Lecture 1a About the Class

What is INFSCI 1072?

- ■The "one course" to take in Wireless Networks
 - Deals with most of the wireless technologies of interest today
- Provide understanding of the structure, system aspects, and protocols of wireless networks
 - Wireless WANs, LANs, and PANs
- Attempt at a unified approach
 - Rather than looking at technologies one-by-one, treat them as examples

Prerequisites

- ■INFSCI 1070/TELCOM 2000: Introduction to Telecommunications
 - Qualitative idea of telecommunication networks and protocols – circuit Vs packet switching, the OSI stack, LANs vs WANs, what TCP/IP is, etc.
- Good to have knowledge of
 - Some calculus and trigonometry
 - Probability, PDF, CDF, etc.

Broad overview of course contents

- Wireless Systems
- Wireless Wide Area Networks (WWANs)
 - 1G, GSM, CDMA, LTE
- Wireless Local Area Networks (WLANs)
- WiFi = 802.11
- Wireless Personal Area Networks (WPANs)
- Bluetooth, Zigbee

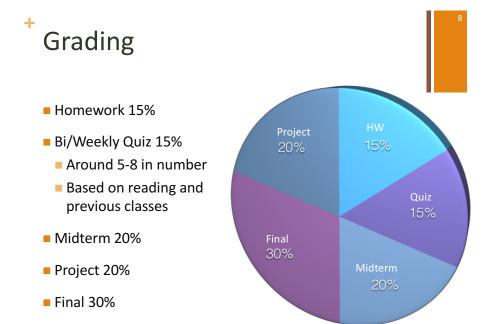
Beware of Acronyms!

- Lower Layers
 - Physical Layer (PHY)
 - Radio Propagation
 - Modulation
 - Access layer (MAC)
 - Deployment
 - Traffic Engineering
- Higher Layers
 - Radio Resource Management (RRM)
 - Mobility Management (MM)
 - Location Based Services (LBS)
 - Security

4

4

Course Objectives

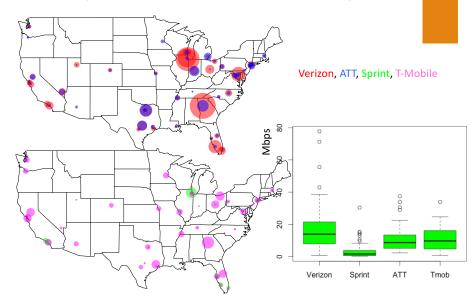

- Learn architectural differences between various wireless systems
 - Example: How is 4G different from 2G?
- Examine how the PHY layer impacts wireless systems coverage Vs. data rates
 - New physical layer techniques are becoming prevalent
 - The physical layer impacts mobility and radio resource management, etc.)
- Uncover network operation, deployment, and application issues

Contact

- Prashant Krishnamurthy
- Location
 - 718, IS Building
- E-mail: prashk@pitt.edu
- Web: www.pitt.edu/~prashk/tel2700
- Office Hours:
 - Tuesdays & Thursdays after class till noon
 - Mondays 11.00 12.00 p.m. (or by appointment)
- GSA: Maryam Karimi (mak322@pitt.edu)

Textbook and references

- Textbook
- No Required Textbook
- Other references
 - Papers from journals and magazines
 - Principles of Wireless Access and Localization Kaveh Pahlavan and Prashant Krishnamurthy, John Wiley & Sons
- Required: Matlab, R (open source)
 - Some exercises for homework
 - Matlab available in Pitt computer labs



- Groups are allowed
 - Group size should be commensurate with workload
 - One report per group
- Possible project thrusts
 - Thorough literature reviews
 - Experimental work
 - Topics not covered in sufficient detail in class
 - Emerging topics

- Examples
- LTE Advanced
- LTE Unlicensed
- Volte
- Gigabit wireless LANs
- Economics of dynamic spectrum access
- Ad hoc extensions of cellular networks for disaster/fault recovery
- Health issues of wireless technology
- Operation of multi-homed wireless devices

Data Source: RootMetrics/CNN (2014)

Example: 4G Data Rates in US Airports

Project Milestones

- ■Short Proposal Due
 - September 22nd, 2015
- ■Intermediate Progress Report Due
 - October 27th, 2014
- Final Report Due
 - November 24th, 2014
 - ■Why?

Policies

- No laptops, mp3players, tablets, or cellphones, in class
- Your work MUST be your own
 - Zero tolerance for cheating
 - You get an F for the course if you cheat in anything
- Homework is due a week after it is assigned
 - Late assignments will NOT be accepted
 - The GSA is responsible for homework

- General grading policy
 - There will be no credit for vague answers or unclear steps
 - I should be able to understand what you were trying to do without your verbal explanation later
- Check webpage for everything!
 - You are responsible for checking the webpage for updates

Clarity and Legibility are Very Important

- There will be no credit for vague answers or unclear steps
- I should be able to understand what you were trying to do without your verbal explanation later

Course Outline (2)

- ■Week 8: Midterm
- ■Week 9: Medium Access
 - Fixed and Random Access
- ■Week 10: Deployment and Traffic Engineering
 - Frequency reuse, Call blocking
- ■Week 11-12: Network Operations
 - Cell search, RRM, MM, and Security

Course Outline – Subject to Change

- Week 1: Introduction to the class
- Week 2: Overview of wireless systems
 - Channel, bandwidth, and spectrum efficiency
- Weeks 3-4: Basics of Transmission
 - dB scale, antennas, modulation
- Week 5: Radio Propagation Large Scale Fading
- Week 6: Radio propagation Small Scale Fading
- ■Week 7: Spread Spectrum and OFDM

Course Outline (3)

- ■Weeks 13: WiFi
- ■Week 14: LTE
- ■Week 15: Final

16