
A Practical Introduction to UnixA Practical Introduction to Unix
Michael B. Spring

Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

OverviewOverview
Ü File system

Directory structure
Directory and file commands
File access control

Ü Process control
Ü Commands and Options
Ü The Shell

The different shells
Piping, redirection, and variables
Aliases and functions

The File System – Physical DisksThe File System – Physical Disks

Ü Physically disks are formatted into blocks
The first two* blocks of a disk are:

– bootstrap block: machine language instructions for startup
– super block: list of available disk resources

next comes the inode blocks
next come the data blocks

Ü Additional physical disks can be associated with
directories

* In modern Systems, both of these can be multiple blocks

FilesFiles
Ü May be of any size allowed by administrator
Ü Are not structured in any way by the system
Ü Files are of multiple types:

Ordinary files – be they text or binary
Files representing character and block devices
Files representing directories

Ü Security is provided on a file and directory basis
Ü Devices are treated as special files

They provide a level of indirection for devices
Read and write to device files just as to ordinary files

Directory filesDirectory files
Ü Controlled by the OS – not accessible to the user
Ü Associates a file name with an inode
Ü inode specifies:

owner
group
type
permissions
last access
last modification
size
disk addresses
last inode modification

Ü This indirection allows for links (see below)

Hierarchical File SystemHierarchical File System
Ü Must have a root directory – /
Ü A user’s home directory is ~username

/usr/sbin

/home

/

/home/y/home/x /home/z

/usr /bin

root

Important DirectoriesImportant Directories

ÜSome standard directories include
/bin – binaries
/sbin – system binaries
/dev – device files
/etc – system admin
/home – user file systems
/spool – temporary files
/var – files that vary in length
/usr – binary files (unix system resources)

Special File Structure ReferencesSpecial File Structure References
Ü Directory separator is “/”, not “\” as in DOS
Ü Absolute and relative directory names

Absolute: /home/spring/bin/source
Relative, assuming cur. dir. is /home/spring/bin: source

Ü Special directory references:
Root directory: /
Home directory: ~
Parent directory: ..
Current directory: .

Directory CommandsDirectory Commands

Ü There are a relatively small set of commands related
to directory access and manipulation

mkdir makes a directory
rmdir removes a directory
cd changes to the named directory
pwd prints the fully qualified name of a the current
working directory
ls lists the contents of a directory

Ü There will be additional commands introduced later

File CommandsFile Commands
Ü Creating a file

Creating a file is easy with an editor
Using the “touch” command
Using echo with redirection

Ü Renaming a file is the same as moving it
mv source destination
if across disks, mv will not work. Copy the file to create a new inode
then remove the original file and inode

Ü Copying files – cp
Ü Removing files – rm

Beware rm –rf – one of many very dangerous Unix commands

Setting File ProtectionSetting File Protection
Ü Each file, ordinary, directory, or device has a set of

protections – access protections
Ü The protection can be changed using either of two forms –

conversational and absolute
Ü The command is chmod
Ü Access controls are specified for the:

Owner
Group
World

Ü Access rights relate to:
Reading
Writing
Executing (X)

Ü cp mv ln don’t change the status of files

Using chmod “conversationally”Using chmod “conversationally”

Üchmod category=+/-function file
eg chmod g=+r filename
categories are u = user, g = group, o = others
– NB—others(world does not include user)

operators inlcude = + -
functions include r,w,x
Functions also include
– t = sticky bit
– l = mandatory locking

Using chmod “absolutely”Using chmod “absolutely”

Ü Access rights are actually stored as a 12 bit number.
Ü Chmod generally accesses 9 of the twelve bits.
Ü Each of the cells shows which right is enabled – 1
Ü The rights may be read as the octal equivalent of the binary

number. For example:
1112=78

1012=58

0102=28

R XW

11 1

Owner
R XW

01 1

GroupSticky
R XW

01 0

World

Using chmod “absolutely”Using chmod “absolutely”
Ü The three numbers represent the owner, group, and world
Ü The three bits of the octal number define protections – the 4

position represents read, the 2 position write, and the 1
position eXecute.

Ü absolute mode, chmod knnn file
first n = owner, 2nd = group, 3rd = other
if k = 4, setuid flag, 2 = setgid, 1 = sticky bit

Ü Thus chmod 700 filename
Gives the owner access to all functions and not anyone else

Access to directory filesAccess to directory files

Üchmod may be used on directory files as
well, but the meanings are slightly different

read allows the files in the directory to be listed
write allows files to be added or deleted from a
directory
eXecute allows traversal of the directory
structure assuming that the file name is known--
x means search not execute

umask valueumask value

Ü When an ordinary file or directory is created, the
system variable umask is used to set protections

The default umask value is 077
The protection set is the logical opposite of the umask
Thus, owner gets all rights, world and group none

Ü Files created by shell redirection are set to 666
minus umask

basically, it removes executable permission

The Process Control SystemThe Process Control System
Ü Each program run on Unix is a process or task, and

has a processID or PID
Ü Processes start other processes via system calls
Ü The process which starts the process is the parent
Ü Unix processes are generally speaking lightweight

compared to other systems
Ü The kernel is the first process that is started

The kernel starts a scheduler and some other processes
The scheduler starts shells when users login
The shell is itself a process

Watching processesWatching processes
Ü ps can be used to check processes
Ü kill pid to kill a process
Ü Write a simple shell script

#! /usr/bin/ksh # or appropriate path
while true
do

sleep 1;
echo ‘’hello’’;

done

Ü Chmod on the script and run it in the background
Ü Use ps to find the process id and kill it

A Simple Command –
with options
A Simple Command –
with options
Ü The general form of commands is:

cmd –options filenames
Options are normally specified right after the command
name, and normally preceded by a -
Where a command requires a filename, filename
“metacharacters” are often allowed – I.e. *, ?, and []

Ü rm removes a file
-r removes files recursively
-f forces removal
-i requests confirmation
rm –rf /* is a disaster

Another Simple Command –
with options
Another Simple Command –
with options
Ü ls to list the contents of a directory

-a all files
-l long listing
-R(recursive)
-d list directory information, not contents
-m merge the list to a comma separated set of names
-p mark directories with a /
-t list files by modification time
-u list files by access time

Ü ls –ltR *.c recursively lists all c files in the current
directory and below in long form

A couple more A couple more
Ü cat is used to display a file

-t prints tabs as ^I and formfeeds as ^L
-e prints $ at the end of each line

Ü But there are other options to display a file
head, tail to look at the first or last lines of a file

– -n specifies the number of lines, default is 10
more pages through a file

– -d display a prompt
– -c display by screen refresh rather than scroll
– Within more /xyz will search for xyz

od produces an octal dump
– -ha produces a hex and ascii dump

The ShellsThe Shells
Ü All commands are given through a shell
Ü In general, shells provide the following services

Interactive command execution
Process control
The ability to tailor your environment
The ability to execute programs
A variety of special features

– History
– Command line editing

Ü Your “shell” is simply a program.
There are many different shells

The Shell and ProcessesThe Shell and Processes
Ü Because the shell is a process, it can start other processes
Ü Many of the commands given in Unix are really directives to

the shell to start a child process.
Ü When a process starts another process, the parent process

suspends execution until the child process completes
It is possible to direct the shell to start processes in the background

Ü Processes communicate with each other using a variety of
mechanisms:

Variables set in the environment
I/O Channels
InterProcessCommunication

Issuing CommandsIssuing Commands
Ü The shell serves as a command interpreter

It has some “built in commands” and capabilities
Other capabilities are achieved by executing programs –
“external commands”

Ü When the shell forks a process to run the program,
it offers three primary process controls:

; - allows commands to be sequenced
& - puts a command in the background
| - “pipes” the output from one command to another

Ü Sophisticated grouping of commands is possible

Which shell to useWhich shell to use
Ü The default shell for you is set by the sys admin
Ü The more common shells include

csh
sh(bourne)
ksh(Korn)
bash(bourne again shell)

Ü You can use any of the shells on your system by
simply typing the shell name

Ü It takes a long time to understand everything your
shell can do

Learning about your shellLearning about your shell
Ü The best way to learn about the shell is to use it and

to experiment with it
Ü Books and man pages have to be read

man ksh
more, less, xman, and xless can also be important aids

Ü Keep in mind that there is a man on man which will
help you to use the man pages

/topic when using man allows you to search
/ by itself repeats the last search

Features Common to All ShellsFeatures Common to All Shells
Ü Filename metacharacters

* allows 0 or more characters to be matched
? Allows 0 or one characters to be matched
[] allows any from a group of characters to be matched
Korn offers +, @, ! as well

Ü Process control
& allows a process to be run in the background
; allows multiple processes on a single line

Ü Piping and redirection
the | pipe command allows process I/O to be tunneled
The <,>, and >> redirection commands for file I/O

One Simple ExampleOne Simple Example

Ü the basic idea behind the Unix tools is that
they work best in unison

Create a file
– Type vi
w Type I
w Type 5 or six lines of words separated by tabs
w Type “ESC” – the key
w Type :w filename
w Type :wq

A Simple Example ContinuedA Simple Example Continued
Ü Now type the file out

cat filename
Ü Now type the file out with a sort

cat filename | sort +1
This will sort of field 1 – tab separated by default
Try sorting on different fields

Ü Now cut a field out of the sorted file
Cat filename | sort +1 | cut 1

Ü Now save the result as a new file
Cat filename | sort +2 | cut 2 > newfile

Std I/O and the ShellStd I/O and the Shell
Ü Each process, the shell being no exception, can

have up to 256 file descriptors associated with it
(actually, this is system dependent)

Ü For each process, the first three file descriptors are
set by the system – they are automatic:

0=stdin
1=stdout
2=stderr

Ü To redirect stderr use the I/O channel number:
cat filename 2> errors.dat

Variables and the ShellVariables and the Shell
Ü Variables play a big role in how the shell works.
Ü To set a variable, simply type, with no spaces

xys=abc
xyz is now a variable with the value abc

Ü Variables that are set within a shell process can be
made available to children processes. These
variables are called ENVIRONMENT variables

Ü To create an ENVIRONMENT variable, i.e. make it
available to child processes, export the variable

export xyz

Some Standard Shell VariablesSome Standard Shell Variables
Ü All the shells rely on certain variables being defined. These

are normally named using all caps. Because they are almost
always exported, they are often referred to as “the”
ENVIRONMENT variables

HOME is your home directory
LOGNAME is your login name
SHELL is the shell you are running
PATH is a : separated list of directories to be searched when you
issue a command
MANPATH is a : separated list of directories that contain man pages
DISPLAY is the IP address and display:screen id of the device to
display X Windows

Aliases and FunctionsAliases and Functions

Ü Aliases can be used to change the shell interface
alias dir=“ls –l”
alias type=cat
alias print=lpr

Ü Functions can be used to allow for the use of
variables

function re {
<tab>echo $2;
<tab>echo $1;
}

Ü Re 2 1 will produce 1 2

