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‣Understand human and social 
dynamics from big data

‣Develop computational approaches for 
mining and visualizing large-scale, time-
varying, heterogeneous, multi-relational, and 
semistructured data

Research interests



Current projects
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Fig. 1: Human mobility patterns captured from phone activity. (A) Spatial trajectories of two users, one traveling to a large number of locations
and another covering a smaller range. Node size indicates the amount of time spent at a particular location (as quantified by mobile phone
calls) and node colors represent the location’s habitat detected using Infomap (see Methods). Habitats are ordered by weight such that Habitat 1
contains the most calls. (B) Exploding the spatial trajectories from (A) in time (vertical axis), the recurrent nature of human mobility becomes
evident, with a number of trips featuring both consistent destinations and consistently repetitive occurrence (zoom). These features are the root
cause of the high predictability that human motion is known to possess. The primary habitat contains the majority of spatiotemporal activity.
(C) The daily call dynamics of the three largest habitats, as well as the overall dynamics (summed over all habitats). We see that User 1 tends
to occupy his or her second and third habitats primarily at night, while User 2 is more evenly distributed.
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Fig. 2: Spatial properties of mobility habitats. (A) We characterize each habitat’s spatial extent by computing the radius of gyration rg(h)
considering only calls placed from locations within habitat h. The distribution of habitat radii over the population shows that the primary
habitat tends to be more spatially compact that the less frequented habitats, though most are consistently smaller than the total Rg. (B) The
growth in the radius of the primary habitat rg(h1) as a function of total radius Rg. For Rg < 5 km, rg(h1) ⇡ Rg, indicating that those users
are characterized by a single habitat. In contrast, rg(h1) ⇠ R

1/3
g for Rg > 5 km. Since approximately 92% of the population has Rg > 5 km,

the majority of users exist in a regime where their primary habitat encompasses a far smaller spatial region than their total mobility. (C) The
distance between the first and second habitat’s centers of mass d(h1, h2) is consistently greater than Rg and exhibits approximate power law
scaling, d(h1, h2) ⇠ R�

g , with � = 0.79± 0.01. Most habitats are both well separated and spatially compact.

Rg is primarily due to movement between spatially cohesive but well
separated habitats.

Given the importance of habitats to the spatial extent of human
motion, one must then wonder: how do these habitats form and
evolve over time? To what extent are the temporal dynamics of user
movement reflected in the evolution of these habitats? Recently, con-
siderable effort has been undertaken to understand the intriguing tem-
poral features of human mobility, including the ultra-slow growth of
Rg [4, 6]. A primary question becomes, how do habitats contribute to
these temporal features? For example, how do individual rg’s evolve
over time, compared with that of the total Rg?

In Fig. 3 we study the temporal evolution of rg and Rg by con-
sidering only those calls occurring up to time t. In Fig. 3A we plot

the normalized rg(h1) and Rg, observing that rg saturates at its final
value more quickly than the total mobility’s Rg. To further quantify
this saturation, we plot in Fig. 3B the ratio between rg(h1) and Rg

as a function of time, for different final values of Rg. We observe
more rapid saturation of rg as Rg increases. In Fig. 3C we study the
temporal evolution of rg for the first three habitats, averaged over all
users with Rg ⇡ 30 km. We observe distinct logarithmic growth,
rg(h1) ⇠ log(t), for the primary habitat (slower than that observed
in [4, 6]) while subsidiary habitats’ radii ⇠ (log t)� (� > 1). In
Fig. 3D we plot the same population-averaged radii, but shift each
user’s time series of rg by a time t0, the time upon first entering the
habitat. Doing so accounts for the waiting times for users to first visit
a habitat during our observation window. With this correction we re-
cover the logarithmic growth in rg(h1) observed in Fig. 3, implying
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How will a society be informed?
How do people share opinions?

In social media, 
do small contributors 
play big roles?



Study social media bias via
daily frequency of news/blog coverage on the U.S. Congress
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Social media bias

Distinct characteristics of how News and 
Blogs cover the US congress.
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Each call activity time series encodes the spatiotemporal trajectory
of that user. (See Materials and Methods and File S1 for details
about the data.) For each user we construct a directed, weighted
mobility network capturing the detailed flows between individual
locations (represented using cellular towers). Examples of both
mobility networks and spatiotemporal mobility flows are shown in
Figs. 1A and B, respectively. The recurrent and repetitive nature
of human motion is clearly visible in Fig. 0B, where we explode
the user trajectories vertically in time. We apply to each user’s
mobility network an information-theoretic graph partitioning
method known as Infomap [25], which uses the flows of random
walkers to find groups of dynamically related nodes in directed,
weighted networks. We do not use spatial or distance information
in partitioning, instead Infomap mirrors the stochastic process
underlying human mobility flows; see File S1 Sec. S3 for details.
(Infomap’s underlying mechanism is further justified in this
context by the results of [22].) The groups of locations that we
discover, which we refer to as mobility ‘‘habitats,’’ will be shown to
be crucial to both the spatiotemporal dynamics of human motion,
and to the interplay between mobility and human interaction
patterns. We rank habitats in decreasing order of phone activity,
such that a user’s most frequently visited habitat is Habitat 1 or the
primary habitat. We observe that human mobility is almost
universally dominated by the primary habitat, where the majority
of user call activity occurs–and thus it incorporates both home and
work, home and school, or other major social contexts–along with
a number of less active subsidiary habitats (see Fig. 1C, File S1 Fig.
B, Sec. S3.2). We further see in Fig. 1D that most users possess 5–
20 habitats, while only approximately 7% of users have a single
habitat. Note that these habitats, unique for each member of the
population, differ greatly from existing work on partitioning
mobility or social connectivity [26,13,27], which instead focus

entirely on partitioning a single geographic network aggregated
from large populations.

Spatial characteristics
The spatial extent of a user’s total mobility pattern has been

shown to be well summarized by a single scalar quantity, the
radius of gyration, or gyradius, R2

g~vDri{rCMD2wi, where ri is
the spatial position of phone call i and rCM is the user’s center of
mass [7]. In addition to using the global gyradius we also compute
the reduced radius of gyration rg(h) for each habitat h, considering
only those locations and calls contained within that habitat. In
Fig. 2A we plot the population distributions of the first three
habitat’s rg, compared with the total gyradius Rg considering all
calls placed from all visited locations. This shows that the spatial
extent of habitats tends to be far smaller than the total mobility,
often by an order of magnitude, and that most users have a habitat
rg between 1–10 km. See also File S1 Fig. D. In Fig. 2B we study
the functional dependence of the primary habitat’s gyradius,
rg(h1), versus Rg. We uncover an intriguing power law scaling
relation characterized by two regimes, where rg(h1)*Ra

g with
a~1 for RgvR!&5 km, and a~1=3 for RgwR!. The linear
relationship below this critical radius R! indicates that those users
(roughly 8% of the population) are mostly characterized by a single
habitat. (In fact, only 54.8% of users with Rgv5 km have one
habitat, but that 97.6% of their calls on average occur within their
primary habitat.) But once a user’s range extends beyond this
critical 5 km cutoff (true for 92% of the population) a new regime
emerges where multiple habitats exist and tend to be far smaller
and more spatially cohesive than the total mobility (since av1).
(For users with Rgw5 km, only 2.9% have one habitat and the
primary habitat accounts for 78.7% of activity on average.)
Finally, in Fig. 2C we show the geographic distance d(h1,h2)

Figure 1. Habitats reveal the spatiotemporal substructure of human mobility patterns. (A) Spatial trajectories of two users, one traveling
to a large number of locations and another covering a smaller range. Node size indicates the amount of time spent at a particular location (as
quantified by mobile phone activity), node color represents the location’s habitat detected using Infomap (see Methods), and line width
approximates the number of trips between locations. Habitats are ordered by call volume such that Habitat 1 contains the most calls. (B) Exploding
the spatial trajectories from A in time (vertical axis), the recurrent nature of human mobility becomes evident, with a number of trips featuring both
consistent destinations and consistently repetitive occurrence (zoom). These features are the root cause of the high predictability that human motion
is known to possess. (C) The daily call dynamics of the three most active habitats, as well as the overall dynamics (summed over all habitats). The
primary habitat contains the majority of temporal activity. We see that User 1 tends to occupy his or her second and third habitats primarily at night,
while User 2 is more evenly distributed. (D) The distribution of the number of habitats per user. The median number of habitats is 11. Due to their
typical heterogeneity, we characterize population distributions using percentiles, proportional to the cumulative distribution.
doi:10.1371/journal.pone.0037676.g001

Structure and Social Aspects of Human Mobility
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Human mobility

Habitats: characterize the regular 
spatiotemporal flows of human mobility
using country-wide mobile phone call logs
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(b) communication
Figure 4: Detecting changes in CDR data associated with known disruptions (layoff events).
We plot the (a) average similarity of individuals’ most likely movement, and the (b) average similar-
ity of individuals’ most likely communication contacts over time. The red dashed line indicates the
day of the layoff event. The plots suggest the population’s movement and communication patterns
change drastically after the layoff event.

weeks prior to the event as affected population4. For this event, we identify 1101 potential individ-
uals. We then trace the population’s movement and communication behavior one month before and
one month after the event.

Figure 4 shows the change of individual movement and communication contacts in response to
the layoff event. The weekly similarity of a person’s movement is computed by the overlapping of
the person’s most likely located towers within a week centered at day t, with his/her most likely
located towers within the next week centered at day t + 7, where the overlapping is given by a
similarity function5. Similarly, the weekly similarity of a person’s contacts is computed by the
overlapping of the person’s most frequent contacts within a week centered at day t, with his/her
most frequent contacts within the next week centered at day t+7, in terms of overlapping similarity.
The plot shows an average movement/contact similarity of the affected population, over the time
range where the event happened. We can see drastic decreases in both individual movement and
communication contact similarities, suggesting a close connection between the economic crisis
event and the individual social and mobility patterns.

4.2.3 Macro: establishing economic predictors using aggregate dynamics in CDR data
To demonstrate that it is possible to generate high-frequency, reliable signals about unemployment
rates using mobile phone CDR data, we first aggregate cell tower to the level of Spanish regions. We
then match this data to quarterly regional unemployment rates from the Spanish statistical agency.

As described above, case studies of known layoffs suggest that calling pattern stability is reduced
in response to job loss and economic disruption. We explore this relationship at the macro level and
show that changes in aggregate stability predict changes in unemployment rates. We construct four
measures of stability: the mean and standard deviation of the contact stability and the mean and
standard deviation of the location stability for each region-quarter.

4Theselection criterion can be automatically adjusted based on regular patterns in the affected space.
5We use jaccard similarity in this example.
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Detecting changes in CDRs associated with 
economic disruption (layoff events)

movement communication



Real event

Real reaction

Real time

Tools for observing



Real-time debate tweet meter

http://www.vispolitics.com/



Whisper

6.8 Magnitude Earthquake in 
Japan, March 2012 

when, where and how the ideas are dispersed



Detecting ripples of fears and comfort during 
Boston bombings



‣Cultivate students' critical thinking and 
practical skills in data analytics

‣Course in Fall 2013: Data Mining 
(graduate course)

‣Critique the methods and results from a 
data mining practice

‣Design and implement data mining 
applications to solve real-world problems

Teaching philosophy



‣Civic science

‣User behavior analysis

‣Economics

‣Recommendation and sentiments

‣Others

Sample student projects



‣ Discovering the demographic, political, and physiographic 
structure of Allegheny County, Pennsylvania

‣ From media reporting to international relations

‣ Sequence Mining and Feature Engineering in Predicting Student 
Learning Experience Patterns

‣ What Factors Affect the Performance of Online Q&A

‣ Communities? A Case Study in Stack Exchange

‣ How online reviews influence the movie box-office revenue 

‣ Explore the spatial-temporal pattern for trending venues

‣ Identify keywords and tags from millions of text questions 

‣ Personalize Expedia Hotel Search

Sample student projects
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