
The Shell and Unix CommandsThe Shell and Unix Commands
Michael B. Spring

Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

OverviewOverview

ÜReview of the Shell
ÜModifying the environment 1
ÜShell variables
ÜAliases and functions
ÜModifying the environment 2
ÜCommands by function
ÜDetails on commands

Review of the ShellReview of the Shell
Ü The shell is the interactive command interpreter that

allows you to use Unix
Ü There are a variety of different shells that you can

use:
csh,sh, ksh, bash

Ü Each shell allows:
Some form of customization
Certain specialized interactive use features
Selected forms of programmability

Meta charactersMeta characters
Ü Shells allow filename meta characters to identify

sets of files:
* -- a string of 0 or more characters
? -- any character
[..] -- a set of characters that may appear range uses -
[!..] – a set of characters that may not appear

Ü Note that the general regular expression form of
preceding ‘*’ or ‘?’ with a ‘.’ is not used

Ü To use meta characters as regular characters on the
command line quoting rules must be followed.

Korn Shell Metacharacters Korn Shell Metacharacters
Ü The Korn shell allows additional pattern matching using

groups and occurrence modifiers
Ü A group is anything between parentheses

(ABC)xyz, ([ABC])xyz, etc
Ü A group may specify alternatives using |

(ABC|DEF)xyz
Ü The number of occurrences of the group pattern may be

specified in front of the parentheses:
? = 0 or 1
* = 0 or more
+ = one or more
@ = exactly one
! = not the pattern

Expansion and Quoting Expansion and Quoting
Ü There are a complex set of rules by which

commands are “expanded” prior to being executed.
e.g. assuming $HOME is defined and x is an alias for ls
“x $HOME” becomes “ls /home/spring/” before execution

Ü Quoting informs the shell that variables or meta
characters are not to be expanded

Use double quotes “ “ to maintain spaces tab and all the
meta characters except $, `, and “
Use single quotes ‘ ‘ to prevent expansion of all meta
characters except ‘
Use the \ to escape any single special character

Back quotes – lower case ~Back quotes – lower case ~

ÜBack quotes -- ` ` are used to substitute the
results of a command in line

xx==`ls`, would set xx equal to the listing of files
in the current working directory
A backquoted string will be used frequently in
scripts to build a set of files (using ls in a for set)
Imagine running a program x that required fully
qualified pathnames for the input and output files

– x –i `pwd`/infile –o `pwd`/outfile

Process controlProcess control
Ü When Unix executes an external command, the

shell waits until the process completes before
providing an additional prompt.

Ü A process can be run in the background by
following the command with an &

Alternatively, a running process can be suspended (^Z)
and then placed in the background with the command
bg. (^D will kill a running process.)

Ü Multiple processes can be run sequentially through
one input line by separating them with a ;

Commands on a single line can also be grouped inside ()

I/O, Pipes and redirectionI/O, Pipes and redirection
Ü Each process in Unix has access to file handles that

allow input and output.
Ü Each process starts with the handles 0, 1, and 2

assigned for stdin, stdout, and stderr
Ü Processes written to read and write stdin and

stdout may be “piped” on the command line with |
Ü The input to a process may be redirected from a file

(<). Output may be redirected with a >. (e.g. >file)
Ü Output may be appended to a file with >>

More on Pipes and RedirectionMore on Pipes and Redirection
Ü To send stderr to a file use 2>file
Ü To send stdout and stderr to a file >file 2>file
Ü Korn allows input and output to one file with <> file
Ü Stdin and stdout can be closed with >&- and <&-
Ü In a script, the “here” file construct is used to write to stdin

until the named label is seen on a new line
mail xyz < abc
fee fi fo fum
abc

Ü Tee continues a pipe and writes a copy to a file
processa | tee file | processb

Modifying the Shell EnvironmentModifying the Shell Environment
Ü The Unix system frequently maintains information for

applications in “dot” files
You can list the dot files with ls-a or ls .*

Ü The sh, bash, and ksh shells all load startup information
from files. In the case of ksh,

General definitions are loaded from /etc /.profile
Local modifications are loaded from $HOME/.profile
For the Korn shell, if the shell variable $ENV is set, additional
definitions are loaded from that file ($ENV, by convention is set to
$HOME/.kshrc)

Ü These files contains modifications related to commands,
variables, aliases, and functions

Modifying Other AspectsModifying Other Aspects

Ü Other aspects of your Unix sessions may be
modifiable as well.

If you are using the CDE you will need to modify the
.dtprofile file in the .dt directory
For general X Window System applications,
modifications to application defaults may most easily be
placed in .Xdefaults
Other applications will keep defaults in various .files

– Defaults for the vi editor are kept in $HOME/.exrc

Shell VariablesShell Variables
Ü The shell allows the user to introduce variables that have

values. Keep in mind that the value is always a string.
(Actually Korn allows integer variables.)

Ü It is easy to set a variable
varname=value

Ü A variable available to spawned processes is an
environment variable. To create one, export it:

Export varname

Ü There are many variables important to the shell:
Standard Variables
Built-in variables

Variable BasicsVariable Basics
Ü No spaces in the set

MBS=Michael

Ü Use quotes to allow spaces
MBS=“ Michael B. Spring”

Ü Refer to a variable using $, or more formally ${varname}
echo $MBS

Ü The Korn shell allows arrays
set –A MBS 23 45 67 93 42
Formal syntax required -- ${MBS[0]} = 23, ${MBS[3]} = 93

Ü Use set, unset, and typeset to control variables – see below

Standard VariablesStandard Variables

Ü Some variables used by convention in shells:
$IFS specifies the inter field separator
$HOME specifies the users home directory
$USER or $LOGNAME
$SHELL specifies the shell being run
$TERM specifies the terminal type
$PS1 and $PS2 specifies the prompts for the shell
$PATH specifies in what order to search directories
$MANPATH specifies search directories for man pages

Built-in VariablesBuilt-in Variables

Ü The built in variables are of great import for scripts
$? Has the exit status of the last process
$$ has the process ID number of the current shell
$! Has the process ID of the last background process
$- has the flags passed to the shell when invoked
$# has the number of arguments passed to the shell
$* has all the arguments
$@ is the same except

– “$@” allows arguments that were quoted to be replicated

Directory related variablesDirectory related variables
Ü~ = home directory
Ü~name = home directory of name
Ü~+ = current working directory
Ü~- = previous working directory

Korn Shell Variable ControlKorn Shell Variable Control
Ü The Korn shell offers variable checking:

${#var} specifies the length of var
${#*} specifies the number of command line arguments

Ü The shell also offers control
${var:Xvalue}

– X - value is expanded and used if var is not set or null
– X = same as – but var is set to value
– X ? If var is null or unset value is displayed and the script exits

${varYpattern}
– Y # removes minimal matching pattern prefix; (##) removes max
– Y % removes min matching pattern suffix; (%%) removes max

Simple manipulations(1)Simple manipulations(1)

ÜPATH=/xyz/bin/:$HOME/bin/
ÜPATH=$PATH:/xyz/abc/def/

This sets the path to the old path plus a new
directory

ÜPATH=/xyz/abc/def/:$PATH
Puts the current directory at the front of the
search list

Simple manipulations(2)Simple manipulations(2)

ÜPS1= some different prompt for the shell –
below is all the junk I might imagine:

PS1=$HOSTNAME:$LOGNAME:$PWD:!\>
– ! is the current command number
– \> escapes the > so it is taken as a literal

Examine the impact of quoting
– PS1=${PWD##/*/}:!\> – fixed at time var set
– PS1=“${PWD##/*/}:!\>” – fixed at time var set
– PS1=‘${PWD##/*/}:!\>’ – interpreted when “run”

More Standard Variables(1)More Standard Variables(1)

Ü The Korn Shell has about a dozen standard
variables it sets. The most interesting are:

ENV = the name of a startup file
PWD and OLDPWD = the current previous working dir
PPID = process number of the shells parent
FPATH = the path to search for function files
RANDOM = provides a random number
HISTFILE and HISTSIZE = the name of the command
history file and the number of commands kept

More Standard Variables(2)More Standard Variables(2)
LINES COLUMNS PS3 = are variables that are used by
the select command to display choices
LINENO = current line number in a script or function
PS4 = prompt string used in debugging mode. Assuming
set –x, PS4 might be set to ‘$LINENO: ‘
SECONDS = the number of seconds that have elapsed
since the start of a shell
TMOUT = the amount of time a shell waits for a prompt
before exiting – normally set by sys admin and read only
$_ = pathname of a script initially; later stores the last
argument of the previous command – like perl.

Variable Related Functions(1)Variable Related Functions(1)
Ü unset

A variable can be unset using unset

Ü set
prints all the names of shell variables
set options can be used to control variables

– -A set variable as an array
– -k allows assignments on the command line
– -u treat unset variables as errors
– -v show each command line as executed
– -x show commands and arguments as executed
– -- turn off option processing

Variable Related Functions(2)Variable Related Functions(2)

Ü typeset is a very powerful command for
controlling variables:

typeset –option var=value
– -x mark variable for export
– -i[n] define variable as an integer – if n is specified, it

is the base
– -l or -u convert value to lower or upper case
– -L[n] or –R[n] make value a left or right justified

truncated or padded string or length n
– -r mark variable as read only

Korn Shell ArithmeticKorn Shell Arithmetic

Ü Korn shell arithmetic assumes that variables have
been defined as integers

Ü There are two forms for doing arithmetic
var=((arith. expr.))
$((var=arith. expr.)) or $((arith. expr.))

Ü Variables that are being accessed in the expression
do not require the specification of the $ preceding
the variable, but it is good form to use it.

Korn Shell Arithmetic ExampleKorn Shell Arithmetic Example
Ü Define integers and assign some values

typeset –i a=20 b=14 c=18 d=19
typeset –i x y z
typeset –12 bx #base2
typeset –i16 hx #base16

Ü Do some calculations and assignments
let x=a*b+c
let bx=x hx=x

Ü Echo the results
echo $x $bx $hx

– 298 2#100101010 16#12a

CommandsCommands
Ü System commands
Ü Process commands
Ü Information Retrievers
Ü Disk and Directory
Ü General Utility
Ü File related

General files
Data files
Program files
Worlds in themselves

System Commands(1)System Commands(1)
Ü echo – allows status information or debugging

ksh echo does not allow –n, printf preferred

Ü passwd – allows you to change your password
Ü chgrp – change the group to which a file belongs
Ü chmod – change the protections on a file
Ü clear – clear the display
Ü stty – set terminal I/O properties
Ü touch – change the dates of last access for a file – if

the file named doesn’t exist, it will be created

System Commands(2)System Commands(2)
Ü set – listing of variables

option switches allow control of how variables are set

Ü unset – makes a variable undefined
Ü typeset – allows control of the values assigned to

variables
Ü xargs – a mechanism for allowing more than ten

arguments to be passed to a command
Ü tee – duplicate standard input sending one copy to

a named file and another copy to standard output

Process Commands(1)Process Commands(1)
Ü bg – places a suspended process (^Z) in the

background. fg moves the last background process
to the foreground.

Ü nice – runs a command (with arguments) at a lower
priority

Ü ps – lists processes
Ü sleep – wait a specified number of seconds before

execuitng another command
Ü kill – stop a process

Process Commands(2)Process Commands(2)
Ü at, atq, atrm – at runs a command at a specified

time. atq check the queue and atrm removes a
given scheduled job.

Ü nohup – allows a command to be run separated
from the parent process such that the command
continues to run after the user logs out.

Ü time – run a command showing time used. (timex –
also runs a command, but allows more options)

Ü truss – show system calls and signals for a
provided command or a process id.

Information Retrievers(1)Information Retrievers(1)

Ü date – prints the current date and time
Ü finger – displays data about one or more users
Ü groups – show the groups a user belongs to
Ü id – list user and ids – individual and group
Ü logname – lists your login name
Ü env – displays the current environment variables –

similar to set without options
Ü hostname – prints the name of this host

Information Retrievers(2)Information Retrievers(2)

Ü type – describe the type of a command – I.e built in,
function, external,

Ü which – list the fully qualified pathname of a
command

Ü apropos – lookup keywords for man pages and
display the man pages that may be relevant

Ü man – display a man page
Ü whatis – print a brief description of a program

Information Retrievers(3)Information Retrievers(3)

Üw – print systems status and who is on
Üwho – print current sessions
Üusers – list logged in users in a space

separated list – like who
Ü fgrep – simple file search program – doesn’t

use patterns
Ügrep – general regular expression program to

find patterns in text (egrep extended version)

Simple Directory CommandsSimple Directory Commands

Ücd – change to a named directory
Üpwd – print the current working directory
Ü ls – list information about a file

Disk and DirectoryDisk and Directory
Ü mkdir – create a directory
Ü rmdir – remove a directory
Ü df – show free disk blocks for all mounted drives
Ü du – show disk usage for the named directory
Ü find – find a file in a directory subtree

Need to specify the name being searched for
Need to specify print to rpint the name when found
Was designed to execute commands on found files

Ü dircmp – compare the contents of two directories

General UtilityGeneral Utility

Ü cal – a utility to print a calendar
Ü calendar – an appointment management system
Ü dc – an interactive desk calculator
Ü bc – a program to do arbitrary precision arithmetic

in multiple bases
Ü od – produces a dump of a file – an octal dump.

Many switches allow additional forms of display.

File Related Commands
(Common)
File Related Commands
(Common)
Ü cat – list file contents to the screen; it can be used

to join a set of files together
Ü cp – copy a file
Ü diff – compare two files for differences
Ü mv – move or rename a file
Ü rm – remove a file
Ü ln – with the –s option, create a symbolic link to a

file. With –s, deleting the link does not delete the
source. Without –s the link is the same as the file

File Related Commands (2)File Related Commands (2)
Ü tr – subsitute chars in string2 for chars in string1
Ü head – look at the starting lines of a file
Ü tail – look at the ending lines of a file
Ü file – provides information about the types of files
Ü fgrep – simple form of grep and egrep for finding

none regular expression patterns
Ü fmt – fills and joins text – simple formatting
Ü pr – a simple formatting program for files
Ü wc – count the characters, words, and lines in a file

Data File Related CommandsData File Related Commands
Ü cut – cut columns out of a file
Ü dd – copy and convert the input file to an output file doing a

number of conversions
Ü join – join columns of two files based on common ids
Ü paste – join files into a common file of multiple columns
Ü sort – sort a file based on contents
Ü uniq – remove adjacent duplicate lines – often used with

sort
Ü split – splits a file into files of a given number of lines
Ü csplit – splits a file based on a pattern

Commands related to transferCommands related to transfer
Ü compress – one of a family of programs to

compress a file using Lemple-Ziv. Some systems
will have zip, gzip, or other compression programs

Ü uncompress – the companion program to compress
Ü tar – move files in and out of a “tape” archive

Options are –c create –u update –x extract
-f followed by filename provides the target

Ü ar – move object files in and out of a library archive
Ü zcat – like uncompress except that it puts the file to

standard out

Programming File RelatedProgramming File Related
Ü nl – number the lines in a file
Ü strings – search binary files for string of more than

four characters
Ü expand – expand tab characters into spaces
Ü unexpand – convert multiple spaces into tabs
Ü uuencode – allows a file with binary characters to

be encoded such that it can be mailed without
problems

Ü uudecode – the companion to uuencode

Functions and AliasesFunctions and Aliases

Ü aliases
– alias str="command"
– eg. alias dir="ls -al | grep '^d'
– alias -x exports the alias to sub shells

Ü functions
– function name {
– definition
– }

use “export name” to make a function available to spawned
processes
Functions can manipulate command line arguments
In scripts, function arguments hide command line arguments

Some Simple Uses of aliasSome Simple Uses of alias

Üalias type=cat
Üalias –x dir=“ls –l”
Üalias –x pdir=“ls –l | more”
Üalias sp=‘echo $PATH | tr “:” “\n” | sort’
Üalias wd=“cd /home/spring/projects/current”

A Simple FunctionA Simple Function

function sys
{

printf "The time is: ";
w | head -1 | cut -c 0-8;
printf "System stats: ";
w | head -1 | cut -c 9-70;
printf "Number of user shells: ";
echo $((`w | wc -l` - 2));
printf "Number of processes: ";
echo $((`ps -ef | wc -l` - 1));
printf "Number of different process owners: ";
echo $((`ps -ef | cut -c 0-9 | sort | uniq | wc -l` -1));
printf "Number of root processes: ";
ps -ef | cut -c 0-9 | grep root | wc -l;

}

Shell history and editingShell history and editing

ÜUse set –o vi to set the editing mode to vi
This should be done in .profile
Use “ESC” to invoke the editor
Use j and k to move up and down the sequence
Use history to reissue commands
Consider installing the bash shell for even easier
command line editing

Details on selected CommandsDetails on selected Commands
Ü ls
Ü sort and uniq
Ü vi
Ü man
Ü expr
Ü grep, egrep, and fgrep
Ü dd
Ü test
Ü find

lsls

Ü Some of the ls options
-a will list both .files as well as all others
-l will provide all file information
-R will recursively list subdirectories
-t, -u list files by modification or access time

Ü Some games we might want to play
ls | wc –l – count the files
cat `ls *.txt` | more – page through all the text files

sort and uniqsort and uniq
Ü Some of the sort options

-b ignore leading spaces
-d sort in dictionary order, ignoring punctuation
-f ignore case
-r reverse the sort order
-tc field separator is the character c
-n skip n fields before starting sort

Ü Some of the uniq options
-n ignore first n fields
-c print lines once with count

Ü Some games
sort records.dat | uniq

manman
Ü man is generally used by simply typing man topic

and prints the man page on topic
Ü man –k keyword prints a one line summary of any

command that has a keyword matching keyword
Ü man –s section topic prints the man page for topic

found in section
section 1 is user commands
section 2 is system call
section 3 is functions, etc.

Regular expressionsRegular expressions

Ü In Unix, patterns can be used to match
strings. These patters are called regular
expressions

The shell uses simplified regular expressions for
files (see above)
The Korn shell uses an expanded set of file
expressions (see above)
grep uses a “more normal set” and egrep uses
an expanded regular set

fgrep, grep, and egrepfgrep, grep, and egrep
Ü fgrep is the most basic form – it searches files for

simple pattern – regular expressions aren’t used.
Ü grep is used most frequently

The general form is in a pipe
Process | grep pattern

Ü grep allows several options
-I case insensitive
-n print lines and line numbers
-l print filenames but not matched lines

Ü egrep uses an extended set of pattern matching
rules

The Normal Regular ExpressionsThe Normal Regular Expressions
Ü Any string can be a pattern

‘abcde’ looks for precisely that string

Ü Any single character can be defined as a set
‘[AEIOU]ppp’ – a capital letter vowel followed by ppp
[A-Z]abc – any capital followed by abc

Ü The ‘.’ is used to mean any character
Ü Any single character can be modified by count

abx*cd – ab followed by zero or more x’s followed by cd
M.*M – M followed by zero or more characters followed by and M
N?abc – an optional N followed by abc

dddd
Ü dd can be used to convert files in various formats
Ü The normal form for dd would either be in a pipe or

with redirection of standard input and output
Ü The conv = flags options allows:

ascii = convert ebcdic to ascii (and ebcdic)
lcase = uppercase to lowercase (and ucase)
swab = swap pairs of bytes – little and big endian

Ü The skip = n option allows n blocks to be skipped in
input

findfind
Ü The find command is often used to locate a file. It

searches subdirectories from a given starting point:
find ~spring –name xyz –print

Ü Searching the entire file system using wildcards:
find / -name *.c –print

Ü Commands can be executed for each find
find / -name core –exec rm –f {} \;
{} places the filename and \; indicates command end
find / -name core –ok rm –f {} \; causes interactive
confirmation

Introduction to ScriptsIntroduction to Scripts
Ü Scripts can do anything that can be done on the

command line
Ü Scripts also have a set of loops and control

structures
Ü Normally, the first line of a script is the location of

the shell. The line takes the form:
#! /usr/bin/ksh – or whatever the path of the shell is

Ü Comments are preceded by a # and continue to the
end of the line

A First Simple ScriptA First Simple Script
echo "The number of arguments is $#"
echo "The argument string is \"$*\""
count=0;
for i in $*
do

count=`expr $count + 1`
echo "Argument $count. $i"

done

