The Shell and Unix Commands

Michael B. Spring
Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu
http://lwww.sis.pitt.edu/~spring

Overview

2 Review of the Shell

= Modifying the environment 1
2 Shell variables

2 Aliases and functions

= Modifying the environment 2
= Commands by function

2 Details on commands

Review of'the Shell

ne shell is the interactive command interpreter that
lows you to use Unix

nere are a variety of different shells that you can
use:

= cSh,sh, ksh, bash
2 Each shell allows:
= Some form of customization

= Certain specialized interactive use features
= Selected forms of programmability

Meta characters

2 Shells allow filename meta characters to identify
sets of files:
= * -- 3 string of 0 or more characters
= ? -- any character
= [..] -- a set of characters that may appear range uses -
= [1..] — a set of characters that may not appear

= Note that the general regular expression form of
preceding *" or *?’ with a ‘.’ is not used

2 To use meta characters as regular characters on the
command line quoting rules must be followed.

Korn Shell Metacharacters

2 The Korn shell allows additional pattern matching using
groups and occurrence modifiers

2 A group is anything between parentheses
= (ABC)xyz, ([ABC])xyz, etc
2 A group may specify alternatives using |
= (ABC|DEF)xyz
= The number of occurrences of the group pattern may be
specified in front of the parentheses:
m ?7=0o0rl
= *=(0ormore
= + = 0Nne or more

= @ = exactly one
= | = not the pattern

Expansion and Queting

= There are a complex set of rules by which
commands are “expanded” prior to being executed.

= e.¢. assuming $HOME is defined and x is an alias for Is
= “X SHOME” becomes “Is /home/spring/” before execution

2 Quoting informs the shell that variables or meta
characters are not to be expanded

= Use double quotes “ “ to maintain spaces tab and all the
meta characters except $, , and “

= Use single quotes ‘ * to prevent expansion of all meta
characters except °

= Use the \ to escape any single special character

Back guotes— lower case ~

o Back quotes -- are used to substitute the
results of a command in line

= xx=="Is’, would set xx equal to the listing of files
In the current working directory

= A backquoted string will be used frequently in
scripts to build a set of files (using Is in a for set)

= [Imagine running a program X that required fully
qualified pathnames for the input and output files

— X -1 pwd/infile —o0 ‘pwd /outfile

Process control

2 When Unix executes an external command, the
shell waits until the process completes before
providing an additional prompt.

2 A process can be run in the background by
following the command with an &

= Alternatively, a running process can be suspended ("Z)
and then placed in the background with the command
bg. ("D will kill a running process.)
2 Multiple processes can be run sequentially through
one input line by separating them with a ;

= Commands on a single line can also be grouped inside ()

70, PIpes and redirection

o Each process in Unix has access to file handles that
allow input and output.

2 Each process starts with the handles 0, 1, and 2
assigned for stdin, stdout, and stderr

2 Processes written to read and write stdin and
stdout may be “piped” on the command line with |

2 The input to a process may be redirected from a file
(<). Output may be redirected with a >. (e.g. >file)

2 Output may be appended to a file with >>

Viore on Pipes and'Redirection

2 To send stderr to a file use 2>file

2 To send stdout and stderr to a file >file 2>file

2 Korn allows input and output to one file with <> file
2 Stdin and stdout can be closed with >&- and <&-

2 Ina script, the “here” file construct is used to write to stdin
until the named label is seen on a new line
mail xyz < abc
fee fi fo fum
abc

2 Tee continues a pipe and writes a copy to a file
= processa | tee file | processb

Vodityingthe Shell Environment

2 The Unix system frequently maintains information for
applications in “dot” files
= You can list the dot files with Is-a or Is .*

2 The sh, bash, and ksh shells all load startup information
from files. In the case of ksh,
= General definitions are loaded from /etc /.profile
= Local modifications are loaded from $HOME/.profile
= For the Korn shell, if the shell variable $ENV is set, additional
definitions are loaded from that file (SENV, by convention is set to
$HOME/.kshrc)
2 These files contains modifications related to commands,
variables, aliases, and functions

VodityingOther ASpects

2 Other aspects of your Unix sessions may be
modifiable as well.

= |[f you are using the CDE you will need to modify the
dtprofile file in the .dt directory

= For general X Window System applications,
modifications to application defaults may most easily be
placed in .Xdefaults

= Other applications will keep defaults in various .files
— Defaults for the vi editor are kept in SHOME/.exrc

Shell VVarrables

2 The shell allows the user to introduce variables that have
values. Keep in mind that the value is always a string.
(Actually Korn allows integer variables.)

o Itis easy to set a variable

= varname=value

2 Avariable available to spawned processes is an
environment variable. To create one, export it:
= EXport varname

2 There are many variables important to the shell:
= Standard Variables
= Built-in variables

Variable Basics

2 No spaces in the set
= MBS=Michael

2 Use guotes to allow spaces
= MBS=" Michael B. Spring”

2 Refer to a variable using $, or more formally ${varname}
= echo $MBS

2 The Korn shell allows arrays
s Set —A MBS 23 45 67 93 42
= Formal syntax required -- $§{MBS[0]} = 23, ${MBSJ[3]} = 93

2 Use set, unset, and typeset to control variables — see below

Standard Variables

2 Some variables used by convention in shells:
= SIFS specifies the inter field separator
= SHOME specifies the users home directory
= $USER or SLOGNAME
= $SHELL specifies the shell being run
= STERM specifies the terminal type
= $PS1 and $PS2 specifies the prompts for the shell
= SPATH specifies in what order to search directories
= SMANPATH specifies search directories for man pages

Built-in Variables

2 The built in variables are of great import for scripts
= $7 Has the exit status of the last process
= $$ has the process ID number of the current shell
= $! Has the process ID of the last background process
= $- has the flags passed to the shell when invoked
= $# has the number of arguments passed to the shell
= $* has all the arguments

= $@ is the same except
— “$@” allows arguments that were quoted to be replicated

Directory related variables

2~ =home directory

2 ~name = home directory of name
2 ~+ = current working directory

2 ~- = previous working directory

Korn Shell'Variable Control

2 The Korn shell offers variable checking:
= ${#var} specifies the length of var
= ${#*} specifies the number of command line arguments

2 The shell also offers control

= ${var:Xvalue}
— X -value is expanded and used if var is not set or null
— X =same as - but var is set to value
— X ? If var is null or unset value is displayed and the script exits

= ${varYpattern}
— Y # removes minimal matching pattern prefix; (##) removes max
— Y % removes min matching pattern suffix; (%%) removes max

Simple manipulations(1)

2 PATH=/xyz/bin/:$HOME/bin/

> PATH=$PATH:/xyz/abc/def/

= This sets the path to the old path plus a new
directory

= PATH=/xyz/abc/def/:$PATH

= Puts the current directory at the front of the
search list

Simple manipulations(2)

2 PS1=some
below is all t

Ifferent prompt for the shell -
ne junk | might imagine:

= PS1=$HOS

'NAME:$SLOGNAME:$PWD:\>

— lis the current command number
— \> escapes the > so It is taken as a literal

= Examine the impact of quoting
— PS1=${PWD##/*/}.]\> — fixed at time var set
— PS1="${PWD##/*[}:\\>” - fixed at time var set
— PS1="${PWD##/*[}.\\>’ — interpreted when “run”

Viore Standard Varianles(1)

2 The Korn Shell has about a dozen standard
variables it sets. The most interesting are:
= ENV = the name of a startup file
= PWD and OLDPWD = the current previous working dir
= PPID = process number of the shells parent
= FPATH = the path to search for function files
= RANDOM = provides a random number

= HISTFILE and HISTSIZE = the name of the command
history file and the number of commands kept

Viore Standard Variables(2)

= LINES COLUMNS PS3 = are variables that are used by
the select command to display choices

= LINENO = current line number in a script or function
» PS4 = prompt string used in debugging mode. Assuming

set —x, PS4 might be set to ‘SLINENO:

= SECONDS = the number of seconds that have elapsed
since the start of a shell

= TMOUT = the amount of time a shell waits for a prompt
before exiting — normally set by sys admin and read only

= $ =pathname of a script initially; later stores the last
argument of the previous command - like perl.

Variable Related'Functions(1)

2 unset
= A variable can be unset using unset

S Set
= prints all the names of shell variables

= set options can be used to control variables
-A set variable as an array
-k allows assignments on the command line
-U treat unset variables as errors
-v show each command line as executed
-X show commands and arguments as executed
-- turn off option processing

Variable Related Ftnctions(2)

2 typeset Is a very powerful command for
controlling variables:

= typeset —option var=value
— -x mark variable for export

— -1[n] define variable as an integer — if n Is specified, it
IS the base

— -l or -u convert value to lower or upper case

— -L[n] or -R[n] make value a left or right justified
truncated or padded string or length n

— -r mark variable as read only

Korn Shell Arrthmetic

2 Korn shell arithmetic assumes that variables have
been defined as integers

2 There are two forms for doing arithmetic
= var=((arith. expr.))
= $((var=arith. expr.)) or $((arith. expr.))

2 Variables that are being accessed in the expression
do not require the specification of the $ preceding
the variable, but it is good form to use It.

Korn Shell'Arithmetic Example

2 Define integers and assign some values
= typeset -1 a=20 b=14 c=18 d=19
= fypeset —I X Y z
= typeset —-12 bx #base2
= typeset —116 hx #basel6

2 Do some calculations and assignments
= et x=a*b+c
= |et bx=x hx=x

2 Echo the results

= echo $x $bx $hx
— 298 2#100101010 16#12a

Commands

o System commands
Process commands
nformation Retrievers
Disk and Directory

2 General Utility

< File related
= General files
= Data files
= Program files
= \Worlds in themselves

System Commanas(l)

= echo - allows status information or debugging

= ksh echo does not allow -n, printf preferred

2 passwd - allows you to change your password

< C
< C
< C

ngrp — change the group to which a file belongs
nmod - change the protections on a file

ear — clear the display

o stty — set terminal I/O properties

2 touch - change the dates of last access for a file — if
the file named doesn’t exist, it will be created

System Commands(2)

2 set - listing of variables
= option switches allow control of how variables are set

2 unset — makes a variable undefined

2 typeset — allows control of the values assigned to
variables

2 xargs — a mechanism for allowing more than ten
arguments to be passed to a command

> tee — duplicate standard input sending one copy to
a named file and another copy to standard output

Process Commands(1)

2 bg - places a suspended process (*Z) in the
background. fg moves the last background process
to the foreground.

2 nice - runs a command (with arguments) at a lower
priority
o ps - lists processes

2 sleep — wait a specified number of seconds before
execuitng another command

2 kill — stop a process

Process Commands(2)

2 at, atg, atrm - at runs a command at a specified

time. atg check the queue and
given scheduled job.

2 nohup - allows a command to
from the parent process such t
continues to run after the user

atrm removes a

0e run separated
nat the command

0gs oult.

2 time — run a command showing time used. (timex —
also runs a command, but allows more options)

2 truss - show system calls and

signals for a

provided command or a process id.

Information Retrievers(1)

2 date - prints the current date and time

2 finger — displays data about one or more users
2 groups - show the groups a user belongs to

2 Id - list user and ids - individual and group

2 logname - lists your login name

2 env - displays the current environment variables —
similar to set without options

2 hostname - prints the name of this host

Information Retrievers(2)

2 type - describe the type of a command - I.e built in,
function, external,

2 which - list the fully qualified pathname of a
command

2 apropos - lookup keywords for man pages and
display the man pages that may be relevant

2 man - display a man page
2 whatis — print a brief description of a program

Information Retrievers(3)

> W — print systems status and who Is on
2> who - print current sessions

2 users - list logged in users in a space
separated list — like who

> fgrep — simple file search program — doesn't
use patterns

2 grep — general regular expression program to
find patterns in text (egrep extended version)

Simple Directory Commands

= cd - change to a named directory
2 pwd - print the current working directory
2 Is - list information about a file

Disk and Directory

2 mkdir - create a directory

2 rmdir — remove a directory

2 df — show free disk blocks for all mounted drives
2 du - show disk usage for the named directory

2 find - find a file in a directory subtree
= Need to specify the name being searched for
= Need to specify print to rpint the name when found
= \Was designed to execute commands on found files

2 dircmp — compare the contents of two directories

General’Uuility

2 cal — a utility to print a calendar
2 calendar — an appointment management system
2 dc - an interactive desk calculator

2 bc —a program to do arbitrary precision arithmetic
In multiple bases

2 od - produces a dump of a file — an octal dump.
Many switches allow additional forms of display.

EiJefe el Coplyglaiglels
(Common)

> cat - list file contents to the screen; It can be used
to join a set of files together

2 cp —copy a file

2 diff — compare two files for differences
2 mv — move or rename a file

2 rm-remove a file

2 In —with the —s option, create a symbolic link to a
file. With —s, deleting the link does not delete the
source. Without —s the link is the same as the file

Frie Related Commands(2)

2 tr — subsitute chars in string2 for chars in stringl

2 head - look at the starting lines of a file

2 tail - look at the ending lines of a file

2 file — provides information about the types of files

> fgrep — simple form of grep and egrep for finding
none regular expression patterns

= fmt - fills and joins text — simple formatting

2 pr —a simple formatting program for files

2 WcC — count the characters, words, and lines in a file

PData File Related' Commands

2 cut — cut columns out of a file

2 dd - copy and convert the input file to an output file doing a
number of conversions

2 Join - join columns of two files based on common ids
2 paste — join files into a common file of multiple columns
2 sort - sort a file based on contents

2 unig - remove adjacent duplicate lines - often used with
sort

2 split — splits a file into files of a given number of lines
2 csplit - splits a file based on a pattern

Commands related to transter

2 compress - one of a family of programs to
compress a file using Lemple-Ziv. Some systems
will have zip, gzip, or other compression programs

2 uncompress — the companion program to compress

2 tar — move files in and out of a “tape” archive
= Options are —C create —u update —x extract
= -f followed by filename provides the target

2 ar — move object files in and out of a library archive

2 zcat — like uncompress except that it puts the file to
standard out

Programming File Related

2 nl — number the lines in a file

2 strings — search binary files for string of more than
four characters

o expand - expand tab characters into spaces
2 unexpand — convert multiple spaces into tabs

2 uuencode - allows a file with binary characters to
be encoded such that it can be mailed without
problems

2 uudecode - the companion to uuencode

Functions and Aliases

2 allases

— alias str="command"
— eg. alias dir="1Is -al | grep 'Ad'
— alias -x exports the alias to sub shells

2 functions

— function name {
definition

= Use “export name” to make a function available to spawned
processes
= Functions can manipulate command line arguments

= |n scripts, function arguments hide command line arguments

Some Simple Uses ofalias

2 alias type=cat

< alias —x dir="Is -I”

2 alias —x pdir="Is - | more”

2 alias sp="echo $PATH | tr “:” “\n”" | sort’

2 alias wd="cd /nome/spring/projects/current”

A Simple Function

{unction Sys
printf "The time is: ";
w | head -1 | cut -c 0-8;
printf "System stats: ";
w | head -1 | cut -c 9-70;
printf "Number of user shells: *;
echo $(('w|wc-I -2));
printf "Number of processes: ",
echo $(('ps -ef |wc -I' - 1));
printf "Number of different process owners: ";
echo $(("'ps -ef | cut -c 0-9 | sort | unig | wc -I" -1));
printf "Number of root processes: ";
ps -ef | cut -c 0-9 | grep root | wc -I;

Shell'historyand editing

2 Use set -0 vi to set the editing mode to vi
= This should be done in .profile
= Use “ESC” to invoke the editor
= Use] and k to move up and down the sequence
= Use history to reissue commands

= Consider installing the bash shell for even easier
command line editing

Detalls on'selected Commands

2ls

2 sort and uniq

2 Vi

> man

o expr

2 grep, egrep, and fgrep
> dd

2 test

2 find

2 Some of the Is options
= -a Will list both .files as well as all others
= -| will provide all file information

= -R will recursively list subdirectories
= -, -u list files by modification or access time
2 Some games we might want to play

= |s | wc —I - count the files
= cat Is *.txt' | more — page through all the text files

sortand unig

2 Some of the sort options
= -p ignore leading spaces
-d sort in dictionary order, ignoring punctuation
-f ignore case
-r reverse the sort order
-tc field separator is the character c
= -n skip n fields before starting sort

2 Some of the unig options
= -n ignore first n fields
= -C print lines once with count

S Some games
= SOrt records.dat | uniq

2 man is generally used by simply typing man topic
and prints the man page on topic

2 man -k keyword prints a one line summary of any

command that has a keyword matching keyword

2 man =S section topic prints the man page for topic
found In section

= section 1 1s user commands
= section 2 is system call
= section 3 Is functions, etc.

Regular expressions

2 In Unix, patterns can be used to match
strings. These patters are called regular
expressions

= The shell uses simplified regular expressions for
files (see above)

= The Korn shell uses an expanded set of file
expressions (see above)

= grep uses a “more normal set” and egrep uses
an expanded regular set

fgrep, grep, ana'egrep

2 fgrep Is the most basic form — it searches files for
simple pattern — regular expressions aren’t used.

2 grep Is used most frequently
= The general form is in a pipe
= Process | grep pattern
2 grep allows several options
= -| case insensitive
= -n print lines and line numbers
= -| print filenames but not matched lines

2 egrep uses an extended set of pattern matching
rules

The Normal RegularEXpressions

2 Any string can be a pattern
= ‘abcde’ looks for precisely that string

2 Any single character can be defined as a set
= ‘[AEIOU]ppp’ — a capital letter vowel followed by ppp
= [A-Z]abc - any capital followed by abc

2 The ' Is used to mean any character

2 Any single character can be modified by count
= abx*cd - ab followed by zero or more x’s followed by cd

= M.*M — M followed by zero or more characters followed by and M
= N?abc - an optional N followed by abc

= dd can be used to convert files in various formats

= The normal form for dd would either be in a pipe or
with redirection of standard input and output

2 The conv = flags options allows:
= ascil = convert ebcdic to ascii (and ebcdic)
= [case = uppercase to lowercase (and ucase)
= swab = swap pairs of bytes - little and big endian

= The skip = n option allows n blocks to be skipped in
Input

find

2 The find command is often used to locate a file. It
searches subdirectories from a given starting point:
= find ~spring —name xyz —print

2 Searching the entire file system using wildcards:
= find / -name *.c —print

2 Commands can be executed for each find
= find / -name core —exec rm —f {} \;
= {} places the filename and \; indicates command end

= find / -name core —ok rm —f {} \; causes interactive
confirmation

Introduction to'Seripts

= Scripts can do anything that can be done on the
command line

2 Scripts also have a set of loops and control
structures

= Normally, the first line of a script Is the location of
the shell. The line takes the form:
= #! lusr/bin/ksh — or whatever the path of the shell is
2 Comments are preceded by a # and continue to the
end of the line

AFIrst Simple Script

echo "The number of arguments is $#"
echo "The argument string is \"$*\""
count=0;
for iin $*
do

count="expr $count + 1°

echo "Argument $count. $i"
done

