
1

Spider Programming
Michael B. Spring

Department of Information Science and Telecommunications
University of Pittsburgh

spring@imap.pitt.edu
http://www.sis.pitt.edu/~spring

September 28, 2001 Spiders in Java 2

Overview

• Review of Client-Server paradigm

• Overview of important concepts

• Basic spider design

• An example

• An exercise

2

September 28, 2001 Spiders in Java 3

Client Server Paradigm
• Basic

• A server is started and listens to a given port for requests

• The client initiates a request

• The server processes the request

• The server sends the response

• Spiders
• A spider assumes http servers are running on standard ports and

proceeds to connect to them asking for a page

• Because the http connection is a simple request and response wit h an
automatic shutdown the client needs do nothing more than make the
request. The server will close the connection

September 28, 2001 Spiders in Java 4

Http as a Simple Example
• When using a web browser, here is what happens:

• T h e u s e r t y p e s a r e q u e s t i n t h e b r o w s e r w i n d o w :

h t t p : / / w w w . s i s . p i t t . e d u / ~ s p r i n g / i n d e x . h t m l

• T h e b r o w s e r l o o k s u p t h e i n t e r n e t a d d r e s s o f w w w . s i s . p i t t . e d u (1 3 6 . 1 4 2 . 1 1 6 . 2) , a n d

m a k e s a c o n n e c t i o n t o t h e w e l l k n o w n p o r t f o r h t t p – (8 0) .

• T h e b r o w s e r t h e n w r i t e s t h e f o l l o w i n g r e q u e s t t o t h e s o c k e t :

GET /~spring/index.html http/1.1

• K n o w i n g t h e c l i e n t i s d o n e , t h e s e r v e r l o o k s u p t h e f i l e , a n d a ss u m i n g i t i s f o u n d , s e n d s

b a c k t h e f i l e p r o c e e d e d b y a h e a d e r :

http:/1.1 200 ok
Content-Type: text/html

• T h e r e a r e a c t u a l l y a n u m b e r o f o t h e r l i n e s b e t w e e n t h e s e t w o b u t t h e s e a r e t h e o n l y

r e q u i r e d l i n e s . W h e n t h e s e r v e r i s d o n e w i t h i t s h e a d e r , i t s e n ds a

< C R > < L F > < C R > < L F > s e q u e n c e f o l l o w e d b y t h e d o c u m e n t .

• W h e n i t i s d o n e s e n d i n g t h e d o c u m e n t , i t c l o s e s t h e c o n n e c t i o n .

3

September 28, 2001 Spiders in Java 5

SocketsSockets

September 28, 2001 Spiders in Java 6

Selected Methods
• There are more than 20 classes within the java.net package as

well as a number of interfaces and exceptions that need to be
studied.

• There are important classes that need to be used when the
very efficient UDP protocols are used – I.e. the Datagram
classes

• There are a series of classes that are used with web based
applications related to URL’s

• For our purposes here, there are three classes of interest:
• InetAddress

• Socket

• ServerSocket

4

September 28, 2001 Spiders in Java 7

InetAddress Class
• Socket programming anticipated numerous schemes for addressing machines

on networks. Most implementations still allow for this, but in reality, there is
only one address type used – internet addresses.

• An internet address is a binary identifier that is four bytes long. Humans
have trouble with this long a string of ones and zeros, so two alternate forms
are also used:

• D o t t e d d e c i m a l n o t a t i o n s s u c h a s t h e S T R I N G 1 3 6 . 1 4 2 . 1 1 6 . 2 6

• D o m a i n n a m e s s u c h a s t h e S T R I N G c p o r t .sis . p i t t. e d u

• InetAddress class is a final class with methods that provide for conversion:

• I n e t A d d r e s s a = I n e t A d d r e s s. g e t B y N a m e(S t r i n g)

• There are also methods to convert an InetAddress to the dotted decimal
notation (getHostAddress) and domain name (getHostName)

September 28, 2001 Spiders in Java 8

Socket Class
• The Socket Class has a large number of constructors and methods. The

most used form would be:

• S o c k e t S = n e w S o c k e t (I n e t A d d r e s s a , i n t p o r t) ;

• This establishes a connection to the process listening to Port port on the
machine at address a.

• The Socket class has a number of utility methods to set the characteristics
of the channel and to query attributes of the connection.

• Three methods are essential to developing clients and servers:

• g e t O u t p u t S t r e a m() w h i c h g e t s a s t r e a m t o w r i t e t o

• g e t I n p u t S t r e a m() w h e i c h g e t s a s t r e a m t o r e a d f r o m

• c l o s e () w h i c h c l o s e s t h e s o c k e t c o n n e c t i o n .

5

September 28, 2001 Spiders in Java 9

Socket In Detail
• Be sure that all exceptions are handled appropriately

InetAddress Host;
try {// Create a Socket to make connection
Host = InetAddress.getByName(“www.pitt.edu“);
S = new Socket(Host , 80);
}

catch (UnknownHostException eh)
{System.out.println("Host not found");
}

catch (IOException es)
{System.out.println("Can't create socket");
es.printStackTrace();

}

September 28, 2001 Spiders in Java 10

Skeleton of a Client
// convert dotted decimal string to an address
InetAddress Host = InetAddress.getByName("127.0.0.1");
//open a connection to the host on port 32638
S = new Socket(Host , 32638);
// get the raw input and output streams as object streams
// letting Java do encoding
Sout = new ObjectOutputStream(S.getOutputStream());
Sin = new ObjectInputStream(S.getInputStream());
// write
Sout.writeObject(“GET filename http/1.1”);
Sout.flush();
// read
response = (String) Sin.readObject();
// read response and process it
Sout.close();
Sin.close();
S.close();

6

September 28, 2001 Spiders in Java 11

Basic Spider Paradigm
• Establish a starting condition

• Make a request

• Read the response

• Parse the response for links

• Normalize the links

• Add the links to a target list

• Parse the response for content

• Check for termination conditions

• Exit or request the next item on your list

September 28, 2001 Spiders in Java 12

Make a Request

• Gets one or more pages

• Opens a socket to a machine on Port 80

• Writes a request:

• “GET /homepage.html HTTP/1.0<CR><LF><CR><LF>”

• Note: you can include any number of headers

• Proceed to read the response

7

September 28, 2001 Spiders in Java 13

Read the Response
• Use strstr like method to find the end of the header

(CRLFCRLF)

• Parse the headers into name value pairs

• Find the length of the body from the header called “Content -Length”

• This value indicates the length of the body only and excludes the

length of the header

• Read the rest of the reponse (Make sure your read loop reads
the entire response)

• Handle the response based on the content type

September 28, 2001 Spiders in Java 14

Parse the response for anchors
• Find all the elements on the page which will contain URLs –

anchors, frames, images, maps.

• Process the page elements to find the URLs

• Find href attributes in <a> Anchor elements and obtain the
literal string associated with the href

• There are at least 4 problems associated with this process:
• HTML is case insensitive regarding attributes

• The ‘=’ is NOT required
• “ “ quotes are NOT required

• The string literal may be absolute, site absolute, or relative

8

September 28, 2001 Spiders in Java 15

The URL Problem
• We would like an anchor as follows:

• Unfortunately, the following is legal
< a href www.sis.pitt.edu/~spring align=LEFT>

• The following address forms should be considered in
normalizing

• Absolute address
“http://www.webpage.com/abc.html”

• Site Absolute address:
“/abc/def.html”

• Relative address:
“xyz.htm”

September 28, 2001 Spiders in Java 16

The URL Problem Continued

• There are additional URL problems that must be
addressed:
• Path permutations

• (e.g. /abc/mbs.html vs /abc/def/../mbs.html)

• Default names
• (e.g. /abc/ vs /abc/index.html

• Machine names
• //augment.sis.pitt .edu/ vs //136.142.116.125

• Once the URL is normalized, add it to a list of URLs
to be checked

9

September 28, 2001 Spiders in Java 17

Parse the response for Content
• Invoke a method on the page that analyzes the page as per

your spider function:
• Check for images

• M e t h o d s f o r i m a g e a n a l y s i s

• Gather statistics on the page

• S i z e , l i n k s , i n c o m i n g a n d o u t g o i n g , t a b l e s , p r i c e s , ectc

• Check for site related matters

• M o d i f i c a t i o n d a t e , e x i s t e n c e , f o r m , e t c

• Look for term occurrence

• W i t h i n a p a g e

• W i t h i n p a g e s s e p a r a t e d b y l e s s t h a n n l i n k s

• etc

September 28, 2001 Spiders in Java 18

Termination Condition
• The easiest termination condition – often used during

development – is to get a single page and stop.

• You can also terminate after some number of pages – 1000.

• You can terminate at exhausting some finite resource – all the
pages on a given site

• You can terminate after some complex conditon – don’t follow
any link trail for more than five links without finding a given
condition – e. g. a particular keyword

10

September 28, 2001 Spiders in Java 19

Link Depth Termination Condition
• Example of a spider that wanders, but looks for pages with a

keyword:
keyword = college

if(keyword)

{set PageRelevanceCounter=3;

else

if(PageRelevanceCounter)

{set PageRelevanceCounter=CP_PRC-1;

add new reference to refList;

increment refListcounter;}

• IDEA: within 3 hops, we must find ‘college’ or link traversal
of path is terminated

September 28, 2001 Spiders in Java 20

An Exercise

• Use the spider provided in the example. Modify the
spider so that it automatically iterates over the list of
pages recovered. This will require that you put a loop
in a method that starts the search and terminates
when some condition is met – i.e. n pages are
checked, n links are traversed without finding some
information in a page

