

Wireless Systems are Different!

- Physical layer is not really "physical"
 - High error rates compared to copper/fibre
- End devices are not fixed
 - Mobility makes protocols more complicated
- Power is a big issue
 - Devices run on battery power, have small size, and limited capabilities

PHY Layer Issues

- The radio channel is harsh
 - Cables and wires have "predictable" and time-invariant transmission characteristics
 - The radio channel is dynamic and harsh (High error rates need mitigation)
 - Examples of problems
 - Fading
 - Multipath dispersion
 - Signal attenuation due to rain or snow
 - Interference (again!)
- Coverage
- Effect on protocols

Spectrum Regulation (1)

- Spectrum Regulation
 - The medium of transmission is air
 - The medium cannot be easily duplicated and it must be shared by ALL applications
 - Communications, broadcast, emergency services, television, military, etc.
- Sharing is achieved by allocating separate "bands" of spectrum to users of different applications
 - Broadcast radio: 520-1605.5 kHz AM Radio
 - Broadcast radio: 87.5 108 MHz FM Radio
 - A band of spectrum refers to a range of electromagnetic frequencies
- The FCC regulates the spectrum allocated to applications

Show spectrum allocation chart

Spectrum Regulation (2)

- There is LIMITED spectrum for different applications
- The frequency bands are not "contained" as in the case of wired transmissions
 - There is some interference between signals transmitted in one frequency band and another
 - Same thing is true if you choose to split the band for an application (think AM)
- Capacity is limited and we need novel methods to improve capacity

SUMMARY

- Spectrum and hence bandwidth is limited
- Radio transmissions can cause interference

MAC layer Issues + Network Design & Deployment

- MAC layer issues
 - Shared "broadcast" medium
 - Need for a simple medium access mechanism
 - Performance
 - Throughput, delay and QoS
- Network design and deployment
 - No single type of wireless access is available everywhere
 - Spectrum is scarce
 - Coexistence, interference, planning
 - Frequency reuse and cellular topology

Radio Resource Management & Power Management

- Resource limitations
 - Radio resources link "quality" varies substantially over time and space
 - Power:
 - A mobile device relies on battery power
 - Transmissions consume energy!
 - The transmission scheme MUST be efficient in terms of energy consumption
 - Computation: The device cannot perform complex operations like a wired device
- Radio resource and power management
 - Assignment of radio channels and transmit power
 - Admission control, power control and handoff decision

Mobility Management

- Wireless devices are popular because they do not need to be tethered to a place like wired devices
- Wireless devices are continuously changing locations
 - The connectivity changes
 - Devices may move out of coverage of a service
 - Someone should keep track of where the device is to deliver information to it
 - Someone should make sure that the connection is not broken as a wireless device moves

- In wired communications the "address" of the device identifies its location – this is no longer true with wireless devices
- A moving device will "see" a harsher channel!
- Mobility management
- Location management
- Tracking where a MS is
- Handoff management
- Routing calls/packets as a MS moves
- Routing in ad hoc networks
- Database issues

• Operations and Security

- Management and Security
 - Mobile end host is no longer confined to the home network
 - Wireless links can be easily "tapped"
 - Fraud
 - Accounting and billing
 - Conflicts with other issues
- Network operations and management
 - Accounting and billing to charge subscribers correctly
 - Access to resources and services on the network

- Service discovery and data management
 - Sensors and RF-IDs
 - How is data maintained?
 - Where should data reside?
 - How can it be efficiently accessed?

Summary – I

- Spectrum is scarce
 - We need to squeeze as many data bits as possible in a given bandwidth

(Class Focus)

- The more data bits you squeeze in the more stringent are the system requirements
- Example: Squeezing in more data => larger signal to noise ratio requirement => larger transmit power => lower battery life
- Example: multipath dispersion is not a problem at low data rates
- Example: complex processing can result in large form factor

(Class Focus) 11

- Physical layer makes wireless communications unreliable and erroneous
 - Contributes greatly to the complexity of the system
 - Impacts all other aspects of a wireless system
- Fundamentally different from wired networks
 - Resource issues
 - Mobility issues
 - Network design issues

First Generation Cellular Systems

- Goal: Provide basic voice service to mobile users over large area
- I G Systems developed late 70's early 80's, deployed in 80's
 - Advanced Mobile Phone System (AMPS) USA
 - Total Access Communications Systems (TACS) UK
 - Nordic Mobile Telephone (NMT) System Scandinavian PTTs
 - C450 W. Germany
 - NTT System Nippon Telephone & Telegraph (NTT) Japan
- Incompatible systems using different frequencies!
 - Have similar characteristics though

1G Cellular (voice) Standards

Show RF Spectrum Allocation Chart

Standard	Downlink (MHz)	Uplink (MHz)	Channel Spacing	Multiple Access	Region	Comments
AMPS	869-894	824- 849	30 kHz	FDMA	USA	FM & FSK Modulation
TACS	935-960	890-915	25 kHz	FDMA	EC	Later, bands allocated to GSM
ETACS	917-950	872-905	25 kHz	FDMA	UK	
NMT-450	463-467.5	453-457.5	25 kHz	FDMA	EC	
NMT-900	935-960	890-915	12.5 kHz	FDMA	EC	
JTACS	860-870 & others	915-925 +	25/12.5 kHz	FDMA	Japan	

Duplexing Modes

- Simplex one way communication (e.g., broadcast AM)
- Duplex two way communication
 - TDD time division duplex
 - Users take turns on the frequency channel
 - FDD frequency division duplex
 - Users get two channels one for each direction of communication
 - For example one frequency channel for uplink (mobile to base station) another frequency channel for downlink (base station to mobile)
 - Half-duplex
 - As in 802.11, a device cannot simultaneously be transmitting and receiving

Uplink and Downlink

- The link from the mobile to the tower is called the "uplink"
 - Sometimes called the "reverse" channel
- The link from the tower to the mobile is called the "downlink"
 - Sometimes called the "forward" channel

What does "Channel Spacing" mean?

- A frequency carrier (sinusoid) with modulation has a certain "bandwidth"
 - This bandwidth varies across technologies and systems
 - Logically, you can think of it as a slice or chunk of spectrum occupied by a signal
 - Physically, it is more complicated
- Multiple carriers are used in all wireless systems
 - The "separation" between the frequencies of the carriers = "channel spacing
 - This is also roughly equal to the bandwidth of the signal

* Modulation and demodulation: Pictorial View

- Voice channels occupy 30 kHz and use frequency modulation (FM)
- 25 MHz is allocated to the uplink and 25 MHz for the downlink
- 12.5 MHz is allocated to non-traditional telephone service providers (Block A)
- 12.5 MHz / 30 kHz = 416 channels
- 395 are dedicated for voice and 21 for control

What is Modulation?

- Basic Idea
 - Convert digital or analog information to a waveform
 - Waveform is suitable for transmission over a given medium

Process

- Involves varying some parameter of a carrier wave as a function of the "information"
- Carrier = sinusoidal waveform at a given frequency
- After modulation, signal has a "bandwidth"
- Information
 - Usually contained in a message signal at baseband that is either analog or digital

Terminology - Sinusoid

- Period (T) amount of time it takes for one repetition of the signal
 T = 1/f
- Phase (ϕ) measure of the relative position in time within a single period of the signal
- Wavelength (λ) physical distance occupied by a single cycle of the signal
 - Or, the distance between two points of corresponding phase of two consecutive cycles
- For electromagnetic waves in air or free space, $\lambda = cT = c/f$ where c is the speed of light

The sinusoid continued

- General sinusoid wave
- $= s(t) = A \cos(2\pi f t + \phi)$
- Previous slide shows the effect of varying each of the three parameters
 - **A** = 1, *f* = 1 Hz, φ = 0 => *T* = 1s
 - Increased peak amplitude; A=2
 - Increased frequency; f = 2 => T = 1/2
 - Phase shift; $\phi = \pi/4$ radians (45°)
- Note: 2π radians = 360° = 1 period

Why Modulate?

- Support medium characteristics
- Antenna size
 - Usually the size of an antenna is proportional to the wavelength
 - Typical antenna size = λ/4
 - Smaller wavelengths => smaller antennas
- Example:
 - 3000 Hz baseband signal
 - $\lambda = 3 \times 10^8/3 \times 10^3 = 10^5 \text{ m}$
 - Antenna is 100 km / 4 = 25 km = 15.6 miles long

- Example:
 - 900 MHz RF signal
 λ = 3 × 10⁸ /9 × 10⁸ = 1/3 m = 33.3
 - cm
 - Antenna is 33.3 / 4 = 8.3 cm long
 - Interference rejection
 - Some modulation schemes are more robust than others in the presence of interference
 - Compare AM and FM
 - Multiplexing
 - Signals can be moved to a different part of the spectrum
 - Simplify circuitry

Analog Modulation

- Message signal (baseband) is analog: we have three types of modulation
 - Amplitude modulation (AM)
 - Vary the amplitude with the analog baseband signal
 - Frequency modulation (FM)
 - Vary the frequency with the analog baseband signal
 - Phase modulation (PM)
 - Vary the phase with the analog baseband signal

⁺ FM in Wireless Systems

- Frequency modulation was employed in 1G analog cellular telephone systems
 - AMPS (30 kHz channels)
 - JTACS (25 kHz channels)
 - NMT
- One channel carried one voice call
 - Uplink or downlink
- Reason for selecting FM
 - More robust to interference and fading compared to AM
 - Capture effect was useful and forms the basis for the original frequency reuse design

Centralized Multiple Access Techniques

- FDMA (frequency division multiple access)
 - Separate spectrum into non-overlapping frequency bands
 - Assign a certain frequency to a transmission channel between a sender and a receiver
 - Different users share use of the medium by transmitting on non-overlapping frequency bands at the same time
- TDMA (time division multiple access):
 - Assign a fixed frequency to a transmission channel between a sender and a receiver for a certain amount of time (users share a frequency channel in time slices)
- CDMA (code division multiple access):
 - Assign a user a unique code for transmission between sender and receiver, users transmit on the same frequency at the same time
- OFDMA (orthogonal frequency division multiple access):
 - Advanced form of FDMA/TDMA

Wireless systems often use a combination of schemes; GSM – FDD/FDMA/TDMA

OFDMA

- Flexible resource allocation in time and frequency
- Unit of allocation:
 "Physical Resource Blocks"
- LTE Downlink, WiMax uplink and downlink

- FDMA simplest and oldest method
- Band of width F is divided into T non-overlapping frequency channels
 - Guard bands minimize interference between channels
 - Each station is assigned a different frequency
- Can be inefficient if more than T stations want to transmit or traffic is bursty
 - Results in unused bandwidth and delays
- Receiver requires high quality filters for adjacent channel rejection
- Used in First Generation Cellular (AMPS, NMT, TACS)

 $f(c) = 825,000 + 30 \times (channel number) kHz <- uplink$ <math>f(c) = f uplink + 45,000 kHz <- downlink

In general all systems use some form of FDMA

2G Cellular Systems (voice)

- Motivation for 2G Digital Cellular
 - Increase System Capacity
 - Add additional services/features
 - SMS, caller ID, etc.
 - Reduce Cost
 - Improve Security
 - Interoperability among components/systems
 GSM only
- Main 2G Systems
 - North American TDMA (NA-TDMA) (IS-136)
 - Global System for Mobile (GSM)
 - IS-95 (cellular CDMA)

GSM: Global System of Mobile Communications

- A heterogeneous analog cellular implementation was observed in Europe in the 1980s
 - United Kingdom, Italy, Spain, Austria: TACS (900 MHz)
 - Scandinavia, Germany, The Netherlands, Spain: NMT (450 MHz, 900 MHz)
 - France: Radiocom
- 1987: 12 Member countries sign MOU for a common standard
- ETSI: European Telecommunications Standards Institute in 1989 took over the standardization of all cellular telephony in Europe
 - Strongly influenced by ISDN
 - Signaling System 7

[•] 2G Standards

System/Parameter	IS-54/IS-136	JDC	GSM	IS-95
Region	USA	Japan	Europe, Asia etc.	USA/Asia
Multiple access /duplex	TDMA/FDMA/FDD	TDMA/FDMA/FDD	TDMA/FDMA/FDD	CDMA/FDMA/FDD
Channels/carrier	3	3	8	Variable
Channel spacing	30 kHz	25 kHz	200 kHz	1.25 MHz
Uplink	824-849 MHz	810-826 MHz	890-915 MHz	824-849 MHz
Downlink	869-894 MHz	940-956 MHz	935-960 MHz	869-894 MHz
Channel bit rate	48.6 kbps	42 kbps	270.83 kbps	1.288 Mchips/s
Modulation Scheme	$\pi/4$ - DQPSK	π/4 - DQPSK	GMSK	QPSK/OQPSK
Spectral efficiency	1.62 bps/Hz	1.68 bps/Hz	1.35 bps/Hz	Variable
Frame duration	40 ms	20 ms	4.615 ms	20 ms
Peak power	0.6 W		1 W	
Data Service	9.6 kbps	9.6-14.4 kbps	9.6-14.4 kbps	9.6-115 kbps

Digital Modulation (1)

- Changing the parameters of a sinusoid is called "shift keying" if information is digital
- Types
 - Amplitude-shift keying (ASK)
 - Amplitude difference of carrier
 - Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - Phase-shift keying (PSK)
 - Phase of carrier signal shifted
 - Quadrature amplitude modulation (QAM)
 - Both amplitude and phase of the carrier carry data
- Bits/Symbol
 - Binary (one bit in one symbol => two symbols)
 - M-ary (log₂M bits in one symbol => M symbols)

Digital Modulation (2)

Binary

- 2 symbols 0 and 1
- 1 bit per symbol

M-ary

- M symbols -- α_1 , α_2 , α_3 , α_4 , ... , α_M
- We have $k = \log_2 M$ bits/symbol
- Usually $M = 2^k$
- Use amplitude, frequency or phase to carry the discrete information

Line Codes

- Non Return-to-Zero (NRZ)
 - Each digital value is represented by a voltage pulse
 - The voltage value is constant for the entire symbol duration
- Return-to-Zero (RZ)
 - Voltage pulses have duty cycles
 - They do not last for the entire symbol duration
 - If the duty cycle is 100%, it becomes NRZ
- Unipolar
 - Signal values are 0V or some positive voltage
- Antipodal (or bipolar)
 - Both positive and negative voltage values (usually identical in magnitude) exist

Recap NRZ

Symbol Rate, Bit Rate, Code Rate

- *R_s* is the symbol rate (how many pulses per second)
 - Symbol duration is $T_s = 1/R_s$
 - Often we will simply use R and T

- Bit rate is R_b which is $R_s \times$ (Number of Bits/Symbol)
 - If the scheme is M-ary, there are $k = \log_2 M$ bits/symbol
- "Code rate" is R_c which tells you what is the fraction of "actual data"
 - Code rate is usually less than or equal to 1

Example

- Consider an 8-ary scheme (there are 8 different symbols)
 Each symbol carries 3 bits
- Let the symbol duration be 1 μs one symbol is transmitted every microsecond
 - Symbol rate is 1 Msps ($R_s = 1/T_s$)
 - Raw bit rate is 3 Mbps ($R_b = 3 \times R_s$)
 - What is the approximate BW of the signal?
- Let the code rate R_c be 1/3
 - This means, one out of every 3 bits is the actual data
 - 2 out of 3 bits are redundant
 - Actual (useful) data rate is 1 Mbps $(R_u = R_c \times R_b)$

• Why Digital Modulation?

- Analog cell phone systems migrated to digital in the 1990s
- Some main reasons
 - Increase System Capacity
 - Squeeze more channels in a given bandwidth
 - Example: Employ TDMA (3 channels in 30 kHz in NA-TDMA)
 - Voice compression
 - Efficient transmission
 - Error control coding, equalizers, etc. => lower power needed
 - More resistant to interference

- More reasons
 - Add additional services/features
 - SMS, caller ID, etc.
 - Reduce cost and size of mobile devices
 - Improve Security (encryption possible)
 - Data service and voice treated same (4G systems)
- Note: Still analog signals carrying digital data

What is Spectral Efficiency?

It is defined as the raw bit rate supported in 1 Hz of bandwidth

 η = bit rate/bandwidth

Example: Compute the spectral efficiency of GSM

Answer:

- The channel spacing or bandwidth is 200 kHz and the raw data rate is 270.83 kbps. So the spectral efficiency is 270.83/200 = 1.35 bps/Hz
- Compute the spectral efficiency on Slide 35

42

[†] TDMA

- Users share same frequency band in non-overlapping time intervals,
 - E.g. Round robin
- Receiver filters are just windows instead of bandpass filters (as in FDMA)
- Guard time can be as small as the synchronization of the network permits
 - All users must be synchronized with base station to within a fraction of guard time
 - Guard time of 30-50 μs common in TDMA
- Used in GSM, NA-TDMA, (PDC) Pacific Digital Cellular

CDMA

+

- Narrowband message signal is multiplied by very large bandwidth spreading signal using direct sequence spread spectrum
- All users can use same carrier frequency and may transmit simultaneously
- Each user has own unique access spreading codeword which is approximately orthogonal to other users codewords
- Receiver performs time correlation operation to detect only specific codeword, other users codewords appear as noise due to decorrelation
- Cocktail party example

Simple example illustrating CDMA

Traditional

- To send a 0, send +1 V for T seconds
- To send a 1, send -1 V for T seconds
- Use separate time slots or frequency bands to separate signals

- Simple CDMA
- To send a 0, Bob sends +1 V for T seconds; Alice sends +1 V for T/2 seconds and -1 V for T/2 seconds
- To send a 1, Bob sends -1 V for T seconds; Alice sends -1 V for T/2 seconds and +1 V for T/2

Area under the product is ZERO!

⁺ Old Wide Area Data Systems

Can be considered 1G Mobile Data, GPRS is 2G Mobile Data

System	ARDIS	Mobitex	CDPD	GPRS	Tetra
Frequency band (MHz)	Bands around 800 MHz	935-940 896-901	869-894 824-849	890-915 935-960	380-383 390-393
Channel bit rate (kbps)	4.8 - 19.2	8.0 - 19.2	19.2	160	36
RF channel spacing	25 kHz	12.5 kHz	30 kHz	200 kHz	25 kHz
Channel & Multi-user Access	FDMA/DSMA	FDMA/Dyn. Slotted ALOHA	FDMA/DSMA	FDMA/ TDMA/ Reservation	FDMA/DSMA
Modulation Technique	4-FSK	GMSK	GMSK	GMSK	π/4-DQPSK

Simple CDMA continued

- Proceeding in this fashion for each "bit", the information transmitted by Alice can be recovered
- To recover the information transmitted by Bob, the received signal is correlated bit-by-bit with Bob's code [1,1]
- Such codes are "orthogonal"
 - Multiply the codes element-wise
 - [1,1] × [1,-1] = [1,-1]
 - Add the elements of the resulting product
 - 1 + (-1) = 0 => the codes are orthogonal
- CDMA used in IS-95 standard and both 3G standards: UMTS, cdma2000
- CDMA has big capacity advantage as frequency reuse cluster size = 1