WWW Document Technologies

Michael B. Spring

Department of Information Science and Telecommunications

University of Pittsburgh spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

Overview

- The Internet and the World Wide Web
- HTML, SGML, and XML
- The Protocol
 - Requests and Responses
 - CGI
 - Javascript

The Internet

- The internet is a set of communicating machines
- The basis for communications is:
 - a shared machine address space (IP)
 - A name lookup mechanism -- Domain Name Space (DNS)
 - A protocol for integral messaging (TCP)
 - A protocol for doing business (http)
 - Software to interpret the messages exchanged

The Internet Generically

An Internet Transaction

The World Wide Web (History)

- 1989, March Tim Berners-Lee(TBL), working at the Swiss Institute for Particle Physics (CERN) wrote "Information Management: A Proposal"
- 1990, Oct. TBL starts work on a hypertext GUI browser+editor using a Next Machine TBL coins the term WWW
- 1990, Dec the system is demonstrated
- 1992, Jan. Line mode browser available by FTP.
- 1993, Jan. X and Mac browsers released. 50 known servers.
- 1993, February NCSA release Andreessen's "Mosaic for X"
- 1993, October Over 200 known HTTP servers.
- 1994, March Marc Andreessen and colleagues leave NCSA to form "Mosaic Communications Corp" (now Netscape).

The World Wide Web (Parts)

- Built on top of the Internet
- A simple protocol
 - GET, POST
 - PUT, HEAD, OPTIONS, TRACE, DELETE
- A simple message
 - Here is some data
 - Here is a "document"
- An increasingly complex server (state, authentication, encryption, application serving)
- An increasing complex client (parse a variety of documents, trace links, spawn applications)

The http protocol

- The web protocol is very robust and very simple
- For each request, the client:
 - Does a DNS lookup if needed
 - Opens a connection to the server
 - Sends a request for a resource
- The server
 - Checks the availability of the resource
 - Returns the resource or an error message
 - Closes the connection

The structure of requests and responses

- Requests have a header and a body
- The header has many lines but:
 - Begins with one of seven standard types
- The body is null for five of the request types and contains data for the POST and PUT types

- Responses have a header and a body
- The header has many lines but:
 - Begins with a status
 - Ends with a content type
- The body contains either the resource or an explanatory message

Web Technology

HTML and SGML

- The body of an http message may be anything, but frequently it is a document encoded using a markup language known as HTML
- HTML is in reality simply an SGML "Document Type Definition" (DTD)
- SGML is the "Standard Generalized Markup Language"
 - SGML (ISO 8879) is a standard for document interchange
 - SGML divorces structure and appearance
 - SGML defines the rules for defining documents

SGML Structured Documents

- SGML is important in that it defines the rules for constructing structured documents
- Under SGML a document is defined as a diredcted acyclic graphs -- i.e. tree consisting of a series of nested elements
- Elements consist of start and stop tags with the associated content
 - <name> is a start tag for element name
 - </name> is an end tag for element name
- Elements, through their tags, may have associated attribute sets.
 - <name attributename = stringvalue> associates stringvalue with attribute attributename for tis particular instance of element name

HTML and XML

- HTML is a technically weak DTD
 - It defines a very weak structure (e.g. H3 anywhere)
 - Some tags (e.g. bold) are too procedural
 - HTML 1.1 is better than 1.0
- XML is gaining momentum as a replacement
 - XML is a language, like SGML but simpler for defining DTDs
 - XML companion standards are appearing very rapidly

- XML, or eXtended Markup Language was developed to replace HTML on the Web
- It is a "simplified" version of SGML
- It is extended in that it offers more capability than HTML.
- XML more complex document forms
- XML is also being used to "wrap" records.
 - XML datatypes and schema allows XML to wrap DBMS records and EDI transaction data

An Structure of an HTML Doc

- An HTML document has a <head> and a <body>
 - Don't confuse with protocol the header and body
- The <head> of an html document contains control information (meta tags, title, keywords, scripts, etc.)
- The <body> of an html document contains all of the elements that will normally appear in the browser window

HTML Elements

• HTML elements fall into ten categories

Overall document structure -- head and body

Text level formatting – bold, italic

Block level -- quote

List tags

Hyperlink tags

Image related tags

Table Tags

Form Tags

Frame Tags

Executable Content tags

Anchors and Hyperlinks

- HTML defines an element known as an Anchor
 - <A>This is an anchor
- A property or attribute of an anchor is its HREF Hypertext Reference
 - Web HREF values are Universal Resource Locator
- Home page Michael B. Spring
- A URL is made up four parts
 - A service identifier e.g. http://
 - An Internet Address e.g. www.sis.pitt.edu
 - A port overriding the default service specification e.g. 8080
 - A absolute path ~spring/index.html

A Sample Request

- The user types the following in their client: http://www.sis.pitt.edu/~cascade/index.html
- The client sends only a header:

GET /~cascade/index.html HTTP/1.0

If-Modified-Since: Fri, 10 Oct 1997 17:35:54 GMT;

User-Agent: Mozilla/4.7 [en] (X11; I; SunOS 5.6 sun4u)

Pragma: no-cache

Host: www.sis.pitt.edu

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en-US, en

Accept-Charset: iso-8859-1,*,utf-8

Request/Response Headers

Authorization: encoding, name and password

Content-Encoding: how the body is encoded

Content-Length: length of the body

Content-Type: type(mime) of the body

Date: the date and time the request was generated

From: email address of the requestor

Last-Modified: date/time of last modification

Pragma: directives to the client – e.g. no-cache

Server/User Agent: server/browser type

Referer: the address of the resource of the link

A Sample Response

HTTP/1.1 200 OK

Date: Wed, 01 Dec 1999 16:11:19 GMT

Server: Apache/1.3.1 (Unix)

Last-Modified: Wed, 12 May 1999 20:31:56 GMT

ETag: "7a108-16c2-3739e53c"

Content-Length: 5826

Connection: close

Content-Type: text/html

```
<HTML>
<HEAD>
<TITLE> CASCADE </TITLE> </HEAD>...
<BODY>...
```

Status Codes

- Five categories of status code
 - 1xx: informational used for development
 - 2xx: Successful response
 - 3xx: Redirection
 - 4xx: Client Error
 - 5xx: Server Error

- Frequently used codes:
 - 200 -- success
 - 301 and 302 moved permanently or temporarily
 - 400 bad request
 - 401 unauthorized
 - 403 forbidden
 - 404 not found

Development of web capability

- With time, it became clear that web was too static
- The Common Gateway Interface (CGI)
 - CGI created a capability to develop dynamic pages based on server program execution. Perl became the language of choice.
- Scripting Languages
 - As the CGI load on networks and servers grew, scripting languages were developed to offload some of the demand to the client
 - Full client side applications applets emerged as well
 - Stylesheets were also added for clients
- Active Server Pages (ASP)
 - ASPs are pages that call functions that yield specific pieces of text.
 - These provided an alternative to CGI -- programs that wrote pages.
 - Java Server Pages (JSP) parallel Microsoft's ASP

HTML Forms and CGI

- To make pages more dynamic, the Common Gateway Interface (CGI) was defined
- CGI defines the rules for passing data to and running and application of the server
- "Forms" are to pass data to a CGI program
- The server, takes the data and gives it to the program which it runs.
- The program processes the data and returns the results to the most commonly an HTML doc

Forms Construction

- A form is an element in the body of an HTML document.
- A form element has two attributes method and action
 - The method specifies which http protocol will be used
 - The action specifies the program that will process the data
- A form will have one or more inputs elements

A Sample Form

```
<form
METHOD = "POST"
ACTION = "http://augment.sis.pitt.edu/cgi-bin/form.cgi">
<P>Name: <input TYPE="text"
    SIZE = "40" MAXLENGTH ="80"
    NAME ="name" VALUE = "anonymous">
<P>Subject: <input TYPE="text"
    SIZE = "40" MAXLENGTH ="80"
    NAME ="subject" VALUE = "None">
<input TYPE = "submit" NAME = "ssc" VALUE = "Send Comment">
<input TYPE = "reset" NAME = "cIr" VALUE = "Clear Comment"></form>
```


Scripts

- The use of CGI for data validation, given the overhead of the transactions proved costly.
- To reduce the time and cost of simple processing, client side scripting was introduced
 - Javascript is one of the many scripting languages
 - Javascript is a java-like language that combines HTML objects and java-like syntax

A Sample Javascript

```
<HTML><HEAD><TITLE>Javascript Validation</TITLE>
<SCRIPT language="JavaScript">
<!-- begin script hide
function checknum(Obj,min,max)
{val = Obj.value
if ((val<=min)||(val>max))
    { window.alert("Value in "+Obj.name+": "+Obj.value+
      ", is out od bounds, it must be between "+
       min+" and "+max);
    Obj.value="";
    Obj.focus(); }
// end script -->
</SCRIPT></HEAD>
```

A Sample Javascript (cont.)

- <BODY><FORM name = myform method = post action ="">
- <P>Field1:<INPUT TYPE=TEXT NAME=Field1 VALUE=0 onchange="checknum(this,0,100)">
- <P>Field2:<INPUT TYPE=TEXT NAME=Field2 VALUE=0 onchange="checknum(this,1000,2000)">
- <P>Field3:<INPUT TYPE=TEXT NAME=Feild3 VALUE=0 onchange="checknum(this,-200,100)">
- <P><input type = submit name=submit>
- </FORM></BODY></HTML>