

Lecture 6

Network Deployment (2)

Basics of Transmission Schemes (1)

Capacity Expansion

- Main investment in deploying a cellular network is the cost of infrastructure, land, base station equipment, switches installation, interconnection, etc.
- Income is proportional to subscriber base
- Initial installment may not be able to support increasing subscriber demand
- How can capacity be increased without replicating deployment?

3

Techniques to expand capacity

Additional spectrum

- Very hard to obtain also expensive
- 1900 MHz bands for PCS; 700 MHz bands from TV

Architectural approaches

- Cell splitting
- Cell sectorization
- Reuse partitioning
- Lee's microcell zone technique
- Changing to digital TDMA or CDMA
- Dynamic channel allocation

Cell Splitting

- Hotspots are created in certain areas
- Introduce a smaller cell of half the size midway between two co-channel cells
- Interference problems
- Channels must be split between the larger and smaller cells

The Overlaid Cell Concept

- $DL^{(1)}$ D1,(2) R_1 R_2
 - Channels are divided between a larger macro-cell that co-exists with a smaller micro-cell that is completely contained within the macro-cell
 - D_2/R_2 is larger than D_1/R_1
 - Split-band analog systems
 - Reuse partitioning
 - Used in LTE (Revisit)

Cell Sectoring

- Use directional antennas to reduce interference
- Radio propagation is focused in certain directions
 - Antenna coverage is restricted to part of a cell called a sector
- By reducing interference, the cluster size can be reduced (J_s is reduced, and so we can reduce N_c)

+ Three-sector cells and a cluster size

- 120° directional antennas are employed
- Channels allocated to a cell are further divided into three parts
- Without directional antennas, S_r = 13.8 dB which is inadequate
- With directional antennas, S_r = 18.5 dB

$$S_r \approx \frac{R^{-4}}{J_s D^{-4}} = \frac{R^{-4}}{2D^{-4}} = \frac{1}{2} \left(\frac{D}{R}\right)^4 = \frac{9}{2} N_c^2$$

Sectored Frequency Planning

- Example: Allocate frequencies for an AMPS operator in cellular B-block who uses a 7 cell frequency reuse pattern with 3 sectors per cell
- Use a Frequency Chart available from FCC web site
 - Groups frequencies into 21 categories Cells 1-7 and sectors A-B-C in each cell

122										Block B	1								F	
1A	2A	3A	4A	5A	6A	7A	1B	2B	3B	4B	5B	6B	7B	1C	2C	3C	4C	5C	6C	7C
334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354
355	356	357	358	359	360	361														375
376	377	378	379	380	381	382					1	1	-		1					396
397	398	399	400	401	402	403				/	54	/		34	/					417
418	419	420	421	422	423	424			(5C)	\prec	30)	<					438
439	440	441	442	443	444	445			1	24	/5B		A /	/3B						459
460	461	462	463	464	465	466			30	C) SA	\prec	4C)	<u>^</u>		>					480
481	482	483	484	485	486	487				/3B	174	/4	в /	CA	/					501
502	503	504	505	506	507	508			(7C)	\prec	60) OA	/			2.0		522
523	524	525	526	527	528	529					/7B		1	6B						543
544	545	546	547	548	549	550				1		1								564
565	566	567	568	569	570	571														585
586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606
607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627
628	628	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648
649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	717	718	719
720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740
741.	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761
762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782
783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799				

*Boldface numbers indicate 21 control channels for Block A and Block B respectively.

Sectored Frequency Planning

- Example: Allocate frequencies for a GSM operator in U.S. PCS B-block who uses a 7 cell frequency reuse pattern with 3 sectors per cell
- Use a Frequency Chart available from FCC web site
- Groups frequencies into 21 categories Cells A-G and sectors 1-3 in each cell

Frequency Chart . 612-685 represent B-block frequencies for GSM

A1	B1	C1	D1	E1	F1	G1	A2	82	C2	D2	52	F2	G2	A3	B3	C3	D3	E3	F8	G3
612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	63/2
633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	640	680	651	652	653
054	655	655	687	655	652	001	661	662	663	664	665	000	667	008	602	670	671	672	675	674
675	6.75	677	678	679	680	681	682	683	654	685										

+ Summary: Cell sectoring

- The cluster size can be reduced by employing directional antennas
- The capacity increase is 1.67 times for N = 4 and 2.3 times for N = 3 compared to N = 7
- Sectoring is better than splitting
 - No new base station has to be set up
 - No new planning efforts are needed to maintain interference levels
- Sectoring leads to handoff between sectors which increases signaling load and some loss of call quality
- A cell cannot be ideally sectored and the signal to interference values obtained here are optimistic

11

Channel Allocation Techniques

Idea:

- During the day on weekdays, downtown areas have a lot of demand for wireless channels
- In weekends and evenings, suburban areas have a larger demand and downtown areas have very little demand
- Instead of allocating channels statically to cells, allocate channels on demand while maintaining signal-to-interference ratio requirements
- The (voice) user does not care how the channels are allocated as long as
 - He/she gets access to the channel whenever required
 - The quality of the signal is acceptable

Channel Allocation Techniques (2)

Fixed channel allocation (FCA)

- Channel borrowing
- Dynamic channel allocation (DCA)
 - Centralized DCA
 - Distributed DCA
 - Cell-based
 - Measurement-based

Hybrid channel allocation (HCA)

+ Channel borrowing

- Idea: Borrow channels from low loaded cells and return them whenever required
 - Temporary channel borrowing
 - Return channel after call is completed
 - Locks channel in co-channel cells
 - Static channel borrowing
 - Distribute channels nonuniformly but change them in a predictable way

Dynamic Channel Allocation

- All channels are placed in a pool
 - When a new call comes in, a channel is selected based on the overall SIR in the cell
 - Selection of the channel in this way is costly
 - Needs a search and computation of SIR values
- Centralized
 - A central entity selects channels for use and returns it to the pool after completion of calls
- Distributed
 - Base stations locally compute the channels that can be used
 - Cell-based BSs communicate with each other on the wired backbone to determine the best way to select channels
 - Measurement-based BSs measure RSS or receive RSS reports from MSs that they use in their decisions

+ Comparison of FCA and DCA

Attribute	Fixed Channel Allocation	Dynamic Channel Allocation
Traffic Load	Better under heavy traffic load	Better under light/moderate traffic load
Flexibility in channel allocation	Low	High
Reusability of channels	Maximum possible	Limited
Temporal and spatial changes	Very sensitive	Insensitive
Grade of service	Fluctuating	Stable
Forced Call Termination	Large probability	Low/moderate probability
Suitability of cell size	Macro-cellular	Micro-cellular
Radio equipment	Covers only the channels allocated to the cell	Has to cover all possible channels that could be assigned to the cell
Computational effort	Low	High
Call set up delay	Low	Moderate/High
Implementation complexity	Low	Moderate/High
Frequency planning	Laborious and complex	None
Signaling load	Low	Moderate/High
Control	Centralized	Centralized, decentralized or distributed

Interference Management in LTE-OFDMA

- Borrows ideas from Reuse Partitioning and Dynamic Channel Allocation
- Aims for a frequency reuse of 1
 - Sub-carriers and "resource blocks" (RBs) may not be universally reused
- Base stations talk with each other to manage interference and also scheduling RBs to users

(b) Soft FFR with reuse of 3

(a) Strict FFR with reuse of 3+1

Femtocells

Initial Idea

Coverage challenged areas with good Internet connectivity

Progressive Benefits

- High spectrum efficiencies
 - Typically indoor!
 - High data rates are possible
- Reducing subscriber churn

Backhaul capacity and capital expenditures are reduced

Issues with Femtocell deployment

- Femtocell base station cannot transmit at high power nor at low power
 - Should not swamp users that do not belong to femtocell
 - Should not deny coverage to someone who installs the femtocell
- Femtocell base station reception has to be dynamic
 - A mobile that is near should not swamp it because of its minimum transmit power
 - A mobile far away should not be forced to transmit at high power to reach the femtocell
 - This may interfere with transmissions in a macrocell

Design Issues in Local Area Wireless Data

IEEE 802.11

- Initial deployments were based on the 915 MHz bands
 - There was only one channel
- In the 2.4 GHz bands
 - There are three non-overlapping channels → frequency reuse is possible
 - Thresholds!
- In the 5 GHz bands, there are eleven non-overlapping channels
- Three dimensional planning is required
 - Antenna patterns and building architecture
- There are three levels of transmit power at the AP
 - Not clear what can be done at the MS

Overlapping channels in the 802.11 specifications

- It is possible to use Channels 1, 4, 7 and 11 instead of 1, 6 and 11
 - There is a drop in throughput
 - There are some results of actual performance but they are inconclusive
- It is not clear whether the drop in throughput is due to backoff or packet loss

SIRs in 802.11 WLANs (@2Mbps)

- Reports of measurements and models of 802.11 RSS and throughputs are vendor specific
 - One report says that a minimum SIR of 15 dB is required for good throughput
 - Used UDP streams and estimated the SIR using a path loss model
 - Throughput falls from 1.8 Mbps to 1 Mbps as the SIR reduces from 15 dB to 10 dB
 - Reuse issues are then simulated
 - Unlike voice, data is bursty so the design and deployment issues are different
 - Most real deployments design the network for coverage rather than specific QoS goals

- Random deployment by users
- Arrange access points in a grid

Optimally place access points for coverage/interference

Coexistence?

Interference

Two wireless technologies interfere if co-location causes significant performance degradation

Coexistence

Two wireless technologies coexist if there is no significant impact on the performance

Interoperable

Devices belonging to two different wireless technologies are interoperable if they can communicate and exchange data between them

Coexistence between HomeRF and IEEE 802.11

HomeRF uses very slow frequency hopping

- 50 hops/s frame is 20 ms long
- Compare with Bluetooth 1600 hops/s and 625 μs

Also operates in the 2.4 GHz bands

- Experiments on studying the impact of HomeRF on 802.11 throughput
 - HomeRF is very detrimental to 802.11 throughput
 - HomeRF is an "interference"

+ Bluetooth and 802.11 (1)

Impact of BT on 802.11

- At large RSS, the throughput is fairly good
- As the RSS falls, the throughput falls drastically
- BT causes substantial interference, but there is some kind of capture when the RSS is good

Source: J. Lansford et al., IEEE Network, September 2001

Bluetooth and IEEE 802.11 (2)

Impact of IEEE 802.11 on BT

- 802.11 signal is like a wideband jammer
- As the RSS from the AP falls, the throughput improves
- As the RSS from the AP increases, voice packets are dropped randomly
- The transition occurs suddenly
- Short ACKs are less likely to cause errors than long frames

Source: J. Lansford et al., IEEE Network, September 2001

Communication Issues and Radio Propagation

Before we get into small-scale fading...

30

- What is the best we can do when there is *NO* fading?
- What are the tradeoffs between bit errors, power, noise, and bandwidth?

Digital Modulation (Revisited)

Changing the parameters of a sinusoid is called "shift keying" if information is digital

Types

- Amplitude-shift keying (ASK)
 - Amplitude difference of carrier
- Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
- Phase-shift keying (PSK)
 - Phase of carrier signal shifted
- Quadrature amplitude modulation (QAM)
 - Both amplitude and phase of the carrier carry data
- Bits/Symbol
 - Binary (one bit in one symbol => two symbols)
 - M-ary (log₂M bits in one symbol => M symbols)

Binary Amplitude-Shift Keying

Idea

Remarks:

- One binary digit represented by the presence of the carrier, at constant amplitude
- The other binary digit is represented by the absence of the carrier

$$s(t) = \begin{cases} 0: \ 0, & 0 \le t \le T \\ 1: \ A\cos(2\pi f_2 t), & 0 \le t \le T \end{cases}$$

Average Energy per bit $E_b = A^2T/4$

Also called On-Off keying or OOK

The carrier signal is A $\cos(2\pi f_c t)$

The symbol duration is T seconds

Amplitude-Shift Keying

- Susceptible to sudden gain changes
- Inefficient modulation technique (what do we mean by this?)
- Used on voice-grade lines up to 1200 bps
- Used to transmit digital data over optical fiber and in IR systems

Binary Frequency-Shift Keying (BFSK)

Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} 0: \ A\cos(2\pi f_1 t), & 0 \le t \le T \\ 1: \ A\cos(2\pi f_2 t), & 0 \le t \le T \end{cases}$$

In the second second

Average Power in Signal = $A^2/2$

 $E_b = A^2 T/2$

34

Frequency-Shift Keying (FSK)

Less susceptible to error than ASK

- On voice-grade lines, used up to 1200bps
- Used for high-frequency (3 to 30 MHz) radio transmission

Binary Phase-Shift Keying (PSK)

Uses two phases to represent binary digits

$$s(t) = \begin{cases} 0: \ A\cos(2\pi f_c t), & 0 \le t \le T \\ 1: \ A\cos(2\pi f_c t + \pi), & 0 \le t \le T \end{cases}$$
$$\mathsf{OR} \qquad s(t) = \begin{cases} 0: \ A\cos(2\pi f_c t), & 0 \le t \le T \\ 1: \ -A\cos(2\pi f_c t), & 0 \le t \le T \end{cases}$$

We revisit BPSK later

Average Power in Signal = $A^2/2$ $E_b = A^2T/2$

M-ary Modulation Schemes

M-ary => M symbols

The symbols are $\alpha_1, \alpha_2, ..., \alpha_M$

Each symbol carries $k = \log_2 M$ bits

Example: M = 4 => the symbols are α_1 , α_2 , α_3 , α_4

Let
$$\alpha_1$$
 = 00, α_2 = 01, α_3 = 10, and α_4 = 11

We have k = 2 bits/symbol

The symbols can once again be represented by the amplitude, phase, or frequency of the carrier

+ Example: 4-ASK

Average Power in Signal = 7A²/4

 $E_{b} = 7A^{2}T/8$

In 4-ASK, we need 4 different amplitudes of the carrier to represent 4 symbols

Let the amplitudes be 0,1,2 and 3

The symbols will be: $s(t) = \begin{cases} \alpha_0 \to 00: & 0, 0 \le t \le T \\ \alpha_1 \to 01: & \cos(2\pi f_c t), 0 \le t \le T \\ \alpha_2 \to 11: & 2\cos(2\pi f_c t), 0 \le t \le T \\ \alpha_3 \to 10: & 3\cos(2\pi f_c t), 0 \le t \le T \end{cases}$

38

More on M-ary modulation

M-ASK (also called PAM) is not common

More common are

- MPSK There are M phases of the carrier to represent the M symbols
- MFSK There are *M* frequencies around f_c to represent the *M* symbols

Quadrature amplitude modulation (QAM)
Uses a combination of amplitude and phase
M-QAM

Advanced Modulation Schemes

Variations on ASK, FSK and PSK possible

Attempt to improve performance

- Increase data for a fixed bandwidth
- Remove requirement for phase synchronization
 - Differential modulation and detection
- Improve BER performance

Main schemes for wireless systems are based on FSK and PSK because they are more robust to noise

+ Orthogonal signaling with codes

41

What is orthogonality?

Show in time and frequency

Show in space

Bandwidth

Modulation schemes used in wireless networks

GMSK

+

- GSM, CDPD, Mobitex, GPRS, HIPERLAN/1
- π/4 DQPSK
 - Tetra, IS-136
- OQPSK
 - IS-95, cdma2000

FSK

ARDIS, 802.11 FHSS, Bluetooth

- BPSK, QPSK, 16-QAM, 64-QAM
 - HIPERLAN/2, IEEE 802.11a (with OFDM), LTE
- BPSK, QPSK
 - IS-95, IEEE 802.11 (with DSSS)
- Pulse Position ModulationIEEE 802.11 IR
- Orthogonal Modulation
 - IS-95, cdma2000

Communication Issues

- Noise (unwanted interfering signals) is not necessarily additive, white or Gaussian
 - Examples: Inter-symbol interference (ISI), Adjacent channel interference (ACI), Co-channel interference (CCI)
 - In CDMA interference from users etc.
- Noise affects the Bit Error Rate (BER)
 - Fraction of bits that are inverted at the receiver
- Also, the radio channel has multiplicative components that degrade the performance
 - The behavior of the radio channel can increase ISI, reduce the signal strength, and increase the bit error rate

+ Performance in General

- What determines how successful a receiver will be in interpreting an incoming signal?
 - Signal-to-noise ratio => power
 - Data rate
 - Bandwidth
- Typical trends
 - An increase in data rate increases bit error rate
 - An increase in SNR decreases bit error rate
 - An increase in bandwidth allows an increase in data rate
- In mobile wireless systems both bandwidth and power are in short supply

Wireless Performance Considerations

- In wireless communications, the primary issues are
 - Spectrum
 - Power
 - Effects of the radio channel
- When we look at modulation schemes, we are interested in the following
 - Performance in AWGN channels
 - Provides a baseline performance
 - Performance in multipath fading channels
 - Expected performance in realistic channels
 - Bandwidth efficiency
 - Cost and complexity

Performance in AWGN Channels

- Suppose the communications channel is only affected by AWGN (thermal noise)
 - This is the most ideal conditions you may get
 - Similar to a wire
- Provides a benchmark or baseline performance
 - Can get some insight into whether one modulation scheme is better than another

Ideally we want

- Very low bit error rates at small signal-to-noise ratio
- Ensures we can conserve battery power by transmitting at low powers
- Yet the information can be recovered reliably

Bit Error Rate or BER is a function of

Performance in AWGN channels (2)

- AWGN = Additive White Gaussian Noise
 - This has a "flat" noise spectrum with average power spectral density of N₀
- The probability of bit error (bit error rate) is measured as a function of ratio of the "energy per bit" E_b to the average noise PSD value
 - BER or P_e variation with E_b/N_0
 - E_b/N₀ is a measure of the "power requirements"
- Tradeoffs!

+ Signal Constellation (2)

- Given any modulation scheme, it is possible to obtain its signal constellation.
 - Represent each possible signal as a vector in a Euclidean space.
- In symbol detection decode incoming signal as closest symbol in the signal constellation space
- If we know the signal constellation, we can estimate the performance in terms of the probability of symbol error given the noise parameters
- Probability of error depends on the minimum distance between the constellation points

49

Probability of Error

+ Performance in AWGN(2)

* M-ary modulation schemes

- Bits per symbol = log₂M
- Phase shift keying
 - Signal points are on a circle
 - More bits/sec/Hz but larger P_e for given E_b/N_0
- Orthogonal keying
 - M-dimensional constellation
 - FSK
 - Pulse position modulation
 - Orthogonal keying/signaling
 - Less bits/sec/Hz but much smaller P_e for given E_b/N₀
 - QAM
 - Works mostly like PSK

phase shift keying or QAM

orthogonal keying

Bandwidth Efficiency and Complexity

- Bandwidth efficiency (related to spectral efficiency)
 - For a given bit error rate what is the required bandwidth for a specified data rate?
 - Recall discussion of capacity
 - Example At a BER of 10⁻⁵, BPSK requires 2 MHz for a data rate of 2 Mbps
 - Ideally our goal is to stuff as many bits as possible in a given bandwidth
 - Bandwidth (spectrum) efficiency is measured in terms of the data rate supported over a given bandwidth
 - Units: bits/sec/Hz.
- Cost/Complexity
 - In achieving good performance and bandwidth efficiency, the modulation scheme should not be too expensive or complex to implement
 - Circuitry should be simple to implement and inexpensive (e.g. detection, amplifiers)

Bandwidth of modulation schemes

54

Tradeoffs between BER, power and bandwidth

- (1) Trade BER performance for power – fixed data rate
- (2) Trade data rate for power fixed BER
- (3) Trade BER for data rate fixed power

Small Scale Fading