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G-SIR: An Insider Attack Resilient
Geo-Social Access Control Framework

Nathalie Baracaldo, Balaji Palanisamy, and James Joshi

Abstract—Insider attacks are among the most dangerous and costly attacks to organizations. These attacks are carried out by
individuals who are legitimately authorized to access the system. Preventing insider attacks is a daunting task. The recent proliferation
of social media and mobile devices offer new opportunities to collect geo-social information that can help in detecting and deterring
insider attacks. In particular, such geo-social information allows us to better understand the context and behavior of users. In this
paper, we propose a Geo-Social Insider Threat Resilient Access Control Framework (G-SIR) to deter insider threats by including
current and historic geo-social information as part of the access control decision process. We include policy constraints to manage the
risks of colluding communities, proximity threats, and suspicious users while leveraging the presence of users around the requester to
make an access decision. By examining users’ geo-social behavior, we can detect those users whose access behavior deviates from
the expected patterns; such suspicious behaviors can point to potential insider attackers who may deliberately or inadvertently carry
out malicious activities. We use such information to establish how trustworthy a user is before granting access. We evaluate the G-SIR
framework through extensive simulations and our results show that the proposed approach is efficient, scalable and effective.
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1 INTRODUCTION

Insider attacks can have significant negative impacts over
organizational processes, reputation and revenue [1]. An
insider attack is performed by one or more users legit-
imately authorized to use a system in an organization.
Insider attackers use their authorized access to jeopardize
the organization by corrupting information, stealing or ex-
filtrating data or sabotaging operations. Negative impacts
of insider attacks include monetary losses, lawsuits, and
damage to reputation. In 2014, 28% of the respondents of the
US State of Cybercrime Survey [2] reported being victims
of insider attacks and 32% reported that insider attacks
were more damaging than attacks performed by outsiders.
Additionally, 31% of the respondents in that survey reported
incidents that could not be attributed with certitude to
insiders or outsiders; this indicates a lack of accountability
and suggests that there are possibly more incidents caused
by insiders.

The increasingly pervasive use of social media and mo-
bile technologies help us gather rich information related
to a user’s environment. Such information can be used to
determine the geo-social context of users to regulate accesses
to information assets as well as to identify suspicious or
dangerous behavior of users. There are various scenarios
in which the geo-social data about individuals can help
understand the level of risk associated with granting them
access to critical resources or data. For instance, an employee
in charge of accessing protected governmental data should
not be allowed to fraternize with individuals who belong to
groups outside the law, unless their jobs explicitly require
those interactions. Geo-social information is also important
to determine the required context for granting an access; for
example, by identifying where a user is requesting access
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from and who is in his proximity, it is possible to restrict
accesses that are too risky. In some cases, the system may
bootstrap the trust of users located around the requester
by requiring a particular set of users to be close to the
requester at the time an access is requested. In other cases,
when a user is requesting access to a confidential resource,
such as a sensitive file in the presence of other individuals,
the access may need to be denied because of its associated
confidentiality disclosure risk.

Despite the availability of data pertaining to the social
relationships of users and techniques to analyze it (see [3],
[4], [5], [6]), there has been few research efforts that focus
on leveraging geo-social information for mitigating insider
threats. In this paper, we propose a geo-social insider threat
aware methodology and access control (AC) system tailored
towards mitigating insider threats. We first present relevant
geo-social AC policy constraints which can be used to regu-
late accesses as well as to flag suspicious insiders. These
constraints allow us to identify and prevent accesses that
are too risky. We specify the types of geo-social information
that can be collected from both inside and outside of an
organization and illustrate how they can be incorporated in
the AC decision-making process. Rather than specifying the
techniques to crawl the data and analyze it from publicly
available sources, our goal is to provide a comprehensive
model of how to use it after its collection and how to
integrate it into an AC decision-making process to mitigate
the risk of insider threats.

Some recent work have incorporated geo-social context
of users as part of an AC policy [7], [8], [9], however, these
existing geo-social AC systems are not designed to take into
consideration suspicious user behavior and thus, they are
not designed to prevent insider attacks. Evidence shows
that technical and psychological precursors can be used to
determine when an insider is likely to become an attacker
and, therefore, they can help prevent some insider attacks
[1]. Hence, by monitoring, analyzing and acting upon sus-
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picious behavior, some insider threats can be mitigated. In
various adaptive AC approaches proposed in the literature
( [10], [11], [12], [13], [14], [15]), such information in an AC
policy serves to swiftly adapt to negative changes in users’
behavior. However, these approaches do not consider geo-
social information.

We identify the following key needs related to deterring
insider threats using geo-social information. First, to mini-
mize the risk exposure caused by insiders, it is necessary to
specify and differentiate between acceptable and unaccept-
able geo-social behavior. For this purpose, an AC model that
allows specification of policies that incorporate this type of
information is needed. Using geo-social information, it is
possible to determine how trustworthy users are by moni-
toring the places users have frequented and the interactions
between users. Users who consistently meet people and/or
visit places they should not, are clearly to be less trusted.
Additionally, to further manage the risk exposure, at the
time an access request is evaluated, a risk management pro-
cedure that considers geo-social aspects should be designed.
The risk management process should consider the behavior
exhibited by the requesting user, the risk introduced by
other users in the vicinity and any indicators of collusion.

The proposed Geo-Social Insider Threat Resilient Access
Control Framework (G-SIR) addresses the above needs and
is capable of deterring insider attacks by considering users’
geo-social context, their behavior and the risks associated
with granting access to a set of permissions. The key contri-
butions of this paper are summarized as follows:

• To the best of our knowledge, this is the first research ef-
fort to analyze geo-social AC systems with the objective
of protecting organizations against insider threats. We
present threats that are enabled by current geo-social
AC systems.

• To mitigate these threats, we propose an AC model
that includes a set of geo-social constraints to capture
acceptable and unacceptable geo-social behavior. The
proposed constraints include geo-social contracts, geo-
social obligations, traces and vicinity constraints.

• We propose a risk management framework that incor-
porates geo-social behavior of the users and adaptably
tunes the AC decision to minimize the risk. As part of
this process, G-SIR monitors users to identify those who
violate geo-social constraints to improve accountability
and determine how trustworthy users are. The risk
management procedure considers: i) how trustworthy
a user is with respect to his geo-social behavior, ii) the
user’s current geo-social context, iii) the context of
relevant social relationships, iv) existing indications of
collusion among individuals in the vicinity, and v) other
users in the vicinity who may compromise the security
of the information that is being accessed.

• Finally, we evaluate G-SIR through simulations to
demonstrate its effectiveness and feasibility.

The remainder of this paper is organized as follows.
In Section 2, we present the challenges and requirements.
In Section 3, we present some background on geo-social
AC systems. In Section 4, we present an overview of the
proposed framework. In Section 5, we present in detail our
proposed G-SIR model. The risk management procedure

is presented in 6. The proposed enforcement algorithm is
presented in Section 7. In Section 8, we present system
evaluation. In Section 9, we present the related work and
we conclude our paper in Section 10.

2 CHALLENGES AND REQUIREMENTS

Geo-social information can significantly help deter insider
threats. When an organization establishes a geo-social AC
system, it creates a unique opportunity to use the infor-
mation collected by the infrastructure to account for users’
behavior and make better AC decisions. These types of
controls help prevent some insider attacks. For example,
a user who is often at places that he is not supposed to
frequent should be flagged as suspicious and actions to
restrict his access to highly critical information should be au-
tomatically performed. This behavioral information should
be considered at the time AC decisions are evaluated.

However, designing a system that uses such information
without increasing the risk exposure is a challenging task.
Before outlining the concrete challenges and showing where
existing techniques fall short, we introduce the relevant
actors and components of the proposed system.

System Actors
A geo-social AC system has a social network graph, where
nodes represent users and edges represent relationships
among them. These relationships are annotated with labels
that represent the types of social relationships. Additionally,
a geo-social system has access to the location where users
are at any particular time. Users may issue access requests
and a policy can be defined to determine if an access request
should be granted or denied. Geo-social AC systems also
consider where the requester is located and who the users
in the vicinity are. This information is very useful because
it helps determine when the access request context is not
adequate to grant a requested access.

We classify users in the vicinity in three classes: enablers,
inhibitors or neutral users according to the way in which
they impact the risk exposure associated with granting an
access request. Enablers are users that may actually bootstrap
and/or enhance the trust of an access request by implicitly
vouching for the requester due to their social relationship
with the requester. Inhibitors, on the other hand, are users
whose presence increase the risk of granting an access and
neutral users are those whose presence does not increase
or reduce the risk of a request. For example, consider a
policy that requires a parent or a nanny to be in the same
room with a child requesting an access to a pay-per-view
movie. Here, the parent or nanny are enablers and the child
is the requester. An example of an inhibitor is a consultant
trying to access sensitive information in presence of another
consultant working for a competing company.

Insider Threats
An adaptive geo-social system to deter insider attacks
should be able to determine the risks associated with these
actors whenever an access request is evaluated. The risk
exposure increases with respect to adaptive AC systems
because enablers can influence the AC decisions as indicated
by the following threats.
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1. Collusion: The requester and enablers may decide to col-
lude and probe the system to try to access information that
they would not ordinarily have access to. Ways to collude
to probe the system include changing the current location
or trying to modify the social graph to gain more accesses.
These types of collusion attacks are new and have not
been considered by existing adaptive AC models. Although
existing geo-social AC models make use of statically defined
and enforced geo-social cardinality constraints to reduce the
risk of collusion, these constraints are not enough. A geo-
social cardinality constraint is a rule that helps establish
how many people need to be at a particular location for
a user to be able to exercise a privilege [7], [8], [9]. Even if
there is evidence that suggests a group of people is collud-
ing, existing geo-social cardinality constraints disregard this
information. As a consequence, colluding users may gain
access to critical information despite availability of evidence
of their malicious efforts.
2. Social engineering attacks: Social engineering attackers
convince other users to perform an action that they should
not perform under normal circumstances. For instance, an
enabler may be tricked by a malicious requester through a
social engineering attack to move to a location to allow his
request to be granted. Similarly, the requester may be tricked
to enter into a particular place and access some information.
3. Proximity threats: Users in the vicinity create multiple
risks based on the groups to which they belong (e.g., con-
flicting projects, or being part of social communities that
are undesirable for a particular access). When a user is in
the vicinity of a requester and poses too much risk, she is
classified as an inhibitor. A framework for insider attack
mitigation needs to be able to specify that whenever there
are one or more inhibitors, the access should be denied.
4. Inadequate policy enforcement: Although existing geo-
social AC systems specify policies that control access to
some resources based on the geo-social context of a user,
they do not account for negative geo-social behavior. Un-
desirable behavior may not be prevented by an AC policy
for reasons that include high costs of enforcement, incon-
venience, and people working around enforcement mecha-
nisms in place, as the following example illustrates. A user
may enter a restricted area (e.g., by door piggybacking),
where he should not be; however, he does not request any
access while in the forbidden place. In this scenario, current
geo-social AC systems are blind to the fact that the user
entered into a forbidden place. Although it is understood
that the user’s behavior is inappropriate, no enforced AC
policy is impacted by her behavior. Thus, current geo-social
AC policies are not enough to detect negative geo-social
behavior when it is not linked to an access request. As a
result, dangerous behavior may not be captured.

Given this inability to enforce desired policies, often
users are informed of the geo-social behavior they are ex-
pected to fulfill and are blindly trusted to do so. Such desir-
able behavior can be enforced through social contracts [16],
which are a tacit or verbal understanding between inter-
ested parties about each other’s expected behavior. We are
interested in social contracts that specify the whereabouts
and relationships that are appropriate or inappropriate for
the role that users play within an organization.
5. Privilege misuse threats: These threats occur when a

requester decides to abuse his privileges. Our framework
should also mitigate them by using historical behavior.

Requirements
Towards addressing these insider threats, we now discuss
the requirements for the proposed G-SIR framework:

1) Provide policy constructions to classify users in the
vicinity as enablers, inhibitors or neutral according to
the risk they impose, given an access request.

2) Include policy constraints to capture geo-social behav-
ior relevant to AC decisions. In particular, the system
should allow the specification of the following types of
policy constraints. i) geo-social contracts, which specify
places and people that a user cannot visit by virtue
of being assigned to a role in an organization, ii) geo-
social obligations, which are geo-social actions that a
user needs to perform after an access has been granted.
Geo-social actions include visiting or refraining from
visiting a particular place or person, and iii) trace-based
constraints, which reflect expected paths that users need
to complete before being granted an access.

3) Restrict accesses where the requester or any of the
enablers are violating any of his social contracts.

4) Monitor and analyze the behavior of users with respect
to the fulfillment of geo-social policy constraints. Users
violating policy constraints more often than their peers
are suspected of disregard of authority and, hence,
should be trusted less. Therefore, the estimated proba-
bility of the requester being an attacker should include
geo-social policy violations.

5) Mitigate the risk posed by colluding users by identi-
fying communities of colluding users and restricting
accesses where there is a strong indication that the
enablers and the requester are colluding.

6) Ensure that the AC system can adapt to negative
changes in behavior of users by restricting critical privi-
leges to users who do not behave properly. The decision
to grant or deny an access should consider the risk
exposure. G-SIR should minimize the risk exposure
caused by the requester, users in the vicinity and po-
tential collusion among enablers and the requester.

3 PRELIMINARIES

G-SIR makes use of the notions of social predicates and spatial
scopes introduced in Geo-Social RBAC model [9]. They are
defined as follows.
Social Predicates: A social graph can be represented as G =
〈V,E〉 where V is a set of vertices that represent users and
E is a set of edges that represent the existence of a social
relation between users. Edges may be also labeled to refine
further the types of relationships between users. Let W be
a set of social relation labels (e.g., nanny, spouse, etc.) that
may be organized in a hierarchy. W(i,j) represents the set
of labels of edge (i, j), for example, W(i,j)={nanny, aunt}
shows that user i is the nanny and aunt of user j.

Additionally, there is a set of social functions to
evaluate the social relations between users. Examples of
these functions include areFriends(vi, vj), haveSocialRela-
tion(label, vi, vj), socialDistanceLessEqualTo(vi, vj , k), isSupe-
rior(vi, vj), haveCommonNeighbor(vi, vj), areInClique(vi, vj),
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formAClique(vi, V ′ ⊆ V ), among others. Functions belongsTo-
Community(u, comm), and assignedToRole(u, r) are useful for
our framework and are defined in Table 1. Let F be the
set of social functions such as those mentioned above. We
define a Social Predicate S as S ::= S ∧ S|S ∨ S|f |¬f , where
f ∈ F and, for simplicity, parenthesis are omitted. In social
predicates we use ur to denote the requesting user and u? to
denote a user in the vicinity that is instantiated at the time
of evaluation of the policy.
Spatial Scopes: A Spatial Scope, SC, defines a place of
interest. It is defined as SC = 〈h, `〉, where h is a feature
and ` is a location function. A feature is a place of interest
in space, e.g., room 410, x-y coordinates of a location or
hallway. The geometry of these features are defined accord-
ing to the Open GeoSpatial consortium geometric model
[17]. Function ` evaluates where with respect to feature the
user needs to be located. For example, SC = 〈room420, in〉,
defines as spatial scope being inside room420 and SC =

〈radiusAround(u, 5feet), in〉, defines a circle with a radius
5 feet around the current position of user u. Function ` can
also be overlap, touch, cross, in, contains, equal, and disjoint
[17], and may also be defined using more refined proximity
functions as the ones defined in [8].
Role based access control (RBAC): RBAC is a widely
adopted AC model and has well established advantages
[18]. For this reason, G-SIR incorporates its concepts. In
RBAC there are permissions, roles, users and sessions.
Permissions and users are assigned to roles. To acquire
the permissions associated with a role, a user needs to be
previously assigned to it and needs to activate it in a session.

4 OVERVIEW OF THE PROPOSED G-SIR
At the core of the proposed G-SIR framework there is an AC
policy specification and enforcement mechanism designed
to leverage users’ geo-social behavior. The AC component
captures current and historic geo-social interactions to de-
termine whether an access should be granted or denied. Our
framework extends RBAC by allowing the specification and
enforcement of geo-social constraints. A role may be subject
to the following constraints.
• Spatial scope: A role may have a spatial scope that

defines a set of locations where it can be activated by
users assigned to it.

• Geo-Social Contracts: These constraints indicate places
that users assigned to the constrained role cannot visit
and people they cannot frequently meet.

• Vicinity constraints: These constraints impose restric-
tions on people that may or may not be at a certain
distance from the requester at the time of an access.
There are two types of vicinity constraints: inhibiting
and enabling constraints. i) Inhibiting constraints spec-
ify that a requested permission needs to be denied
when certain inhibiting users are in the vicinity. These
constraints are designed to avoid potential proximity
attacks, such as shoulder surfing attacks. For this, a
spatial scope where inhibitors cannot be located is
defined. ii) Enabling constraints are designed to verify
the validity of an access request by leveraging the trust
on other users in the vicinity of the requester. These
constraints specify who and how many people should
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Fig. 1. Overview of the proposed G-SIR framework

be in a spatial scope of interest. To enforce them, it is
important to ensure that the enablers and the requester
are not colluding to prevent insider attacks. We refer to
this as collusion-free enforcement.

• Geo-social trace based constraints: These constraints re-
quire a user to follow a particular geo-social path before
he can be authorized to access a particular resource.
They are often useful to ensure that users do not access
a resource without proper previous interactions.

• Geo-social obligations: These are geo-social actions that
users need to fulfill after they have been granted an
access.

The proposed constraints are useful in two ways. First,
they help capture inappropriate geo-social context and sub-
sequently deny accesses that violate the AC policy. Secondly,
monitoring the fulfillment of these constraints provides a
way to identify users’ whose geo-social behavior is fre-
quently questionable and outside of the expected patterns.

When users violate their geo-social contracts, do not
fulfill their obligations or traces, G-SIR flags them as sus-
picious. Because some of the constraints may be more im-
portant than others, their violation has a criticality value.
The observations of suspicious geo-social behavior are used
to obtain the likelihood of insider attacks and, ultimately, to
determine the risk exposure of granting an access.

Figure 1 presents the architecture of G-SIR. All monitor-
ing and likelihood computations described take place in the
Monitoring, Context and Inference Module. It determines the
context of a user, which includes information such as the
current device used by the user, type of connection used,
etc. The Access Control Module is in charge of making the
AC decisions. To determine if an access request should be
granted, all applicable geo-social constraints are verified.
This module also verifies if the risk exposure of granting
access to a set of requested permissions is tolerable to allow
the access. To manage the risk exposure, at the time of policy
specification, the system administrator should perform a
utility elicitation process. During this process, described
in Section 6, the possible costs of misuse of granting a
malicious access, the cost of denying a non-malicious access
and gain of allowing a non-malicious access are analyzed.
Through this analysis, a threshold that determines the max-
imum tolerable probability of attack is found. If the proba-
bility of attack is too high according to the risk management
procedure, the access is denied. Otherwise it is granted.

The steps performed by the Access Control Module are as
follows. Each access request, Qu=〈u, P ′〉, where u denotes
the user requesting permission set P ′, is received by the
Policy Enforcement Point (PEP). Then, it forwards them to the
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Policy Decision Point (PDP) which retrieves the policy stored
in the Policy Information Point (PIP) and evaluates it. An
access request is granted by the PDP if the user is assigned to
the required roles and all conditions are satisfied; otherwise
it is denied.

The implementation of G-SIR requires integrating a lo-
cation service and a social network service. With respect
to OSNs, existing providers such as Facebook and Twitter
offer APIs to query the social graph. These APIs are a good
way to obtain social information. With respect to location,
most organizations are located inside buildings and require
the use of indoor location services that may include the use
of RFID, Wi-Fi, iBeacons, video cameras, Bluetooth, among
others [31]. New methodologies may be developed in the
future to systematically deploy reliable and tamper-proof
indoor location systems, where users trying to manipulate
their reported locations can be identified and flagged as
suspicious. This requires orchestrating multiple location
technologies to devise a cost-effective deployment solution.

In the next section, we present the proposed AC model.

5 G-SIR ACCESS CONTROL MODEL

The G-SIR access control model consists of sets of roles R,
users U , actions A, objects O and sessions S. Permissions
are defined as P = A × O. Users are assigned to roles, and
roles are assigned permissions.

Let X be a set of contexts dynamically associated with
users. The context of user u is denoted as Xu. Let E be a
set of enabling constraints and I be a set of inhibiting con-
straints. Additionally, let GC and B be the sets of geo-social
contracts and geo-social obligations, respectively. Finally, let
W be a set of geo-social traces. All these constraints are
formally defined later.

Definition 1. A role r ∈ R in G-SIR access control model is
associated with a constraint vector CVr = 〈SC, E , I,W,GC,B〉
where:
• SC is the spatial scope where the role can be activated.
• E ⊆ E and I ⊆ I represent the constraints enforced over the

users in the vicinity, where E defines the required enablers, and
I defines inhibitors.

• W ⊆W is a set of geo-social trace constraints.
• GC ⊆ GC is a set of geo-social contracts.
• B ⊆ B is a set of geo-social obligations.

To refer to a constraint of a role, we use the dot notation,
e.g., r.SC returns the spatial scope of role r and r.I returns
its inhibiting constraint. In section 5.6, we specify how a role
can be activated in a session. We make use of the functions
presented in Table 1. We also use the dot notation to refer to
components of tuples. We now define the above constraints.

5.1 Geo-social Contracts
Geo-social contracts are used to establish acceptable and
unacceptable geo-social behavior for different roles. Geo-
social contracts are assigned to a user when he is assigned
to a role. These contracts need to be fulfilled at all times.

Definition 2. A Geo-Social Contract gc ∈ GC is defined as
gc = 〈ω, ϕ〉 where
• ω = 〈SC,S〉, here SC represents a spatial scope indicating

places that users subject to gc are not allowed to visit, and S is a
social predicate that defines undesirable acquaintances. When a

component in ω is set to ⊥, (e.g., ω.SC = ⊥), it indicates that
it is not considered during the enforcement.

• 0 ≤ ϕ ≤ 1 represents how critical it is for the organization if
a user violates the contract. Here, ϕ = 1 means that it is very
critical while ϕ = 0 means not critical at all.

If user u is assigned to a role set Ru ⊆ R, to be allowed
to activate any role in Ru, he needs to fulfill all geo-social
contracts associated with each role in Ru.

Example 1. (a) Consider a user Bob who is assigned to role
secretary; by being assigned to this role, he cannot access a
laboratory where highly reactive chemicals are located because he
is not trained to deal with dangerous chemicals. If Bob accesses
the lab, there is an inherent risk of mishandling substances that
may lead to accidents and loss of lives and intellectual property.
For this reason, a violation of this contract will result in a
high risk for the organization. This constraint can be expressed
as follows: gc1 = 〈〈〈chemicalLab, in〉,⊥〉, 0.9〉. (b) Consider a
consulting firm that may have projects from multiple competing
companies, say X and Y . The consulting firm needs to ensure
that the projects are completely compartmentalized to be able to
offer a quality consulting service. Besides enforcing separation
of duty –where no user can be assigned both roles, namely
consultant for X , rx, and consultant for Y , ry – it is desirable
that people belonging to conflicting projects are not together
to avoid leakage of information. Contractors that have multiple
clients often require this type of control. These constraints can
be expressed as follows: gc2 = 〈〈⊥, assignedToRole(u?, rx)〉, 0.5〉
and gc3 = 〈〈⊥, assignedToRole(u?, ry)〉, 0.5〉. gc2 is associated
with role ry and gc3 is associated with role rx. As the previous
scenarios show, not all contracts are the same in terms of risk
exposure. An untrained person entering a lab that has a lot of
volatile chemicals poses higher risk compared to the same person
entering into a meeting room reserved for a team working in a
classified advertisement. Hence, gc1.ϕ > gc2.ϕ.

5.2 Vicinity Constraints

Inhibiting and enabling constraints are designed to classify
users in the vicinity as enablers, inhibitors or neutral.

Definition 3. An Inhibiting Constraint ci ∈ I is defined as
tuple 〈X,SC,S, α〉 where
• X ⊆ X is a subset of contexts where the inhibiting constraint is

applicable,
• SC defines the spatial scope where the inhibiting constraint is

evaluated,
• S defines the predicate used to classify users in the vicinity as

inhibitors and
• α is a threshold to determine the minimum level of confidence

needed to decide if a user should be made part of the inhibiting
group.

We say that if there is a set of one or more users Uci in
location ci.SC, who fulfill social predicate ci.S with a minimum
confidence level of α, the constraint is not satisfied and the access
should be denied to prevent potential information leakage.

At the policy evaluation time, G-SIR verifies if the re-
quester’s context is one of the context specified in X . If
it is, the inhibiting constraint is evaluated otherwise it is
ignored. This helps specify policies where the device the
user is utilizing may influence the size of the spatial scope
evaluated as illustrated in the following example.
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Function Meaning
assigned(u ∈ U) Returns the set of roles that u is assigned to.
Pau(r ∈ R) Returns the set of permissions assigned to r.
Pau(R′ ⊆ R) Returns the set of permissions assigned to all roles in R′.
validLocation(u, r) Returns true if the current location of u satisfies the spatial scope of r.SC.
vicinity(SC) Returns a set of users located in the place specified by spatial scope SC.
PrCollusion(Uc ⊆ U) Returns the probability that users in Uc are colluding.
belongsToCommunity(u ∈ U , comm) Given a user u and a community comm, returns true if the user is part of comm.
assignedToRole(u ∈ U , r ∈ R) Given a user u and a role r, returns true if u is assigned to r.
fulfillSocialPredicate(ur, uc,S) Returns true if users uc and ur fulfill social predicate S.
fulfillContracts(u ∈ U) Returns true if user u ⊆ U currently satisfies all his contracts. It evaluates the union of all

contracts assigned to roles in assigned(u).
inhibitors(ur ∈ U, r ∈ R) Given a requester ur and a role r, evaluates each ci ∈ r.I and returns the union of all users

classified as inhibitors as per Definition 3. If inhibitors(ur, r) = ∅, all ci ∈ r.I are satisfied.
enablers(ur ∈ U, r ∈ R) Given a requester ur and a role r, returns a set Ue ⊆ U , if it exists, that satisfies all enabling

constraints r.E according to Definition 5. Otherwise it returns ∅. If r.E = ∅, it returns ∅.
completeTraces(r ∈ R, u ∈ U) Returns true if user u has completed traces r.W .
traceContains(w ∈ W, node) Returns true if trace w contains node as part of its spatial scope w.SC.
disjoint(SCi, SCj) Given two spatial scopes SCi and SCj , returns true if the SCi is disjoint in SCj .
fulfillO(u ∈ U, r ∈ R) Returns true if user u satisfies obligations r.B and all his geo-social contracts.

TABLE 1
Function specifications for G-SIR.

Example 2. Assume smartphone, laptop and presenter are
contexts of interest. Consider a requester ur who is assigned
to role r1 with inhibiting constraints r1.I = {ci1, ci2}, where
ci1 = 〈{laptop, smartphone}, 〈radiusAround(ur, 5feet), in)〉,
belongToCommunity(u?,BadGuys), 0.95〉 and ci2 = 〈{presenter},
〈conferenceRoom, in〉, belongToCommunity(u?,BadGuys), 0.95〉.
When ur is using a laptop or smartphone, ci1 is evaluated to
verify the presence of inhibitors within a 5feet radius. If ur is
using a presenter, ci2 is evaluated to verify that no inhibitors are
present in the conference room. In both ci1 and ci2, a vicinity
user is classified as inhibitor if he belongs to the community
BadGuys with a confidence level of 0.95 or more.

Definition 4. An Enabling Constraint ce ∈ E is defined as
a tuple 〈SC, k,S, τc〉 such that SC is a spatial scope where k
users who fulfill social predicate S with respect to the requester
need to be located, and 0 ≤ τc ≤ 1, is a threshold that defines the
maximum tolerance for colluding users.

Here, ce.τc is the maximum acceptable probability of
collusion and should be specified based on the risk of an
access. A larger ce.τc reflects more tolerance to collusive
behavior. In fact, if ce.τc = 1, the collusion indicators
are not considered at all. In contrast, when ce.τc = 0
any suspicion of collusion results in invalidating a set of
enablers. Threshold ce.τc provides a way to determine when
a set of potential enablers cannot be trusted. It is compared
with the value obtained by function PrCollusion, which
depends on the organization’s activities and can be found
through methodologies such as those presented in [19], [20].
Consider a candidate set of enablers Ue, if PrCollusion(Ue)
> ce.τc, the candidate enablers are rendered untrustworthy.

ce.S may be evaluated based on uncertain information.
For example, a social graph may be evaluated to identify if
users belong to dangerous communities through algorithms
such as those presented in [4], [5], [6]. These algorithms out-
put a set of communities and a confidence level of the result.
ce.α determines the minimum confidence level required to
classify a user as part of a community. In contrast, when ce.S
is evaluated based on information that is well-established,
ce.α can be set to one.

Example 3. Consider role r2 with a set of enabling con-
straints r2.E = {ce1}. Enabling constraint ce1 is defined as:
〈〈conferenceRoom,in〉, 4, areFriends(u?, ur), 0.8〉. ce1 requires four
users who are friends of the requester to be in the conference room
and for them to be non-colluding with a probability of 0.8 or more.

Definition 5. Given a requester ur , an enabling constraint ce =
〈SC, k,S, τc〉 is said to be satisfied if and only if there exists a
set of enablers Ue such that ∀ ue ∈ Ue :

1) ue ∈ vicinity(ce.SC) .
2) fulfillSocialPredicate(ur, ue, ce.S)
3) PrCollusion(Ue ∪ ur) ≤ ce.τc
4) fulfillContracts(ue)

5) |Ue| ≥ ce.k

In the previous definition, the risk of including invalid
enablers is controlled in two ways. i) by verifying that the
probability of collusion between the set of enablers is less
than the specified confidence threshold and ii) by verifying
that none of the enablers is violating any of his contracts.
This mitigates potential social engineering attacks where an
enabler is tricked into going to the required spatial scope
ce.SC to satisfy enabling constraint ce. It similarly thwarts
attacks where the requester and enablers probe the system
to see what accesses they can obtain.

Conflict Resolution: Because inhibiting and enabling
constraints are evaluated dynamically based on who is
located in the vicinity at the time of the access request, it
is possible that one or more users in the vicinity may be
classified as both inhibitor and enabler. We call this a vicinity
conflict. It arises when for a given role, inhibitors(ur, r) ∩
enablers(ur, r) 6= ∅. For ce ∈ r.E and ci ∈ r.I , recall
that ce.S specifies social relations of the users, whereas
ci.S specifies users in the vicinity suspected of belonging to
dangerous or undesirable communities for an access. Hence,
a user may be related to another and at the same time be
suspected of participating in a non-desirable community
according to ci. This may occur for instance, when a user is
suspected of being a spy. By design, this conflict is resolved
in G-SIR through deny overrides: if a user is classified as
inhibitor, the access request is denied.
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5.3 Geo-Social Obligations
Geo-social obligations establish that after activating a role,
the requester needs to visit or cannot visit a particular place
or interact with people within a predefined period of time.

Definition 6. A Geo-Social Obligation b ∈ B is defined as
〈dir,D, ϕ〉 where
• dir is the directive that users subject to b need to fulfill.
dir ∈ {〈+meet,S〉, 〈+visit, SC〉, 〈−meet,S〉, 〈−visit, SC〉}.
Here, +meet, means that the user should meet a targeted person
or group as defined by social predicate S, while -meet means that
the user should not meet the person or population. Similarly,
+visit means a user needs to visit spatial scope SC and -visit
that he cannot visit it.

• D indicates the time duration when a user has to fulfill obliga-
tion b after b has been triggered and assigned to him.

• 0 ≤ ϕ ≤ 1 is a value that represents how critical it is for the
organization if a user violates the obligation. Here, ϕ = 1 means
that it is very critical and ϕ = 0 means it is not critical at all.

G-SIR instantiates each triggered obligation and moni-
tors its state. Suppose user u activates role r and b ∈ r.B.
The framework creates a record that contains u, b, the time
of activation t, and state of b, which can be pending, fulfilled
or violated. The obligation should be fulfilled within the
interval [t, t + b.D]. The obligation’s state is pending when
user u has not fulfilled it and the deadline has not passed.
The state changes to fulfilled if u successfully fulfills b and to
violated if the user does not complete the required condition
before b.D elapses.

Example 4. After activating a role, r, users may not enter the
server room where the tenant’s machines are stored and cannot
meet people associated with community Y. Hence, r.B={b1, b2},
where b1=〈〈−visit, 〈serverRoom, in〉〉, 1month, 0.7〉 and
b2=〈〈−meet, belongsToCommunity(u?, Y )〉, 1year, 0.5〉.

5.4 Geo-Social Trace Constraints
Geo-social traces specify the locations and social interactions
that are required before activating a role. When a user wants
to activate a geo-social role, his traces are evaluated to see
if they match the expected ones. If they do not match, the
access request is denied.

Definition 7. A Geo-Social Trace Constraint w ∈ W is a
tuple w = 〈lst,D, ϕ〉 where
• lst = 〈〈SC1,S1〉1, ...〈SCn,Sn〉n〉 is a list of places and/or peo-

ple that the requester needs to visit and/or meet. SCi represents
a spatial scope and Si a social predicate that defines people that
the requester needs to meet. When SCi or Si is set to ⊥, it
indicates that the component needs no consideration.

• D is the duration that defines how long ago with respect to
the current time in the recent past the trace should have been
satisfied.

• 0 ≤ ϕ ≤ 1 is the criticality associated with not completing the
trace as expected.

In the previous definition w.D specifies that only recent
traces are relevant. If a user is requesting access to a role
that requires the fulfillment of w.D at time t, the user should
have completed the trace within [t− w.D, t].

Recall that a single role may have one or more geo-social
trace constraints; for a role r the set of geo-social traces
is denoted as r.W . We use function completeTraces(r, u) to
verify if u’s traces satisfy all the geo-social trace constraints
w ∈ r.W associated with r.

Example 5. Consider a medical doctor who is required to go to
the Sanitizing Facility before entering into the Neo-natal Unit
where new babies are born. This constraint can be expressed
as w1=(〈〈Sanitizing Facility, in〉,⊥〉, 15minutes, 0.8), which is
a trace constraint that requires the doctor to go to the Sanitizing
Facility before being able to activate the role that allows him to
enter into the Neo-natal Unit. If the user tries to gain access to
a new-born unit without passing through the Sanitizing Facility,
the impact of his actions may be severe because of the germs that
he may be bringing to the newly born babies who are especially
susceptible to infectious diseases. Hence, the criticality of the
obligation is large, w1.ϕ = 0.8. At the verification time, the
system verifies that the requester completed the trace within the
past 15 minutes. If he did not, completeTraces(r, u) returns false
and the role cannot be activated.

5.5 Well-Formed Policy
For G-SIR to work properly, it is necessary to ensure that
the policy specification is consistent. Contracts are rules that
forbid some interactions and movements; if they are vio-
lated access is denied. Hence, they should not conflict with
any of the other constraints. Additionally, users should not
be subjected to contradictory constraints. In Appendix A,
we formally define the conditions to verify when a policy
is well-formed. Whenever a new role is created or a user is
assigned to a role, it is necessary to ensure that the resulting
policy is well-formed according to those conditions.

5.6 Role Activation
With all the geo-social constraints specified, we now define
how to make AC decisions in G-SIR.

Definition 8. A role r with constraint vector CVr =
〈SC, E , I,W,GC〉 is said to be fulfilled for user ur ,
fulfilled(ur, r), iff the following conditions are satisfied:

1) r ∈ assigned(ur)
2) validLocation(ur, r)
3) completeTraces(r, ur)
4) fulfillContracts(ur)
5) inhibitors(ur, r.I) = ∅
6) If r.E 6= ∅, then enablers(ur, r) 6= ∅

Otherwise r is not-fulfilled for ur .

We now define how the system decides to grant or deny
an access request Qu.

Definition 9. An access request Qu = 〈ur, P ′〉 is granted under
context Xu, if and only if there exists a set of roles R′ ⊆ R such
that all of the following conditions are fulfilled:

1)
⋃

r∈R′ Pau(r) ⊇ P ′ (Roles in R′ provide the requested permis-
sions),

2) ∀ r ∈ R′ : fulfilled(ur, r) (Definition 8)
3) RiskMan(Qu,Xu) = true

The last condition specifies that for Qu to be granted, its
associated risk should be acceptable according to function
RiskMan. Next, we present how to compute RiskMan.

6 G-SIR RISK MANAGEMENT

In this section, we present how to compute RiskMan. Be-
cause utility theory has been recognized as a useful method-
ology to make decisions under uncertainty [21], we utilize
it to formulate our decision-making process. A utility value
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represents the preferences of a decision maker. It is often
useful to think of utility as a measure of satisfaction. A higher
utility indicates a higher preference for an outcome and
in combination, utility values reflect the preferred order of
different outcomes. As it is customary, we define the utility
value as a number between 0 to 100.

Consider an access request Qu = 〈ur, P ′〉 and letR′ ⊆ R
be a set of roles that could satisfy the access request for ur .
We denote by A the uncertain event of Qu being issued to
compromise the system (an attack) and Ā the complemen-
tary event (Qu is a non-malicious request). We denote the
probability of event A (attack) as q, hence the probability
of event Ā (no-attack) is (1 − q). Similarly, let G represent
allowing access and Ḡ represents the decision to deny access.

The utility depends on the context of the user Xu and the
permissions that ur would obtain throughR′. There are four
possible outcomes with corresponding utilities, of granting
or denying Qu. These are: i) UR

′,Xu

Ḡ/A is the utility of denying
access to roles R′ under context Xu given that the access
request is an attack, ii) UR

′,Xu

Ḡ/Ā is the utility of denying access
toR′ under contextXu given that the access request is not an
attack, iii) UR

′,Xu

G/A is the utility of granting access to R′ under
context Xu given that the access request is an attack, and iv)
U
R′,Xu

G/Ā is the utility of granting the access when it is not an
attack. Henceforth, we do not explicitly indicate the request
being evaluated Qu, the set of roles R′ and current context
Xu to simplify the notation. The expected utility (EU) of
denying and granting access is computed as follows:

EU(Ḡ) = q ∗ UḠ/A + (1− q) ∗ UḠ/Ā (1)
EU(G) = q ∗ UG/A + (1− q) ∗ UG/Ā (2)

An access request should be granted when EU(Ḡ) ≤
EU(G), otherwise it should be denied. Therefore, the thresh-
old to decide when an access should be granted or denied
can be computed by equalizing equations (1) and (2), where
the only unknown value in the resulting equation is q.
Solving for q, we find the threshold value for an access as
per the following definition.

Definition 10. Given the utility values UḠ/A, UḠ/Ā, UG/A and UG/Ā
for context Xu, request Qu for which a set of roles R′ are enabled
for ur , the decision-making threshold is defined as follows:

τ(R′,Xu) =
UG/Ā − UḠ/Ā

UḠ/A + UG/Ā − UG/A − UḠ/Ā

If τ > 1 then τ = 1 and if τ < 0 then τ = 0.

The utility values depend on the context and request;
hence, a different threshold is used for each context and re-
quest. The risk management procedure is defined as follows.

Definition 11. LetR′ be a set of roles enabled for ur that satisfies
request Qu under context Xu. The risk management decision-
making process is as follows:

RiskMan(R′,Xu) =

{
true if τ(R′,Xu) > Pr[A | Xu, R

′]

false if τ(R′,Xu) ≤ Pr[A | Xu, R
′]

where Pr[A | Xu, R
′] is the probability of Qu being an attack

given Xu and R′.

Example 6. Consider a doctor trying to access a patient’s record
in two different contexts. Suppose that a set of roles R′ could

satisfy the doctor’s request, Qu. In context Xu1, he is trying
to access from an emergency room and in context Xu2 he is
requesting the same record from his home. The utility values
for both contexts and the threshold values are presented in Table
2. Because the utility is a measure of satisfaction, the utility of
granting access in an emergency room is larger than denying
the access when the doctor is at home when there is no attack.
This is true considering that granting access to a patient’s data
from the emergency room may save the patient’s life. Similarly,
U
R′,Xu1

Ḡ/Ā < U
R′,Xu2

Ḡ/Ā , because we would be less satisfied to have an
access denied in the emergency room than in the other context.
Given these utilities, the thresholds are computed according to
Definition 10. Suppose Pr[A | Xu1, R

′]=Pr[A | Xu2, R
′]=0.8.

In this case, we have τ(R′,Xu1)=0.85 > 0.8, so the access
is granted. This is equivalent to finding the expected utilities
in equations (1) and (2), for which the analysis shows that
EU(G,Xu1)=18 and EU(Ḡ,Xu1)=13. Since the expected utility
of granting is greater than the utility of denying the access, in
this case, the best decision is to grant the access. In context Xu2,
τ(R′,Xu2)=0.71 < 0.8, so the access is denied. Hence, when the
access is from home, Xu2, the system requires a larger assurance
that the request is not an attack, whereas in a more critical type
of access such as Xu1, the system is more tolerable to the risk of
attack because the associated utility values allow a riskier behavior.

Utility for Qu, R’
Context UG/A UG/Ā UḠ/Ā UḠ/A τ

Xu1 (emergency room) 0 90 5 15 0.85
Xu2 (remote access) 0 70 10 25 0.71

TABLE 2
Example utility values for two different contexts.

Obtaining Utility Values: Utility values are subjective in
nature and, therefore, each organization should elicit them.
An in-depth review of the widely studied utility elicitation
process can be found in [21]. Utility values should satisfy
the following relations to be correct. First, UG/A < UG/Ā, as
an organization would be clearly more satisfied if an access
request is granted and it turns out to be a legitimate access
request, than if granting access results in an attack. Similarly,
UḠ/A < UḠ/Ā, because an organization is more satisfied if an
access request issued to attack the organization is denied
than if a non-malicious access is denied.

7 ENFORCEMENT ALGORITHM

To enforce the G-SIR policy, we propose Algorithm 1. The
inputs to the algorithm are the requester ur , a set of re-
quested permissions P ′, the location of the requester Lu and
his context Xu. The algorithm looks for a set of roles R′ to
satisfy the access request. If at the end of the execution R′ is
empty, the access is denied. Otherwise, it is granted. Next,
we describe the working of the algorithm.
Candidate role selection: First, the algorithm verifies if the
requester ur is violating any contract in line 2, and if he is,
the access is denied. Next, in line 4 the set of candidate roles
Ravail is found using function getCandidateRoles (presented
in line 11). In line 12, the function verifies if all permissions
in P ′ can be obtained through the roles assigned to ur .
If not, the request cannot be granted because there are
no roles assigned to ur that provide P ′. In which case,
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Algorithm 1 Geo-Social Decision Making Process
Input: ur := requesting user, P ′:= Permissions requested, Lu:= location
of ur , Xu:= context of ur .
Output: R′:= set of roles that fulfill Definition 9. If R′ 6= ∅, the access is
denied. Otherwise, roles R′ can be activated to grant the access request.

1: findGeoSocialRoleActivationSet(ur, P ′,Lu,Xu)
2: if ¬fulfillContracts(ur) then
3: return ∅ {Request denied}
4: Ravail ← getCandidateRoles(ur, P ′,Lu) {Candidate roles}
5: if Ravail = ∅ then
6: return ∅ {Request denied}
7: Rsel ← ∅ {Selected roles so far}
8: Prem ← P ′ {Set of permissions that haven’t been found}
9: R′ ← selectRolesMinimumRisk(Prem, Ravail, Rsel, ur,Xu)

10: ——————————————————————————
11: getCandidateRoles(ur, P ′,Lu)
12: if (P ′ \ Pau(assigned(ur))) 6= ∅ then
13: return ∅ {Authorized roles cannot provides P ′}
14: Ravail, Ri ← ∅
15: for all r ∈ assigned(ur) do
16: if (Pau(r) ∩ P ′ 6= ∅) then
17: Ri ← Ri ∪ {r}
18: for all r ∈ Ri do
19: if validLocation(ur, r) ∧ completeTraces(r, ur)

∧ (inhibitors(ur , r) = ∅) then
20: if enoughNonColludingEnablers(r, ur) then
21: Ravail ← Ravail ∪ {r}
22: if (P ′ \ Pau(Ravail)) 6= ∅ then
23: return ∅ {Roles in Ravail cannot provides P ′}
24: return Ravail
25: ——————————————————————————
26: enoughNonColludingEnablers(r, ur)
27: for all ce ∈ r.E do
28: Uavail ← ∅
29: Uv ← vicinity(ce.SC) \ur
30: if |Uv | < ce.k then
31: return false
32: for all uv ∈ Uv do
33: if fulfillContracts(uv)

∧ fulfillSocialPredicate(ur, uv , ce.S) then
34: Uavail ← Uavail ∪ {uv}
35: if ce.k ≤ |Uavail| then
36: found← false
37: while Ua ⊆ combinations(Uavail, ce.k) ∧ ¬found do
38: if PrCollusion(Ua ∪ {ur}) < ce.τ then
39: found← true
40: if ¬found then
41: return false {Couldn’t find enablers for ce}
42: else
43: return false {Not enough users in Uavail}
44: return true {All enabling constraints are satisfied.}

an empty set of available roles is returned and the access
is denied. Otherwise, the function continues its execution
initializing variables Ravail and Ri. Ravail is a set used
to store roles assigned to ur that have all its constraint
vectors fulfilled according to Definition 8.Ri is a set variable
used to store roles that provide one or more permissions
in P ′. Both Ravail and Ri are initially empty. In line 15,
all roles assigned to ur are evaluated and only those that
provide requested permissions are added to Ri. Then, in
line 18 all roles in Ri are verified to see if their constraint
vectors are satisfied. This verification consists of evaluating
the following conditions (line 19): that ur’s current location
allows the activation of r, that ur has completed the traces
required for the activation of r and that there are no users
in the vicinity who conflict with r’s inhibiting constraint.
If these conditions are satisfied, the function proceeds to
evaluate if the enabling constraints associated with r are also
fulfilled. For this purpose, in line 20 a function that verifies
r’s enabling constraints is invoked (we discuss this function
later). If r’s constraint vector is satisfied, r is added to Ravail

in line 21. Hence, Ravail only contains roles with fulfilled
constraint vector. Because Ravail may be a subset of Ri, one
last verification is performed. In line 22, roles in Ravail are

verified to see if they can provide all the permissions in P ′.
If they cannot, the function returns an empty set and the
access is denied. Otherwise, Ravail is returned in line 24.
Finding non-colluding enablers: To find the set of non-
colluding enablers function enoughNonColludingEnablers is
invoked in line 20. This function is presented in line 26.
Variable Uavail is initially empty and is used to store users
who are potential enablers. For each enabling constraint ce
associated with role r (line 27), the set of users in the vicinity
are retrieved and stored in Uv (line 29). Users in Uv are
examined to determine if they are violating their contracts
or do not fulfill the required social predicate (line 33). Only
users who are not violating their contracts and fulfill ce’s
social predicate are added to Uavail. After that, if Uavail does
not have the required ce.k the function returns false to show
that there are no valid enablers for r (line 43). Otherwise,
groups of size k are evaluated in line 37. If none of the
groups evaluated are collusion free, the function returns false
to show that there are no valid enablers for ce. If a group Ua

is found to be non-colluding with the required probability,
ce is satisfied and variable found is set to true to show that
there is no need to continue examining other groups. It
is necessary to ensure that all enabling constraints in r.E
are satisfied; hence, the function continues evaluating all
constraints (for loop line 27). If after all constraints ce ∈ r.E
have been evaluated and a set of collusion free enablers has
been found for each ce, the function returns true in line 44.
Selection of roles to activate with minimum risk: After
Ravail is found, it is guaranteed to uniquely have roles
assigned to ur for which corresponding constraint vectors
are fulfilled. If Ravail is empty, there are no roles and the
access is denied (line 6). Otherwise, the algorithm proceeds
to find the roles to be activated. There may be multiple
subsets of roles in Ravail that could satisfy the request.
To select the set of roles to be activated, we use the risk
exposure function in Definition 11 and, in line 9, invoke
our previously proposed algorithm presented in [22], which
selects the set of roles that minimizes the risk exposure.
After function selectRolesMinimumRisk is invoked, it returns
the set of roles with minimum risk exposure that can be
activated by ur to satisfy the request. If the function returns
an empty set, no role can be activated to satisfy the access
request and the access is denied. Otherwise, the access is
granted by activating R′.

8 EXPERIMENTAL EVALUATION

We evaluate the proposed system using a discrete indoor
simulator implemented in Java. We describe the experimen-
tal setup and then the experimental results. Our dataset can
be download from https://github.com/NathalieB1/G-SIR.git

8.1 Experiment Setup

Generation of social graph and user mobility: For simu-
lating user mobility, we randomly generated a map where
the assumed organization is located, as follows. First, we
specified a size of a Cartesian rectangle. Then, we randomly
selected the points where places are located on the map.
These places were also randomly connected according to
the parameters specified in Table 3. In our implementation,
we used a graph abstraction where vertices represent the

https://github.com/NathalieB1/G-SIR.git
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places on the map and edges represent connections between
places (e.g., corridors). At the beginning of the simulation,
all users were randomly placed on the map. Each policy
was evaluated at multiple time instants, and at every time
instance users could move around the map to adjacent
places or stay in their current positions.

Social graphs were generated using the Jung API pro-
vided in [23]. We evaluated the effect of representative types
of network topologies on the system. We evaluated topolo-
gies commonly observed in social networks according to
[24]: preferential attachment, small world, power law and a fully
connected network. All graphs evaluated were undirected.
Generation of policy and access requests: Policies were
randomly generated using the parameters presented in Ta-
ble 3. We ensured that all policies used in the experiments
were well-formed according to the Appendix. We selected
the values of the parameters inspired by previous works
such as [10], [25], which evaluate RBAC policy enforcement.
To the best of our knowledge, no earlier work includes the
evaluation of geo-social policies. We adjusted some parame-
ters and included new ones to incorporate unique geo-social
features. In this section, we test different values for those
parameters to show their effect. Roles’ activation thresholds
(which represent the maximum tolerable probability of at-
tack, Definition 10) were randomly assigned between 0 and
0.5 to represent that the information accessed through those
roles is valuable. The probabilities of attack used for the risk
management procedure were randomly generated for each
user. We evaluated the effect of the estimation error in one
experiment. Throughout the simulation, the probabilities of
attack for each user were randomly updated. Initially, the
probabilities of attack were set to 0.01.

To generate inhibiting constraints, we created three
classes of confidential data and assigned to each class a
color that represents the type of individuals who should
not be allowed to access it. When a role was generated with
an inhibiting constraint, one color was randomly selected.
At the beginning of the simulation, we randomly selected
inhibiting users and tainted them with a random color.

Enabling constraints were randomly generated to re-
quire k users related by friendship to the requester in
the spatial scope of the role to be activated. Colluding
communities were randomly generated. We considered two
parameters, the number of colluding communities and the
number of members per each colluding community. For
each community, we randomly selected a user and marked
him as colluding and then, continued choosing some of his
friends as colluding until the number of colluding users per
community was reached.

Trace constraints were generated randomly verifying
that the path required to arrive at the place of access did
indeed exist. The number of previous places users needed
to visit was set as 2. The time required to fulfill the con-
straint (Definition 7) was generated considering the distance
between places and the speed of users to allow enough time.
Request generation, events counted as threats and im-
provement measure: Every time a user stepped into a place
where there was a role with spatial scope, an access request
was issued on his behalf. We consider the following as
potential insider threats. i) Unauthorized for role: A user tries
to assume a role he is not authorized for. ii) Inhibiting users:

Parameter Value
Ratio of number of places to number of users 1:3
User speed 5 ft/second
Map coordinates (size of Cartesian map) (300 ft x 300 ft)
Ratio of number of users to roles 4:1
Ratio of roles assigned per user to num. of roles 1:2
Inhibiting constraints per role 1
Percentage of roles with inhibiting constraints 50%
Types of inhibiting users (colors) 3
Percentage of inhibiting users 40%
Enabling constraints per role 1

Range of k [1, 3]
Required social relation Friendship
Collusion threshold 0.9

Number of colluding communities 5% of users
Number of colluding users per community 5
Roles with trace-based constraints 5%
Roles with geo-social contracts 40%
Simulation time 8 hours

TABLE 3
Default experimental parameters. The number of users is used as

policy size.

A user issues an access request, but there are inhibiting
users in the vicinity that may launch a proximity attack,
e.g., if an access request is evaluated for a role with color
red and a user tainted red is in the vicinity, he is classified
as inhibitor. iii) Lack of enablers: A request is issued, but
there are not enough enablers at the required place to
authorize the request. iv) Colluding users: A user issues an
access request that requires enablers and the only people
who could serve as enablers are colluding according to the
collusion threshold. v) Enablers violating contracts: A user
issues a request for which all potential enablers are violating
their contracts (they are in places where they should not
be). vi) Suspicious requester: A user issues a request for which
the probability of attack is too high compared to the role’s
activation threshold. vii) Incomplete traces: A user issues a
request without completing the required traces. Each access
request was only classified in a single category according to
the order of constraint evaluation in Algorithm 1.

To evaluate our proposed approach, we use as a baseline
the most similar approach: the Geo-Social RBAC model
[9]. We measure the percentage of threats detected by G-
SIR in comparison to the baseline; refer to this number as
improvement and it is computed as follows: improvement =[
nproposed

nbaseline

]
− 1, where nproposed is the number of potentially

malicious access requests (threats) detected by G-SIR which
is equal to the sum of all previously described threats and
nbaseline is the number of threats detected by the baseline,
which is the addition of threats of type (i), (iii) and (vii). In
the following, we show the improvement as a percentage.

8.2 Analysis of Results

In this subsection, we discuss and analyze the results of our
various experiments. Each reported experimental measure-
ment is the average of running the simulation 30 times (each
time a different randomly generated policy was used). The
results presented were found using 30 randomly generated
OSNs, 10 of each topology. The number users indicates the
policy size. We vary the policy size in the experiments to
test G-SIR’ scalability. The default number of users in the
simulation were fixed at 250.
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Fig. 2. Comparison between the number of threats prevented by G-SIR
and that by the baseline (Geo-Social RBAC). Plot in logarithmic scale
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Fig. 3. Comparison between the number of requests granted by G-SIR
and that by the baseline (Geo-Social RBAC).

Baseline Comparisons: First, we present an overview
of the types of attacks prevented by the proposed G-SIR
with respect to the baseline, Geo-Social RBAC. Figure 2
shows the number of threats detected by G-SIR that could
not be captured by the baseline. The number of access
requests denied because the requester was unauthorized for
a role; hence, this number is the same for both approaches.
The number of requests denied due to lack of enablers and
incomplete traces, is slightly larger for the baseline, because
G-SIR finds other policy violations first, according to the
order presented in Algorithm 1. G-SIR captures these four
additional types of violations that are not considered by
the baseline: suspicious requester, enablers violating contracts,
inhibiting users and colluding users. There may be some
misclassifications in the counts of suspicious requester and
colluding users. This is caused by the uncertainty in the
estimation of the probability of attack and the probability of
collusion, respectively. In a later experiment, we present the
effect of the number of false positives and false negatives.

Figure 3 presents the number of requests granted by
the baseline and our proposed approach. In the x-axis,
we show the results for varying policy sizes. The dotted
line represents the number of requests granted that are
legitimate. All requests that are above that line are malicious
ones and should not have been granted. The table below the
figure contains the exact percentage of malicious requests
granted by the baseline that G-SIR was successfully able
to deny. Overall, the results show that the baseline granted
around 33% of malicious requests irrespective of the policy
size. The policy size uniquely influenced the total number
of requests granted. Overall, G-SIR was able to identify 33%

more policy violations than the baseline.
The difference between the percentage of threats cap-

tured in Figure 3 and the malicious requests granted by
Geo-Social RBAC in 3 is due to the difference between the
number of requests generated by the simulator that were
granted and the number of requests that were denied. The
number of requests denied due to the lack of assigned role,
and lack of enablers is substantially larger than all other
types of requests (Figure 2) including the number of granted
requests. Hence, the improvement reported is greater than
when only the number of granted requests is considered.

The percentage of additional threats captured by G-SIR
depends on the type of policy enforced. In the following,
we present the effect of increasing both the percentage of
attacks that are addressed by G-SIR and the different types
of constraints in the system. Unless explicitly mentioned,
parameters are maintained to their default values (Table 3).
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Proximity Attacks: Figure 4 presents the effect of envi-
ronments with varying number of inhibiting users under
policies with various number of roles with inhibiting con-
straints. In this figure, the baseline is represented by the line
in 0%. As the number of roles with inhibiting constraints
increases, there are more confidentiality leaks prevented.
Similarly, as the number of inhibitors in the vicinity in-
creases, the number of leaks of confidential information
due to proximity attacks is also higher. Since the baseline
does not prevent this type of attacks, the overall number
of threats prevented by G-SIR increases. For policies where
80% of roles had inhibiting constraints and when only 10%
of the users were inhibitors, G-SIR was able to capture 3.5%
more threats than the baseline. For systems where 90% of
the users cannot learn some information (recall that there
are three colors), the improvement was 5.9%. When 100%
of users are assigned an inhibiting color and every role has
an inhibiting constraint associated with it, the number of
threats mitigated goes up to 6.8%.

In our next experiment, we counted as a confidentiality
threat an attempt to do any of the following: i) when a user
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Fig. 6. Effect of collusion attacks and geo-social contracts on the number of threats captured.

tries to assume a role that he is not assigned to and the role
has an inhibiting constraint that conflicts with the color of
the user, ii) when there are inhibitors in the vicinity, iii) when
there is a collusion to access confidential information and iv)
when there is a contract violation and the violating user is
trying to serve as an enabler. Using this classification, in
Figure 5, we present a comparison between the percentage
of confidentiality threats detected by G-SIR in contrast to
Geo-Social RBAC. In this experiment, the proposed G-SIR
captures more confidentiality threats than those captured
by the baseline (Geo-Social RBAC). Geo-Social RBAC only
captures confidentiality threats of type i). As the percentage
of inhibiting users increases, the number of all types of
confidentiality violation attempts enumerated before also
increases; including those of type i). That is why we see that
the percentage of confidentiality threats captured by Geo-
Social RBAC does increase with the number of inhibiting
users. However, there is always a large percentage of threats
that are not detected by Geo-Social RBAC. Figure 5 was
generated for policies where 60% of roles have inhibiting
constraints. For these policies, the percentage of threats not
captured by Geo-Social RBAC vary between 92% and 72%.
For policies with a higher number of roles with inhibiting
constraints, the number of threats not captured by Geo-
Social RBAC that are captured by our G-SIR is larger. For
instance, when all roles have inhibiting constraints and there
are 90% of inhibiting users, the percentage of threats not
captured by the baseline captured by G-SIR increases to
76%. This corresponds to 4% more than the same data point
in Figure 5. These experiments show that G-SIR is effective
in capturing proximity and confidentiality threats.

Collusion Attacks: Figure 6a presents the effect of in-
creasing the number of colluding users per community (x-
axis) and the number of colluding communities. Colluding
attacks are not prevented by the baseline, hence all the
lines in the figure represent attacks thwarted by G-SIR.
The results reported were generated for policies with en-
abling constraints that required one enabler (k=1). In this
experiment, we assumed that the colluding communities
and users were known (in another experiment we show the
effect of the accuracy of community detection algorithms).
Hence, all attacks presented in Figure 6a can be prevented
by G-SIR. Figure 6a shows that the number of colluding
attacks prevented by G-SIR increases with the number of
communities. This follows because the probability of detect-
ing an attack when more communities exist is larger. Simi-

larly, as the number of colluding members per community
increases, the probability of a collusion attack increases and
the number of collusion threats increases.

Geo-Social Contract Violations: Figure 6 presents the
number of contract violations stopped by G-SIR as the
percentage of roles with contract constraints increases. The
baseline does not prevent any of these attacks. In Figure 6b,
we present the overall increase on the number of threats
uniquely prevented by G-SIR and in Figure 6c the number
of contract violations. In both figures, as the number of geo-
social contracts in the policy increases, the threats captured
by the G-SIR also increases. This implies that for organiza-
tions that require more protection against users wandering
through unauthorized places, G-SIR performs better. Recall
that policies randomly generated by our simulator are well-
formed and every role has a spatial scope assigned to it.
Hence, the number of contract violations uniquely captures
threats where a potential enabler is violating a contract.
Had we used policies that contain conflicts, the number
of violations reported would be larger, as the verification
in line 2 of Algorithm 1 never evaluated to true during
our simulations. Therefore, these figures uniquely show
attacks that aim at using enablers that are not qualified to
be in the required spatial scope. These figures show a clear
trend where the number of attacks stopped increases as the
roles with contracts is incremented. The fluctuations shown
reflect users’ random movements.

Sensitivity and specificity analysis: G-SIR takes as input
the estimated probability of attack. In this experiment, we
measure the effect of using estimation methodologies with
different values of average error, ε, on the number of threats
detected by G-SIR. We generated synthetic data as follows.
We randomly selected a probability of attack, q, for each
user; this value was considered as the ground truth. Then,
the estimated probability, q̂, was randomly selected in the
interval [q−ε/2, q+ε/2]. We changed the value of ε between
0.1 and 0.8. The observations generated by the simulation
runs were classified as true positives (TP), false negatives
(FN), false positives (FP) and true negatives (TN).

Figure 7 presents the results of this experiment, which
include the average number of TP, FN, FP and TN as well
as the average sensitivity and specificity. Sensitivity and
specificity are measures that provide an overview of the
relation between TP, FN, FP and TN. Sensitivity represents
the percentage of attackers who are correctly identified as
attackers while specificity shows the percentage of legiti-
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0.2 123725.6 1.3 444.5 5354.4
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0.5 123723.4 3.4 1098.6 4700.3
0.6 123723.0 3.9 1265.8 4533.1
0.7 123721.3 5.5 1407.5 4391.4
0.8 123721.4 5.5 1537.7 4261.2
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Fig. 7. Effect of the estimation error, ε, of the inference technique used
on the number of threats captured by G-SIR.
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mate insiders who are correctly identified as not being a
threat. The sensitivity measure shows that G-SIR is good in
capturing attacks even when the estimation error increases.
This is a consequence of the following. First, some of the
policy constraints that are part of G-SIR do not depend on
the inferred input data, so they can be enforced correctly
without any influence of the estimation error. Secondly, the
thresholds used in the simulation were selected to ensure
that, as in real policies, only relevant information would
be protected by G-SIR policies. Thus, when the inferred
probability of attack is too high, even under certain error,
the enforcement mechanism will deny access to the most
important information. This can be seen in the average num-
ber of TP, which decreases very little as the estimation error
increases. In the worst case, when ε=0.8, the number of TP is
reduced on average by four observations which is relatively
small compared to the total number of observations. The
specificity shows that as the estimation error increases, the
number of honest insiders who are denied access to very
critical resources increases as well. That is, the effect of the
estimation error can be seen on the average FP. These results
indicate that G-SIR is capable of stopping most threats
generated by the simulator even when the performance of
the information module is not good.

Runtime overhead: In Figure 8, the difference between
the time required by Geo-Social RBAC and G-SIR is shown
for policies of multiple sizes. Our proposed G-SIR intro-
duces some additional runtime overhead due to the extra
verifications performed. However, the overhead is accept-
able in comparison to Geo-Social RBAC.

9 RELATED WORK

Several approaches have extended RBAC to include the con-
text of users such as the location and temporal constraints as
part of the AC decision [26], [27], [28], [29], [30]. However,

they are not designed to incorporate the social dimensions
of users and are not capable of adapting to negative changes
in users’ behavior. The explicit use of geo-social context as
part of the AC policy is very recent [7], [8], [9]. However,
these approaches were not designed to prevent insider
threats and as a consequence, the risk exposure of geo-
social threats is not mitigated. Prox-RBAC model [7] extends
the Geo-RBAC model [26] by including proximity between
individuals as part of the policy in indoor environments.
Gupta et. al [8] extended Prox-RBAC by providing formal
definitions for determining the proximity between locations,
users, attributes and time. This type of predicates can be
used by our model to define spatial scopes. Baracaldo et.
al proposed Geo-Social RBAC in [9] which is the closest
related work. Geo-Social RBAC includes geo-social trace
based and cardinality constraints. We extended these two
constraints by including a criticality value that serves to
detect suspicious geo-social behavior. In Section 8, we com-
pared our proposed approach with [9] and showed that G-
SIR is capable of deterring substantially more insider threats
than Geo-Social RBAC. Previous work was not designed
to consider the risk of geo-social interactions to mitigate
insider threats and do not include the use of geo-social
obligations, contracts or vicinity constraints.

Other related work include adaptive AC systems such
as [10], [11], [12], [13], [14], [15]. These approaches aim
to revoke accesses when users are not behaving properly.
In this type of AC systems, the behavior of the user is
incorporated into the AC decision process by considering
a trust level of users that is computed based on users’
behavior. Nonetheless, these approaches were not designed
to include geo-social information and are not capable of
mitigating some of the threats presented in Section 2. We
leveraged our previous approach presented in [10], where
an optimization problem and an algorithm to select a set of
roles that minimize the risk exposure of granting a request
were defined. We incorporated that algorithm as part of
G-SIR. There are several differences between the proposed
solution and those in [10]. For most, the model presented in
[10] does not consider the geo-social aspects of the requester.
Additionally, in this paper, we presented a utility-based
methodology to compute the threshold to allow an access
while the methodology presented in [10] only considers
the damage of granting an access, without including the
expected gain of granting an access.

10 CONCLUSION

Little work exists in geo-social AC area and existing ones
do not consider the intricacies of incorporating geo-social
information as part of the AC system for insider threat
mitigation. We performed an analysis of insider threats
that arise when geo-social information is used to perform
AC decisions. To capture these new threats, in this paper,
we presented Geo-Social Insider Threat Resilient Access
Control Framework (G-SIR). To the best of our knowledge,
this is the first effort to use geo-social information to deter
insider threats by incorporating it into the AC mechanism.
We proposed an AC methodology that includes geo-social
constraints and presented several geo-social constraints that
include geo-social contracts, geo-social risk aware trace
constraints, collusion free enabler constraints, inhibiting
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constraints and geo-social obligations. Enforcing these con-
straints help reduce the risk of proximity, social engineering
and probing threats. Additionally, monitoring the fulfill-
ment of these constraints helps identify suspicious users
who are more prone to violate policy by visiting more than
usual places where they should not be at. We provided an
enforcement algorithm and presented simulation results to
evaluate the proposed framework. Our experimental results
show that the proposed approach is effective, scalable and
deter insider threats.

G-SIR assumes it is possible to reliably monitor users’
geo-social context. New methodologies are needed to sys-
tematically deploy reliable and tamper-proof indoor loca-
tion systems, where users trying to manipulate their re-
ported locations can be identified and flagged as suspicious.
This requires orchestrating multiple location technologies,
such as the ones presented in [31], to arrive at a cost-effective
deployment solution.
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