a 

unique spatial index and Voronoi diagram for given points in 

2D space and enables efficient processing  of  a wide range of 

geospatial queries such  as RNN, MaxRNN and kNN with the 

MapReduce programming model. Hadoop-GIS (Wang et al., 

2011) and Spatial-Hadoop (Eldawy, Li, Mokbel, & Janardan, 

2013; Eldawy & Mokbel, 2013) are two scalable and high-

performance spatial data processing system for running large-

scale spatial queries in Hadoop. These systems provide support 

for some fundamental spatial queries including the minimal 

bounding box query. However, they do not directly support 

polygon retrieval operation addressed in our work. In our work, 

we primarily focus on the polygon retrieval queries on spatial 

data and we devise specific optimization techniques for an 

efficient implementation of the parallel polygon retrieval 

operation in MapReduce. 

 

3. BACKGROUND 
In this section, we provide the required background and 

preliminaries about the TIN spatial data storage format and a 

brief overview of MapReduce based parallel processing of 

large-scale datasets. 

A. TIN Data 

TIN (Peucker et al., 1978) is a commonly used model for 

representing spatial data and it consists of irregularly distributed 

nodes and lines arranged in a network of non-overlapping 

triangles. TIN data typically gets generated from raster data such 

as LIDAR (Light Detection and Ranging) which is a remote 

sensing method that uses light in the form of a pulsed laser to 

measure ranges to the Earth surface. These light pulses 

combined with other data recorded by the airborne system 

generate precise, three-dimensional information about the 

shape and surface characteristics. In our work, we consider 

TIN data generated from LIDAR data using the Delaunay 

triangulation algorithm implemented by the LASTool 

(LAStools). An example of LIDAR data and its 

corresponding TIN representation is shown in Figure 1(a) and 

Figure 1(b) respectively. 

When it comes to data representation, TINs are traditionally 

stored as a file, in ASCII or the ESRI TIN dataset file format. 

To improve the efficiency of processing large TIN datasets, 

(Al-Salami, 2009; Hanjianga, Limina, & Longa) have proposed 

new TIN data structures and operations for spatial databases 

that allow storing, querying and reconstructing TINs more 

efficiently. However, we note that there are no standards on the 

data structures and operations for TIN (Karimi et al., 2011); 

Oracle has defined a proprietary data type and operations for 

managing large TINs in their own spatial database (Kothuri, 

Godfrind, & Beinat, 2007). In our work, we adopt the data 

format from (Karimi et al., 2011) which comprises of two 

types of data entities: TIN Points and TIN Triangles, as 

shown in Figure 2. Both types have their unique IDs. The 

TIN Points type has five properties and the TIN Triangles 

entity has three properties.  For the TIN Point, the 

Adj_ TriangleID[] array stores the IDs of its adjacent 

triangles. For the TIN Triangle, the Point ID array and 

Coordinate array contain the IDs and coordinates for the three 

vertices of each triangle. 

 

B. Polygon Retrieval 

In this subsection, we describe the polygon retrieval problem 

using data represented in TIN. Given the boundary of a 

simple polygon, the polygon retrieval operation retrieves all 

the terrain data, represented by TIN that intersects with the 

polygon. As there could be many possible situations of 
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intersection (Clementini, Sharma, & Egenhofer, 1994), here for 

the sake of simplicity, we consider an intersection when at 

least one of its vertex of the TIN triangles intersects with 

the query area. We note that point-in-polygon algorithms can 

be used to determine whether a point is inside or outside the 

polygon. One such well-known algorithm is ray tracing 

algorithm which is usually referred to as crossing number 

algorithm or even-odd rule algorithm (Al-Salami, 2009) in the 

literature. An example of the polygon retrieval is given in Figure 

3.  

 

 

 

    
(a) LIDAR Point cloud (b) TIN surface 

Fig. 1: LIDAR and TIN surface 

 

 

  

Fig. 2: TIN representation 

 

Fig. 3 Polygon Retrieval 

 

C. Proximity Query 

Besides the polygon retrieval, there is also another 

common spatial query in GIS application, which is 

proximity query. It retrieves all spatial entities within a 

distance from a target location. In our case, a proximity 

query retrieves all the terrain data, represented by TIN that 

are within the given distance from the target location. Since 

the basic unit of TIN is a triangle, here for the sake of 

simplicity, we consider the triangle is within the distance 

from the given target location if the distance between the 

target location and any one of the triangle’s vertexes is 

smaller than the given radius.  An example of the proximity 

query is given in Figure 4. 

 

Fig. 4 Proximity Query 

B. MapReduce overview 

In this work, we are focused on MapReduce-based 

parallel processing of TIN for the spatial query operation. 

We note that in addition to the programming model, 

MapReduce ( D e a n  &  G h e m a w a t ,  2 0 0 8 )  also 

includes the system support for processing the 

MapReduce jobs in parallel in a large scale cluster. Apache 

Hadoop ("Hadoop,") is a popular open source 

implementation of the MapReduce framework. Hadoop is 

composed of two major parts: storage model, Hadoop 

Distributed File System (HDFS) and compute model 

(MapReduce). A key feature of the MapReduce 
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framework is that it can distribute a large job into 

several independent map and reduce tasks over several 

nodes of a large data center and process them in parallel. 

MapReduce can effectively leverage data locality and 

processing on or near the storage nodes and result in faster 

execution of the jobs. The framework consists of one 

master node and a set of slave nodes. In the map phase, 

the master node schedules and distributes the individual 

map tasks to the worker nodes. A map task executing in 

a worker node processes the smaller chunk of the file 

stored in HDFS and passes the intermediate results to the 

appropriate reduce tasks executing in a set of worker nodes. 

The reduce tasks collect the intermediate results from the 

map tasks and combine/reduce them to form the final 

output.  Since each map operation is independent of the 

others, all maps can be performed in parallel. It is also 

the same with reducers as each reducer works on a 

mutually exclusive set of intermediate results produced by 

mappers. 

 

4. MAPREDUCE-BASED SPATIAL QUERY  
In this section, we first present a naive implementation of 

parallel spatial retrieval operation using MapReduce and 

illustrate its performance. We then present our proposed 

optimization techniques that significantly improves this 

basic spatial retrieval algorithm. 

A. Basic MapReduce Algorithm for Spatial Query 

An intuitive and straight-forward MapReduce-based 

spatial retrieval implementation is to process all the terrain 

data stored in HDFS as part of the MapReduce job. Each 

mapper will process an input split and check whether a 

given point is within the boundary of the query area or 

not. The HDFS partitions the TIN data into several chunks 

(64 MB blocks by default) and each map task would 

process one chunk of data in parallel. Unfortunately this 

basic MapReduce algorithm (Algorithm1) has several key 

performance limitations. Firstly, for each query the 

algorithm reads all terrain data from the HDFS and 

processes them in the map phase. This approach is not 

efficient in situations when the query area is a smaller 

portion of the whole dataset, where the system does not 

need to scan all terrain data to obtain accurate results. We 

also note that the point in polygon computation in the 

map phase is a reasonably CPU consuming operation and 

hence performing this computation for a huge amount of 

data will result in significantly longer job execution times. 

Our proposed algorithm employs a sequence of 

optimization techniques that overcome the above-

mentioned shortcomings. First, our proposed technique 

divides the whole dataset stored in HDFS into several 

chunks of files based on a quad- tree prefix. Then for 

each range query, we use a prefix tree to organize the set 

of quad-indices whose corresponding grids intersect the 

query area. Prior to processing a query, we employ these 

indices to filter the unnecessary TIN data as part of the 

data filtering stage so that unwanted data processing is 

minimized in the map phase. Finally, the proposed 

approach pre-tests the relationship between the TIN data 

and the query shape through the built prefix tree in the 

map function in order to minimize the computation. We 

describe the essence and details of these techniques in 

the following subsections. 

 

Algorithm 1 Basic MapReduce Spatial Query 

 
1: point id: a point ID 

2: T IN  point: a TIN point in space 

3: procedure MAP(point id, TIN  point) 

4:       get the boundary of the query area from the global 

share memory of Hadoop 

5:     if tin  point is within the boundary 

6 :      then 

7：            emit the key-value pair (point id, TIN  point) 

8：         else 

7:   return 

8:     end if 

9: end procedure  

 
 

B. Indexing Terrain Data 

To accelerate the processing of terrain data, we divide 

the entire space based on a quad-tree (Pajarola, Antonijuan, 

& Lario, 2002) and index each TIN record using the quad-

tree. Quad-tree is a common tree data structure used in 

many geospatial applications which partitions a two-

dimensional space by recursively subdividing the space into 

four equal regions. Compared with other spatial indices such 

as R-tree or uniform grid index, the quad-tree has several 

advantages for polygon retrieval. For instance, unlike the 

index of R-tree which needs to be built by the insertion of 

the terrain data one after another while maintaining the 

tree’s balance structure which takes O(n ∗ logn) time, quad- 

tree index does not need to maintain a real tree and can be 

used to partition the space directly as shown in Fig 5(b). In 

addition, with the quad-tree index, we can even infer the 

topological relationship of the terrain data and the query 

area from the indices’ prefix directly. 

To decide whether the prefix of a quad-tree exists in a 

given set of index entries, it would cost O(k ∗n) time for a 

straight- forward algorithm, where k is the length of the 

quad-tree index (also the depth of the quad-tree) and n is the 

number of entries the indices set. Thus, when n and k 

get larger, the cost of the algorithm will grow 

significantly. In the next subsection, we propose a prefix 

tree structure organizing grid entries that interact with the 

query area with the cost of only O(k) time. 
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(a) Built Quad-Tree   (b) Quad-index partitioning 

             

(c) Polygon Query on Quad-Indexing  (d) Proximity Query on Quad-Indexing 

Fig. 5: Quad Tree-Indexing 

For uniformly distributed point sets, good expected case 

performance can be achieved by simple decompositions of 

space into a regular grid of hyper cubes. The regular grids 

have many good properties. For example, if n points are 

chosen independently from a uniform distribution on the 

unit square, then proximity query finds the nearest neighbor 

of a query point in constant expected time(Bentley, Weide, 

& Yao, 1980).  

For the R-Tree, we generally adopt the R-Tree indexing 

on Hadoop from (Cary, Sun, Hristidis, & Rishe, 2009). The 

core idea is to run MapReduce jobs to sample the spatial 

data from the given dataset. Then build the R-Tree from the 

sample data and do the partition.  
 

 

 

 

(a) Grid Indexing 
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(b) Polygon Query on Grid Index      (c) Proximity Query on Grid Index 

Figure 6: Grid Indexing 

 
(a) Built R-tree                           (b) R-tree partitioning 

           
                  (c) Polygon Query on R-tree partitioning         (d) Proximity Query on R-tree partitioning 

Fig. 7: R-tree Indexing 

The examples that compares quad-tree indexing, grid-

indexing, and  R-tree indexing are illustrated in Figures 

5, 6 and 7. Figure 5(b) shows the partitioning of the 

whole space based on the quad-tree index of length 2 

directly. In Figure 6(a), we partition the space into 4*4 

regular grids. In Figure 7(a), we build a R-tree 

representation of the same space by going over the 

elements in the terrain and inserting them to the tree for 
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the spatial partition shown in Figure 7(b). Next, we show 

how the quad-tree index helps infer the topological 

relationships using the example shown in Figure 5(c). In 

the figure, we find the query area shown as a gray region 

and the set of grid indices that intersect with this gray 

query area are {30, 31, 32, 33, 23, 21, 12, 13, 03}. A 

key observation here is that if a grid cell is within a 

query area, then all its sub grids are also guaranteed to 

be within the query area. Therefore the grids’ set {30, 31, 

32, 33} can be combined into a single grid cell {3} and 

the interacted indices set in Figure 5(c) can be abbreviated 

to {3, 23, 21, 12, 13, 03}. Thus, if the prefix of a spatial 

object’s quad-index exists in a set, then the object is 

guaranteed to be within the query area. This property of 

the proposed indexing scheme avoids the point-in-polygon 

computation in the map phase enabling the MapReduce 

jobs to complete significantly faster. 

 

C. Organizing the index using Prefix Tree 

A prefix tree, also called radix tree or trie, is an ordered 

tree data structure that is used to store a dynamic set or 

associative array where the keys are usually strings (Cormen, 

Stein, Rivest, & Leiserson, 2009). The idea behind a prefix 

tree is that all strings that share a common prefix inherit a 

common node. Thus with our prefix tree optimization, 

testing a prefix of a quad-tree index in a given set can be 

accomplished in just O(k) time. Figure 8 shows the 

prefix tree built from the grid indices set {3,23, 21, 12, 

13,03 } of the previous example. 

Next, we discuss in detail the optimized query 

processing algorithm that minimizes the point-in-polygon 

computation by building a prefix tree based on the grid 

index and their intersection with the query area. In the 

pre-processing stage, we first consider the first four grid 

cells and recursively test them to find overlap with the 

query area. When a grid cell intersects the query area, we 

subdivide the grid cell into four sub-cells recursively 

unless we are at the deepest level of the quad-tree. If the 

grid cell is within the query area, we stop subdividing 

the grid cell and insert its index into the prefix tree and 

mark the corresponding leaf node as ”within”. As 

pointed out earlier, if the grid is within the query area, all 

its sub grids will also be within the query area and 

hence this leaf node will always be a leaf node. From the 

perspective of prefix tree, if the prefix of a quad-tree 

ends in a leaf node, it means that the corresponding TIN 

records are within the query area. Finally if a grid cell 

is outside the query area, we simply ignore it. Here we 

note that unlike the traditional strategies that subdivide 

the grid cells based on how many elements are within 

each grid, we subdivide each grid based on their relation 

with the query area. We present a complete pseudo code of 

this algorithm in Algorithm 2. 
 

 

Algorithm 2 Prefix tree construction 

 
1: depth: depth of the prefix tree 

2: query  shape: the geometric shape of the given query 

3: ptree: the output prefix tree 

4: procedure BUILDPREFIXTREE(depth, query 

shape) 

5:        while grid queue.empty() == false do 

6:   g = grid queue.pop() 

7:        if query shape contains g or g.length()  == 

depth 

8:     insert the index g into the prefix tree ptree 

9:     mark the leaf node as within or overlapping the 

query area 

10: else 

11:      Insert the four child nodes of g into grid 

queue 

12:  end if 

13:        end while 

14:        return ptree; 

15:  end procedure 
 

 

Fig.8: Prefix Tree 

After the prefix tree is created in the pre-processing 

stage, it is effectively used in the map function. When 

each mapper receives a TIN record, the relation of the 

TIN record and the query area is inferred based on 

the prefix tree created in the pre-processing phase. We 

first try to search the longest prefix of the TIN record’s 

quad-tree index in the prefix tree which ends in a leaf 

node.  If the search returns nothing, it means that the TIN 

record is totally outside  the  query area. If returned tree 

node is marked as “within”, we will output the TIN 

record directly. Only if not, we need to do the point-in-

polygon computation. Thus, the point-in-polygon 

computation is avoided for a majority of cases making 

the algorithm very efficient and scalable. We show a 

pseudo code of this procedures in Algorithm 3. 

 

D. Quad-tree Based File Organization 
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Finally, we discuss our proposed quad-tree prefix based 

TIN file filtering strategy which tries to read in only the 

necessary TIN data rather than scanning the whole 

dataset stored in HDFS. Similar to how quad-tree 

organized by the prefix tree is used to minimize CPU 

load of the map tasks, we use a similar idea to reduce 

the amount of data processed by the polygon retrieval 

query. The core idea behind the proposed approach is to 

separate the TIN data into fairly smaller files such that 

each file shares the same prefix. For instance, a large 

terrain’s TIN data can be organized as multiple smaller 

files such as File 00, File 01, File 02 and so on, see Figure 

9 for an example of a file with name File 00. After we 

organize the terrains file in this manner, we use it in the 

file filtering stage which scans only the required records to 

filter those files that are outside the query area. For 

example, in Figure 5(b), if we subdivide the TIN data into 

files based on a depth level of 2, we can see that the set of 

grid indices that intersect the query area correspond to {3, 

23, 21, 12, 13, 03 }. Hence, we only need to scan the files 

{30, 31, 32, 33, 23, 21, 12, 13, 03} in the HDFS and thus 

minimizes the amount of data processed. In practice we 

note that the length of the prefix constituting the file’s 

name is an important parameter and it can affect the 

efficiency of the job to a certain extent. Specifically, the 

longer the prefix length becomes, the smaller is the size of 

the divided file so that more data can be filtered. However, 

we notice that Hadoop is not good at dealing with small 

sized files, especially when the files are less than the input 

split size. In order to balance this, we ensure that each TIN 

file size is a multiple of or equal to the Hadoop data block 

size. We compute the prefix length l such that filesize ≈ 

64 MB, where filesize is the size of the entire TIN 

dataset and 64 MB here corresponds to the default input 

split size in Hadoop. 

 
 

Algorithm 3 Optimized MapReduce Spatial Query 
 

 

1:  quad index: the quad index 

2:  tin point: a TIN point in space 

3:  ptree: the prefix tree 

4:  procedure MAP(quad index, tin point) 

5: read prefix tree, ptree from the global shared 

memory  

6: read the query area from the global shared 

memory   

7: search the prefix of quad index in the prefix 

tree, ptree until it ends at a leaf node 

8:            if search returns null then 

9:     // it means that the grid is outside the query 

area 

10:     return 

11: end if 
12: if leaf node is marked as “within” then 

13:     output tin point 

14: else 
15:     perform point within boundary computation 

16: end if 

17:  end procedure 

 
 

 

Fig. 9: File Organization 

 

5. EXPERIMENTAL EVALUATION 
In this section, we present the experimental evaluation of 

our proposed spatial query algorithm. We divide this section 

into three parts. First, we introduce the dataset and the 

computing environment used in our experimental study. We 

then evaluate and compare the polygon query and proximity 

query under different spatial indexing to see how the time 

cost of the spatial query jobs grows as the randomly 

generated query areas get larger. Finally, we run our 

algorithms on various sizes of Hadoop cluster to measure 

the efficacy of our approach across various cluster sizes. 

A.  Datasets and Experiment Environment 

For our datasets, we use the LIDAR data of Pittsburgh 

city and convert it into TIN format with the help of the 

LASTool (LAStools). The data of Pittsburgh has 

approximately 2000 MB and covers the area of 37.16𝑘𝑚2. 

The data is divided into 2*2 equally sized grid cells and 

there are 3 million points and 6 million triangles in each grid 

cell. 

We conducted our experiments on a cluster composed of 

6 servers. Each server in the cluster has an Intel Xeon 

2.2GHz 4 Core CPU with 16 GB RAM and 1 TB hard drive 

at 7200 rpm. There is one name node and six data nodes in 

our cluster (the name node is also a data node). 

 

B. Indexing Building Time 

We firstly demonstrate the time of building three spatial 

index (regular grid index, quad tree index, RTree index) 

through Hadoop on our cluster. For the regular grid 

indexing, we partition the city into 10*10 grids. For the 
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quad tree indexing, we set the depth of the quad tree as 5. 

As for the Rtree index on the Hadoop, we implement it as 

suggested in (Cary et al., 2009) and set the maximal child of 

each node as 8 and the minimal is 4.  From the table below 

we can see that the regular grid index building is the most 

efficient while quad tree index is just a bit smaller and the 

difference is very minor. They both are nearly double faster 

than the RTree index building. 

 
 Grid_Index QuadTree_Index RTree_Index 

Time Cost 

(seconds) 

35 36 77 

Table-1: The Spatial Index Process Time. 

C. Time Cost vs Query Area 

  We first demonstrate how the time cost of the polygon 

retrieval algorithm grows as a function of the query area 

size with different spatial indexing techniques. In this 

experiment, we use all of 4 grids’ of data of Pittsburgh as 

input (2000 MB). For each polygon retrieval, we generated 

a polygon area for the query randomly.  

Figure 10(a) - Figure 10(d) show the relationship 

between the time cost and the polygon query area with the 

cluster size of 1, 2, 4 and 6 respectively. From these figures 

we can see generally our proposed quad tree index with the 

acceleration of prefix tree does work fastest in almost all the 

cases. And generally as the query area gets larger, the 

advantage of quad-tree indexing with prefix gets more 

obvious. From the result, we also infer that our algorithm 

runs on average 20%-50% faster than other technique. As 

explained in Section IV, our proposed algorithm that quad 

tree indexing with prefix tree query significantly avoids the 

time consuming geometry floating point computation in the 

map phase. 

And the Figure 11(a) - Figure 11(d) show the relationship 

between the time cost and the proximity query area with the 

cluster size of 6, 4, 2 and 1 respectively. From these figures 

we can see the quad tree index with prefix tree is not better 

or even slower than the original quad tree index without 

prefix tree especially when the query area gets larger. It’s 

because the proximity query is very simple and cost little 

CPU time to compute. Hence building a prefix tree and run 

the search on prefix tree takes more time than computing the 

proximity query directly.  

From these two experiments we can see quad-tree index 

generally works very well. Yet we should use the quad-tree 

indexing flexibly with/without the prefix tree based on the 

exact query (polygon, or proximity). If the query is complex 

and cost significant amount of CPU time (like polygon 

query), we could use the prefix tree to accelerate this 

procedure. However if the query is pretty simple (like 

proximity query), we might just run the query directly.  

C. Time Cost Vs Cluster size 

We next evaluate the effectiveness of our polygon 

retrieval algorithm by varying the size of the Hadoop cluster 

in terms of the number of servers. For this experiment, we 

generated four random query shapes and used them to run 

queries on different cluster sizes. Figure 12 (a), (b) and (c) 

show the time cost on various cluster sizes when the query 

area is 0.833𝑘𝑚2, 2.239𝑘𝑚2, 8.352 𝑘𝑚2 respectively. We 

infer from Figure 12 (a), (b) and (c) that the execution time 

decreases gradually as the cluster size becomes larger. 

Overall, we find that the proposed technique scales well 

with the number of nodes in the Hadoop cluster showing a 

reduction in job execution time with increase in cluster size. 

But if the query area is relatively small, the time cost 

doesn’t decrease significantly as the cluster size gets larger. 

 
(a) Cluster - 1 Node       (b) Cluster - 2 Nodes 
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(c) Cluster - 4 Nodes      (d) Cluster - 6 Nodes 

Fig. 10: Polygon Query: execution time for various query area size 

 

(a) Cluster - 1 Node   (b) Cluster - 2 Nodes 

 
(c) Cluster - 4 Nodes    (d) Cluster - 6 Nodes 

Fig. 11: Proximity Query: execution time for various query area size 
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(a.1) Query area-1(0.833 𝑘𝑚2)  (a.2) Execution time under different cluster size 

  

      (b.1)  Query area-2 (2.239 𝑘𝑚2)  (b.2) Execution time under different cluster size 

   

(c.1) Query area-3 (8.352 𝑘𝑚2)  (c.2) Execution time under different cluster size 

Fig. 12: Impact of number of VMs 
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6. CONCLUSION 
In this paper, we presented a distributed spatial 

retrieval algorithm based on MapReduce to provide fast 

real-time responses to spatial queries over large-scale 

spatial datasets. Our proposed algorithm first 

hierarchically indexes the spatial terrain data using a 

quad-tree which filters out a significant amount of data 

in the pre-processing stage based on the query object. It 

then dynamically builds a prefix tree based on the quad-

tree index to query the relationship between the terrain 

data and query area in real time which leads to 

significant savings in both I/O load and CPU time. The 

evaluation results of the techniques in a Hadoop cluster 

show that our techniques achieve significant reduction 

in job execution time for the queries and shows a good 

scalability. As part of future work, we plan to develop 

distributed algorithms for other commonly used 

geospatial operations such as terrain visibility 

computation, flood simulation and 3D navigation 
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