
Unix Scripts and Job SchedulingUnix Scripts and Job Scheduling
Michael B. Spring

Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

OverviewOverview
Ü Shell Scripts

Shell script basics
Variables in shell scripts
Korn shell arithmetic
Commands for scripts
Flow control, tests, and expressions
Making Scripts Friendlier
Functions
Pipes and Shell Scripts
Scripts with awk and/or sed

Ü Job Scheduling
bg and at
cron

Running a Shell ScriptRunning a Shell Script
Ü First three forms spawn a new process, so new variable

values are not left when you return
sh < filename – where sh is the name of a shell

– does not allow arguments
sh filename
filename

– Assumes directory in path
– Assumes chmod +x filename

. filename
– Does not spawn a new shell.
– Changes to system variables impact the current shell

Ü you may exit a shell script by
Getting to the last line
Encountering an exit command
Executing a command that results in an error condition that causes
an exit.

Structure of a Shell ScriptStructure of a Shell Script
Ü Basic structure

#! Program to execute script
comment
Commands and structures

Ü Line continuation
| at the end of the line is an assumed continuation
\ at the end of a line is an explicit continuation

Ü # in a shell script indicates a comment to \n
Ü Back quotes in command cause immediate

execution and substitution

Debugging a scriptDebugging a script

Ü Use the command set –x within a script
Ü You can also activate the following set options

-n read commands before executing them – for testing
scripts
-u make it an error to reference a non existing file
-v print input as it is read
- disable the –x and –v commands

Ü Set the variable PS4 to some value that will help –
e.g. ‘$LINENO: ‘

Calculations with exprCalculations with expr
Ü Executes simple arithmetic operations

Expr 5 + 2 returns 7
Expr 7 + 9 / 2 returns 11 – order of operations
Spaces separating args and operators are required

Ü expr allows processing of string variables, e.g.:
var=`expr $var + n`
n.b. Korn shell allows more direct arithmetic

Ü Meta characters have to be escaped. These include
(), * for multiplication, and > relational operator, and
| and & in logical comparisons

Other Operations with exprOther Operations with expr
Ü expr arg1 rel_op arg2 does a relational comparison

The relational operators are =, !=, >, <, >=, <= -- <
return is either 0 for false or 1 if true
arg1 and arg2 can be string

Ü expr arg1 log_op agr2 does a logical comparison
arg1 | arg2 returns arg1 if it is true otherwise arg2
arg1 & arg2 returns arg1 if arg1 and arg2 are true else 0

Ü expr arg1 : arg2 allows regular pattern matching
The pattern is always matched from the beginning
If arg2 is in escaped ()’s, the string matched is printed,
else the number of characters matched

Korn Shell Arithmetic (review)Korn Shell Arithmetic (review)
Ü Assumes variables are defined as integers
Ü Generally, we will use the parenthetical form in

scripts:
$((var=arith.expr.))
$((arith.expr))

Ü Generally we will explicitly use the $ preceding the
variable -- although it can be omitted

Ü An example:
$(($1*($2+$3)))

Variables in Shell ScriptsVariables in Shell Scripts
Ü Variables are strings
Ü To include spaces in a variable, use quotes to

construct it
var1=”hi how are you”

Ü To output a variable without spaces around it, use
curly braces

echo ${var1}withnospaces
Ü SHELL variables are normally caps

A variables must be exported to be available to a script
The exception is a variable defined on the line before the
script invocation

Command Line VariablesCommand Line Variables
Ü command line arguments

$0 is the command file
arguments are $1, $2, etc. through whatever

Ü they are expanded before being passed
Ü Special variables referring to command line

arguments
$# tells you the number
$* refers to all command line arguments

Ü When the number of arguments is large, xarg can
be used to pass them in batches

Handling VariablesHandling Variables
Ü Quoting in a shell script aids in handling variables

“ “ -- $interpreted and ` ` executed
‘ ‘ – nothing is interpreted or executed

Ü Null variables can be handled two ways
The set command has switches that can be set

– Set –u == treat all undefined variables as errors
– Set has a number of other useful switches

Variables may be checked using ${var:X}
– ${var:-word} use word if var is not set or null – don’t change var
– ${var:=word} sets var to word if it is not set or null
– ${var:?word} exits printing word if var is not set or null
– ${var:+word} substitutes word if var is set and non null

Commands for ScriptsCommands for Scripts

ÜShell script commands include
set
read
“Here” documents
print
shift
exit
trap

setset

Üset also has a number of options
-a automatically export variables that are set
-e exit immediately if a command fails (use with
caution)
-k pass keyword arguments into the environment
of a given command
-t exit after executing one command
-- says - is not an option indicator, i.e. –a would
now be an argument not an option

Read and “here” documentsRead and “here” documents
Ü read a line of input as in

read var
read <4 var (where 4 has been defined in an exec <4 file

Ü “here” documents
in a shell script, input can come from the script using the
form

w <<symbol
w input
w symbol

basically, it means read input for the command
reading stops when symbol is encountered

Example of a “here document”Example of a “here document”
a stupid use of vi with a here file
vi -s $1 <<**cannedinput**
G
dd
dd
dd
:wq
cannedinput

print, shift, exit, and trapprint, shift, exit, and trap
Ü print

preferred over echo in shell scripts
the –n option suppresses line feeds

Ü shift
moves arguments down one and off list
does not replace $0

Ü exit
exits with the given error code

Ü trap
traps the indicated signals

An example of trap and shiftAn example of trap and shift
trap, and in our case ignore ^C
trap 'print "dont hit control C, Im ignoring it"' 2
a little while loop with a shift
while [[-n $1]]
do

echo $1
sleep 2
shift

done

Shell Script Flow ControlShell Script Flow Control
Ü Generally speaking, flow control uses some test as

described above.
if sometest

then
some commands

else
some commands

fi

Ü A test is normally executed using some logical,
relational, string, or numeric test

TestsTests
Ü The test command allows conditional execution

based on file, string, arithmetic, and or logic tests
Ü test is used to evaluate an expression

If expr is true, test returns a zero exit status
If expr is false test returns a non-zero exit status

Ü [is an alias for test
] is defined for symmetry as the end of a test
The expr must be separated by spaces from []

Ü test is used in if, while, and until structures
Ü There are more than 40 test conditions

File TestsFile Tests
-b block file
-c character special file
-d directory file
-f ordinary file
-g checks group id
-h symbolic link
-k is sticky bit set

-L symbolic link
-p named pipe
-r readable
-s bigger than 0 bytes
-t is it a terminal device
-u checks user id of file
-w writeable
-x executable

String, Logical, and Numeric TestsString, Logical, and Numeric Tests

Ü Strings
-n if string has a length greater than 0
-z if string is 0 length
s1 = s2 if string are equal
s1 != s2 if strings are not equal

Ü Numeric and Logical Tests
-eq -gt -ge -lt -ne -le numerical comparisons
! -a -o are NOT, AND, and OR logical comparisons

Shell Script Control StructuresShell Script Control Structures

ÜStructures with a test
if [test] then y fi
if [test] then y else z fi
while [test] do y done
until [test] do y done

ÜStructures for sets/choices
for x in set do y done
case x in x1) y;; x2) z ;; *) dcommands ;; esac

ifif

Ü if [test] then {tcommands} fi
Ü if [test] then {tcommands} else {ecommands} fi
Ü if [test] then {tcommands} elif [test] then

{tcommands} else {ecommands} fi
Commands braces are not required, but if used:

– Braces must be surrounded by spaces
– Commands must be ; terminated

Test brackets are optional, but if used must be
surrounded by spaces

Sample if Sample if

if [$# -lt 3]
then

echo "three numeric arguments are
required"
exit;

fi
echo $(($1*($2+$3)))

while and untilwhile and until

Üwhile
while test do commands done

Üuntil
until test do commands done
like while except commands are done until test
is true

Sample whileSample while

count=0;
while [count -lt 5]
do

count=`expr $count + 1`
echo "Count = $count"

done

forfor

Ü for var in list do commands done
var is instantiated from list
list may be derived from backquoted command
list may be derived from a file metacharacters
list may be derived from a shell positional
agumment variable

Sample forSample for

for lfile in `ls t*.ksh`
do

echo "****** $lfile ******"
cat $lfile | nl

done

casecase
Ü The case structure executes one of several sets of

commands based on the value of var.
case var in

v1) commands;;
v2) commands;;
*) commands;;

esac
var is a variable that is normally quoted for protection
the values cannot be a regular expression, but may use
filename metacharacters

– * any number of characters
– ? any character
– [a-s] any character from range

values may be or'd using |

selectselect
Ü Select uses the variable PS3 to create a prompt for the

select structure
Ü The form is normally

PS3=“A prompt string: ”
Select var in a x “z space”
Do

Case “$var” in
a|x) commands;;
“z space”) commands;;
*) commands;;

Esac
Done

Ü To exit the loop, type ^D
Ü Return redraws the loop

Sample selectSample select

PS3="Make a choice (^D to end): "
select choice in choice1 "choice 2" exit
do

case "$choice" in
choice1) echo $choice;;
"choice 2") echo $choice;;
exit) echo $choice; break;;
*) echo $choice;;

esac
done
echo "you chose $REPLY"

Sample ScriptsSample Scripts

ÜAll of our scripts should begin with
something like this:

#!/bin/ksh
the first line specifies the path to the shell
the two lines below are for debugging
PS4='$LINENO: '
set –x

Ü In working with a script, functions are
defined before they are invoked

Scripts to find and list filesScripts to find and list files
#!/bin/ksh
the reviewfiles function would normally be defined here
printf "Please enter the term or RE you are looking for: "
read ST
FILES=`egrep -l $ST *.ksh`

if [${#FILES} -gt 0]
then

reviewfiles
else

echo "No files found"
fi

Reviewfiles functionReviewfiles function
Ü reviewfiles()

{
PS3=“Files contain $ST, choose one(^D or 1 to exit): "
STIME=$SECONDS
select choice in "ENTER 1 TO EXIT THE LOOP" $FILES
do

case "$choice" in
"ENTER 1 TO EXIT THE LOOP") break;;
*) echo "You chose ${REPLY}. $choice";
cat $choice | nl;
FTIME=$SECONDS;
echo “Process took $(($FTIME-$STIME)) secs";;

esac
done

}

FTP Function(1)FTP Function(1)
dfine the host as a variable for more flexibility
ftphost=sunfire2.sis.pitt.edu
grab a password out of a carefully protected file
consider a routine that would search for a password

for $host
exec 4< ${HOME}/.ftppass
read -u4 mypass
this could be read from a file as well
print -n "Enter your username for $ftphost: "
read myname

FTP Function(2)FTP Function(2)

prepare the local machine
this could have been done from within ftp
cd ${HOME}/korn/ftpfolder
rm access_log.09*;
rm *.pl
rm sample.log

FTP Function(3)FTP Function(3)
start an ftp session with prompting turned off
use the "here file" construct to control ftp
ftp -n $ftphost <<**ftpinput**
user $myname $mypass
hash
prompt
cd weblogs
mget access_log.09*
mget *.pl
get sample_log
ftpinput

FTP Function(4)FTP Function(4)

output to a log file and the screen

print "`date`: downloaded `ls access_log.* |
wc -l` log files" | tee -a work.log

print "`date`: downloaded `ls *.pl | wc -l` analysis files" |
tee -a work.log

Job SchedulingJob Scheduling
Ü Multiple jobs can be run in Unix interactively
Ü The can be grouped, piped, made conditional
Ü To run a job in the background, issue the command

in the following form:
job&

Ü Alternatively, run the job normally and then:
^Z to suspend the job
bg at the command prompt to move the job to the
background

Process control commandsProcess control commands
Ü nice – runs a command (with arguments) at a lower

priority
nice –15 myscript
The default priority is 10
Higher numbers represent lower priority

Ü ps – lists processes giving their process id
Ü kill – stops a process

kill 23456 – kills the process with ID 23456
kill –9 is an absolute kill and should be used with caution

Job scheduling post logoutJob scheduling post logout
Ü nohup – allows a command to be run even if the

user logs
nohup myscript&

Ü at – runs a command at a specified time
at 19:00 –m < cmndfile
Executes cmndfile at 7:00pm and sends mail when done
At –k –m –f xyz.ksh 7pm
Execute xyz.ksh @7pm using korn and send mail

Ü atq, atrm – atq check the queue and atrm removes a
given scheduled job

CrontabCrontab

Ü crontab is a utility for managing the tables that the
process “cron” consults for jobs that are run
periodically

Ü crontab allows a user who has the right to add jobs
to the system chronological tables

crontab –e allows the user to edit their entries
crontab –l allows a listing of current entries
crontab –r removes all entries for a given user
crontab file adds the entries in file to your crontab

Format of crontab entriesFormat of crontab entries
Ü A normal crontab entry looks as follows

Min Hour DoM MoY DoW command
5 * * * * /usr/bin/setclk
This will run setclk at 5 minutes past the hour of every
day, week, etc.
* means every possible value
Multiple values of one type can be set , separted with no
space
0,5,10,15,20,25,30,35,40,45,50,55 * * * * would run the
command every five minutes

Allowable valuesAllowable values

ÜMinute 0-59
ÜHour 0-23
ÜDay of month 1-31
ÜMonth of year 1-12
ÜDay of week 0-6 with 0 being Sunday

