

- Last week
 - Looked at air interface of 1G and 2G cellular networks
 - Both are primarily circuit switched
- In GSM, the control signaling uses packets and a "protocol stack"
 - We briefly consider this today
- 3G, 4G, WLANs and WPANs are more packet oriented
 - Brief overview today

2G Cellular Network Architecture

Terms and terminology

- Mobile Station (MS)
 - Mobile Terminal MT, Mobile End System – M-ES, Mobile Node – MN, Mobile Device, Handheld Device, Wireless Device, etc.
- Point of Access
 - Base Station (BS), Base Transceiver Subsystem (BTS), Mobile Data Base Station (MDBS), Access Point (AP), Node B, E-Node B
- Radio Controller
 - Base Station Controller BSC, Radio Network Controller – RNC

- Mobile Control Center
 - Mobile Switching Center MSC, Mobile Data Intermediate System – MD-IS, Gateway GPRS Support Node – GGSN
- Visiting Database
 - Visiting Location Register VLR, Mobile Serving Function – MSF, Serving GPRS Support Node – SGSN, Foreign Agent – FA
- Home Database
 - Home Location Register HLR, Mobile Home Function – MHF, GPRS Register – GR, Home Agent -HA

Not all elements from the generic architecture exist in all technologies & the exact functionality of the elements may be different

* Mobile Station or Device

- We will call this Mobile Station or MS
 - Irrespective of what it is
- Form factor and capabilities
 - Has to be light weight, durable, have long battery life and yet be capable of performing complex tasks
 - Energy efficient design of software and protocols

- Usability
 - User characteristics (size, dexterity, knowledge, etc.)
 - Environment characteristics (temperature, degree of mobility, etc.)
 - Device Characteristics
 - Start up time
 - Data integrity and security
 - CPU speed and memory size
 - Power supply
 - User interface (keypad, finger, stylus, voice)

Performance and Cost?

Functionality of Elements (I)

- Point of access
 - The physical radio transceiver
 - Creates the air interface
 - Transmits signals to MSs
 - Receives signals from MSs
 - Involved in multiplexing on the link
 - Medium access

- Radio Network Controller
- Again link level
- Manages the air interface
 - Which RF carrier should I tune to?
 - What transmit power level should I use?
 - Is the frequency carrier I want to use capable of providing acceptable quality?
 - When should I make a handoff?

Base Stations (BS)

- Provides radio channels between mobile units and network
- Pico-cells : (indoor 0-.5 Km) support 8-20 channels
- Micro-cells: (outdoor 0-1 Km), Macro-cells: (1-30 Km)

Base Stations and Radio Network Controllers

- Base Transceiver Subsystem (BTS)
 - Houses radio units
- Base Station Controller (BSC)
 - Manages a cluster of BS, channel assignment, handoff, power control, some switching, etc

Mobile Switching Center

- Mobile Switching Center (MSC)
 - Provides switching functions, coordinates location tracking, call delivery, handoff, interfaces to HLR,VLR, AUC, etc.
 - Size of central office switch

⁺ Functionality (II)

- Mobile Switching Center
 - Manages mobility of devices
 - Routes voice calls or packets to and from MSs
 - Keeps track of the location of the MSs
 - Location means "in which cell or group of cells" the MS may be located i.e., which points of access may be probable candidates for pinging the MS
 - How does it do this? Using the home database and visiting database
 - Ensures security
 - Uses the authentication center and equipment registers to authenticate the MS and to prevent fraudulent/stolen devices from using the network
 - Accounting and Billing
 - Operations and maintenance center

Home and Visitor Databases

- Home Location Register (HLR)
 - Specialized database server contains billing info, service profile and general location of a mobile user
- Visitor Location Register (VLR)
 - Similar to HLR contains location of users and their service profile of all users in a metro type area

Protocol Stack – TCP/IP (Simplified Web Browsing) There is a structured "flow"

between **layers** in the two end points

Slide modified from Agrawal

Layer names and tasks

Layer number	Layer name	Networking task	Header information
5	Application	Specify user needs, creates "message"	User commands
4	Transport	Segmentation and reassembly of data "segments", sometimes reliable transfer & speed matching	Sequence numbers
3	Network	Identifying and locating destination, best effort delivery of "datagrams"	Address
2	Data-link	Reliable delivery of "frames" over a link, Error control	Error check
1	Physical	Signaling, moving individual bits based on medium	Usually none, but in WiFi there is a header

Control Signaling and User Data (Voice) in 2G Systems

- Control Signaling
 - Messages for setting up the voice call
 - Messages for mobility management
 - Messages for radio resources management
 - Other signaling (SMS is carried on signaling channels)
- User data is primarily "voice" in 2G
 - Sometimes called "voice traffic"
 - Digitized and carried in circuits set up by the control signals

CM: Connection Management; MM: Mobility Management; SCCP: Signal Connection Control Part RRM: Radio Resource Management; MTP: Message Transfer Part; LAPD: Link Access Protocol-D

Physical Vs Logical "Channels"

- A 200 kHz frequency carrier is a "physical channel"
- A time slot used for "voice traffic" is a logical channel
- There are several "control channels" that are logical channels in GSM
 - They are used for call set up, managing mobility, handling radio resources, etc.

2G GSM - TDMA/FDMA/FDD 935-960 MHz 124 channels (200 kHz) downlink Frequency 890-915 MHz 124 channels (200 kHz) uplink higher GSM frame structures time Show physical GSM TDMA frame 2 3 5 6 8 1 7 4.615 ms GSM time-slot (normal burst) guard guard tail S Training user data tail user data snace space

2.5 G Systems and Data

1 26 bits 1

57 bits

3

546.5 µs

577 μs

- 2G Systems provide slow speed data service
 - 9.6 Kbps 14.4 Kbps

3 bits

57 bits

- **2**.5G
 - Attempt to improve data services from 2G and build customer base for wireless data service
 - GPRS, HSCSD, cdma2000-1x -> Mislabeled as 3G
 - Basically overlay network of data service on 2G networks
 - Max data rate 57 Kbps 150 Kbps, typical data rates 33-56 Kbps – similar to dialup modem service
- Mobile Data
 - Cellular Digital Packet Data (CDPD) -> Overlay on AMPS
 - General Packet Radio Service (GPRS) -> Overlay on GSM

Serving GPRS Support Node (SGSN)

- It controls access to MSs that may be attached to a group of BSCs
 - This is called a routing area (RA) or service area of the SGSN
- It is responsible for delivery of packets to the MS in its service area and from the MS to the Internet
- It also performs the logical link management, authentication, and charging functions

Gateway GPRS Support Node (GGSN)

- It acts as a logical interface to the Internet
- Maintains routing information related to a MS, so that it can route packets to the SGSN servicing the MS
- It analyses the packet data network (IP) address of the MS and converts it to the corresponding International Mobile Subscriber Identity (IMSI) number

GPRS Signaling Plane

- GPRS employs out of band signaling in support of actual data transmission
- Signaling between SGSN, HLR, VLR, EIR is similar to GSM and extends only the GPRS related functionality
 - Based on Signaling System 7
- Between the MS and SGSN, a GPRS mobility management and session management (GMM/SM) protocol is used for signaling purposes

SNDCP: Subnetwork Dependent Convergence Protocol BSSGP: BSS Gateway Protocol GTP: GPRS Tunneling Protocol

31

- UMTS stands for Universal Mobile Telecommunications System
 - 3G cellular standard in Europe & Japan
- Outcome of several research activities in Europe
 - Generated trial systems and basic understanding of WCDMA
 - Assisted the standardization efforts
- Most of the standardization work was focused in 3GPP
 - 3GPP refers to the physical layer as UTRA UMTS Terrestrial Radio Access
 - There are two modes FDD and TDD
- UMTS can support both GSM-MAP and IS-41 core networks
 - An all-IP third alternative is available now

3G (UMTS)

- Network architecture adds to the 2G architecture
- Similar core network as 2G systems
- WCDMA based air interface
 True QPSK modulation
- Wider carrier bandwidths
 5 MHz
 - 3.84 Mcps
- SGSN and GGSN Data!

Summary of WCDMA

- WCDMA is somewhat different compared to IS-95
- It is a "wideband" direct sequence spread spectrum system
 - Supports up to 2 Mbps using
 - Variable spreading
 - Multicode connections
- The chip rate is 3.84 Mcps
 - Approximate bandwidth is 5 MHz
 - Carrier spacing is on a raster of 200 kHz
 - Supports higher data rates/capacity
 - Increased multipath diversity (proportional to chip duration)

UMTS Protocol Stack (simplified)

- Shown only for "radio access" part
- TopControl signaling
- Bottom
- User "Data"
- Voice is handled using circuit switching
 - Intricate maybe later

UE Higher Layers)	Node B			
RRC		RLC			
MAC		MAC			
Radio	\vdash	Radio			
UE		Node B			
Higher Layers]				
IP					
PDCP		PDCP			
RLC		RLC			
MAC		MAC			
Radio		Radio			

High Speed Packet Access (HSPA)

- HSUPA uplink and HSDPA downlink
 - Packet data only
 - More efficient (less tunneling, local scheduling)
- Makes use of
 - Hybrid ARQ
 - Combines erroneous frames with retransmitted frames to achieve diversity
 - Fast scheduling
 - Instead of signaling from the RNC, a node B is allowed to make decisions on the maximum data rates that a MS can use to transmit packet data
 - Vendors implement proprietary algorithms

Support for true "broadband"

• OFDMA

Channel Bandwidths

- Compare with AMPS, GSM, IS-95, UMTS and WiMax
- Can vary from 1.4 MHz to 20 MHz
- Resource Block (RB)
 - 180 kHz wide and 0.5ms long
 - 12 subcarriers spaced at 15 kHz (24 at 7.5 kHz possible later)
- Data rate limited by User Equipment (UE) categories

Channel BW (MHz)	1.4	3.0	5	10	15	20
Resource Blocks	6	15	25	50	75	100

Functional Changes

39

E-NodeB

- Does a lot more now! (no RNC or BSC)
- Selection of MME, RRM functions, Handling Mobility

MME

- Sends pages to e-NodeBs
- Handles security
- Idle state mobility

S-GW

- Termination of user plane
- Switching of user plane (mobility)

LTE Simplified Protocol Stack (Control Information)

Mobility and Session Management

		_					
RRC		RR	\sim	S1-		S1-	
nnu		יחח		bearer		Bearer	
PDCP		PDC	P	GTP		GTP	
RLC		RLO	2	IP		IP	
TILO							
			~		1		
MAC		MA	C	Layer 2		Layer 2	
	-						
PHY		PH	Y	Layer 1		Layer 1	
Radio Bearer							
1 110	and Dou						

- Shaded stack is called the "access stratum" - AS, upper layers are called "non-access stratum" – NAS
- RRC = Radio Resource Control
- Includes measurements on signals
- PDCP = Packet Data Convergence Protocol
- RLC = Radio Link Control

LTE Simplified Protocol Stack ("Our Data")

Wireless Local Area Networks

- Used primarily in smaller areas
 - Homes, campuses, coffee shops, businesses
 - Support communication to mobile data users via wireless channel
- Standards
 - IEEE 802.11 a, b, g, n, ac, ad, standard (wireless Ethernet)
 - The project was initiated in 1990, the first complete standard was released in 1997
 - 1Mbps, 2Mbps, 11Mbps, 54 Mbps, >100 Mbps rates
 - Use Barker codes (spread spectrum), CCK, OFDM, MIMO
 - Infrastructure based and Ad-Hoc based networks
 - HIPERLAN 1 and 2
- Typically use unlicensed spectrum

	Some WiFi Standards						
	How about channels	-					
	Standard	Spectrum – US (GHz)	Data Rates	Transmission Scheme			
Ī	Base IEEE 802.11	2.402-2.479	1, 2 Mbps	GFSK, FHSS			
		2.402-2.479	1, 2 Mbps	B/QPSK, DSSS			
		850-950 nm	1, 2 Mbps	PPM, IR			
	802.11a	5.15-5.35, 5.725- 5.825	6-54 Mbps	OFDM			
	802.11b	2.402-2.479	1, 2, 5.5, 11 Mbps	ССК			
	802.11g	2.402-2.479	1-54 Mbps	OFDM, CCK			
	802.11n	2.4 and 5 GHz	Up to 600 Mbps	MIMO/OFDM			
	802.11ac	2.4 and 5 GHz	> 1 Gbps	MIMO/OFDM and multi-user MIMO			

Generic Architecture - WLANs

.....

Protocol position of IEEE 802.11						
mobile terminal					fixed terminal	
		- -	server	astructur	e network	
	\geq	-	access p			
application					application	
ТСР					ТСР	
IP					IP	
LLC		LLC			LLC	
802.11 MAC		802.11 MAC	802.3 MAC		802.3 MAC	
802.11 PHY		802.11 PHY	802.3 PHY		802.3 PHY	
				. L		

+

- Single-hop: They have to be in range of one another
- Most vendors support only this option
- Multi-hop: MSs can act as "relay nodes"
- HIPERLAN/1 supports this, but there are no real products

Independent Basic Service Set (IBSS) in 802.11 WLANs

Ad hoc network topology

- Distributed topology
 - Devices communicate between each other directly (like walkie-talkies)
- Characteristics
 - Reconfigurable networks
 - No need for a wired infrastructure
 - Suitable for rapid deployment
- Need to "discover" communicating parties, services, methods of routing data, and so on

- What is a personal area network?
- Origins in the BodyLAN project initiated by BBN in the early 1990s
- Networking "personal" devices sensors, cameras, handheld computers, audio devices, etc.
 - Range of around 5 feet around a soldier
- Today: Networking digital cameras to cell phones to cameras to laptops to printers to ...

IEEE 802.15

- Started in 1997 as a sub-group of IEEE 802.11
- Initial functional requirements
 - Low power devices
 - Range of 0-10m
 - Low data rates (19.2-100 kbps)
 - Small sizes (0.5 cubic inches)
 - Low cost
 - Multiple networks in the same area
 - Up to 16 separate devices

Some WPAN Standards

Technology/ Feature	802.15.1 (Bluetooth)	802.15.4
Frequency	2.4GHz	2.4GHz - 868/915MHz
Modulation	FHSS/BPSK	DSSS/QPSK
MAC	TDMA/TDD	CSMA/CA
Max. data rate	1Mbps	20/40/250Kbps
Device types	One	Full/Reduced Function
No. of channels	79 (hopped)	26
Max. No. of devices	8	Up to 65535
Battery life	Weeks	Months
Coverage	10 m	10/50m
Topologies	Star, peer-peer	Star and cluster-tree
Connection time	3-5s	30ms

Generic Architecture - WPANs

- Bluetooth: A "cell" or "piconet" is defined by a Master device
 - The master controls the frequency hopping sequence
- The master also controls the transmission within its piconet

Others

Sensor networks (802.15.4), RF-IDs, mobile ad hoc networks

IEEE 802.15.1 or Bluetooth

- Operates in the same 2.4 GHz bands as IEEE 802.11b
- It employs frequency hopping spread spectrum
 - Channels are 1 MHz wide
 - The modulation scheme is GFSK for a raw data rate of 1 Mbps on the air
 - A basic time slot is defined as 625 microseconds
- A Bluetooth packet can occupy one, three or five slots
 Sometimes a transmission is half a slot
- The frequency is changed every packet

General Idea in 802.15.4/Zigbee

- Full function device (FFD)
 - Serves as a PAN coordinator (like a master)
 - Can route packets (relay)
- Reduced function device (RFD)
 - Mostly in sleep mode and communicate mostly with an FFD
- Star network similar to Bluetooth
- Cluster-tree provides ability to have a mesh network with different topologies

Example of 802.15.4/Zigbee

- Philips Hue
- Mesh networked
- Accessible through the Internet

Source: http://arstechnica.com/gadgets/2012/11/in-living-color-ars-reviews-the-hacker-approved-philips-hue-leds/2/

Ultrawideband (UWB)

- Two definitions by the FCC
 - A radio signal that has an instantaneous bandwidth greater than or equal to 500 MHz
 - A radio signal with a fractional bandwidth \geq 0.2 where

Fractional Bandwidth =
$$\frac{2(f_H - f_L)}{f_H + f_L}$$

- Example: What is the fractional bandwidth of a UWB device operating between 3.1 and 4.8 GHz?
 - Answer: 2 × 1.7/(7.9) = 3.4/7.9 = 0.4304 > 0.2
- You can think of this as also being W/f_c where f_c is the center frequency and W is the bandwidth occupied
 - The bandwidth definition here is the frequency range beyond which the PSD is 10 dB below the maximum

56

Where can we use UWB?

- FCC regulations limit the PSD to a specific "spectral mask"
 - Suitable for short range applications
 - Very high data rates for a few meters

Standards activities

- Wireless Personal Area Networks using UWB
 - 802.15.3a 110-480 Mbps

+ Next Week

- We start with dB and antennas
- Introduction to Radio Propagation

- Use a reference pulse to indicate start of a period
- A pulse transmitted earlier than the period represents a 0
- A pulse transmitted later than the period represents a 1
- Different Tx-Rx pairs use different times to transmit pulses

