

Lecture 12

Wireless Network Operations (2) Mobility Management

Two Issues in Handoffs

The anchor point is some network entity that is "fixed" and can be used to track the MS

- 1. Handoff decision and initiation
- 2. Restructuring the on-going connection

+ Handoff Decision

- When should a MS switch its connection from the current BS to a new BS?
 - If the MS persists with the current BS for too long, its connection could be broken
 - Important for voice calls
 - How about data?
 - If the MS persists with the current BS for too long and keeps increasing its transmit power, it could increase co-channel interference or intracell/inter-cell interference
 - If the MS switches its connection too soon, it may not be the right decision and it may have to change it – increased signaling load
- Handoff is the mechanism by which a MS makes a switch of its current point of access
- Ideally, there must be EXACTLY one handoff at the cell edge

+ RSS based Handoff Decision

- The received signal strength (RSS) is most commonly used in RRM algorithms
- RSS based algorithms
 - Largest relative signal strength
 - Relative signal strength with threshold
 - Relative signal strength with hysteresis
 - Relative signal strength with hysteresis and threshold

Traditional algorithms

- Received Signal Strength: The base station with the the largest strength is selected (choose BS B_{new} if $P_{new} > P_{old}$).
- Received Signal Strength plus Threshold: RSS of a new BS exceeds that of the old BS, RSS of old BS is below a threshold T (choose B_{new} if $P_{new} > P_{old}$ and $P_{old} < T$).
- Received Signal Strength plus Hysteresis: RSS of new BS is larger than that of the old BS by a hysteresis margin H (choose B_{new} if $P_{new} > P_{old} + H$).
- Received Signal Strength, Hysteresis and Threshold: RSS of a new BS exceeds that of the old BS by a hysteresis margin H, and RSS of old BS is below a threshold T (choose B_{new} if P_{new} > P_{old} + H and P_{old} < T).</p>
- Algorithm plus Dwell Timer: A timer is started at the instant when the condition in the algorithm is true. If the condition continues to be true till the timer expires, a handoff is performed.

+ Handoff Initiation Criteria

The Ping-Pong Effect

- Repeated handoffs back and forth between two base stations
 - Caused by not setting some parameters of handoffs like hysteresis and threshold wisely
 - Results in large system loads, multiple interruptions in voice transmissions and instability

Simple simulations of handoff

The Soft Handoff Concept in CDMA

- The MS simultaneously maintains connection with two or more points of access to the fixed network
 - Eventually, one of them is picked as the strongest connection and a handoff is made to that cell
- Why Soft Handoff?
 - Positive feedback power control problem
 - Cells use the same frequency
 - MS moves away from a BS and keeps increasing its transmit power
 - The interference in the neighboring cell increases
 - This forces MSs in the neighboring cell to increase their Tx power (How do they know they should increase the power?)
 - The interference increases further
- Soft handoff guarantees that the MS is always connected to the strongest BS

The Active Set

- Contains the pilot channels associated with the forward traffic channels assigned to the MS
 - Usually there is exactly one pilot in the active set
 - During handoff, there may be many pilots in this set
- The maximum number of pilots in the active set is 3
 - This is restricted by the number of RAKE fingers
 - If pilots can share a finger, you can go up to 6 pilots
- The BS informs the MS of the active set using two messages
 - Channel assignment message
 - Handoff direction message (HDM)

+ Handoffs in UMTS

- The MS maintains a list of cells that it is currently using or may likely use
- Active Set
 - All cells that are simultaneously involved in a communication during soft handoff
 - The MS coherently demodulates the received signals from these cells
 - It contains two or more cells in FDD mode, but only one cell in TDD mode
- Monitored Set
 - These are cells not in the active set, but in the neighbor list and monitored by the MS
- Detected Set
 - Cells not in either the active or the monitored set, but detected by the MS anyways

Basic idea in UMTS

- There is a permissible number of cells in the active set
- Initially Cell 1 is the only member of the active set
 - At t₁ the difference in power between the pilot from cell 1 and cell 2 is less than a threshold Th₁
 - Cell 2 is included in the active set
- The MS is now communicating with two cells simultaneously
 - At t₂ the difference in the pilots becomes larger than another threshold Th₂
 - The pilot from cell 1 becomes unusable and it is dropped from the active set

Handoff decision algorithms in WiFi

Most algorithms are based on the RSS

Most algorithms are proprietary

- In IEEE 802.11, most MSs simply use either the RSS or the SNR to make handoffs
 - Some vendors use load
- There are no defined thresholds or hysteresis margins

Mobility management

For a message to reach a MS

- There should be a knowledge of where the MS is currently
 - A route must be set up to the MS accordingly

Location management

- There must be adjustments made to track the MS as it moves while connected
 - The route must be redefined efficiently when the MS changes its point of access to the fixed infrastructure
 - Handoff Management

Steps in Mobility Management (1)

- Mobile decides and initiates handoff (NCHO?)
 RSSI, RSSI Hysteresis, BLER, etc.
- Mobile registers with "new" visiting database
 - Announcement of handoff
 - First information to a network entity
- New Visiting Database communicates with Home Database to obtain subscriber profile and for authentication
 - First information exchange between network entities about the changed location of the mobile

Radio

17

Location Management

18

Steps in Mobility Management (2)

- Home Database responds to New Visiting Database
 - Authentication of mobile
 - Database update for redirecting messages
 - New visiting database includes mobile in its list
- Home Database asks Old Visiting Database to flush packets intended for mobile
 - Packets that may have been routed to the old visited network while the mobile was making a handoff need to be dropped or redirected
- Old Visiting Database flushes or redirects packets to New Visiting Database
 - Old Visiting Database removes mobile from its list

+ IS-41 and GSM-MAP

Two standards to handle mobility

- GSM-MAP
 - MAP = Mobile Application part
 - Used by GSM-like systems
- IS-41
 - IS = Interim Standard
 - Used by North American Systems
 - IS-136 and IS-95 systems use IS-41 for signaling and mobility management
- Mobile IP or variations
 - For 3G and 4G networks

Comparative Table of Network Elements involved in Mobility Management

+

Generic	GSM	Mobile-IP
Home Database	Home Location Register	Home Agent
Visiting Database	Visiting Location Registor	Foreign Agent
Registration	Registration Procedure	Registration
Handshake between Visiting and Home Databases	Prepare HO SS-7	Registration action by Foreign Agent
Flush	Clear Command	None exists

Location Management

- As soon as the MS powers up it has to "register" or "associate" itself
 - Voice systems
 - MSs are NOT connected till there is a call
 - But the MS needs to be located for incoming calls if it is "on" while it is on the move
 - Data systems
 - MSs are connected ALL the time
 - To deliver packets efficiently, the MS must be located
- If the MS is not powered up, or unreachable the network should know what to do
 - Busy tone, buffering packets, etc.

Components of location management

- Location updates
 - Messages sent by the MS regarding the changing points of access to the network
 - The "anchor" is updated whenever these messages are transmitted
 - The anchor is usually the home database
- Paging
 - The location updates are not continuous
 - There is some uncertainty as to the exact cell in which the MS is located
 - The MS is "paged" to determine its exact location if there is an incoming call
- Location information dissemination
 - Procedures to store and distribute the location information of MSs

+ Issues in location management

Tradeoffs between

- Cost of the number and frequency of location updates
- Cost of paging

Case I:

- Number of location updates is too frequent
- Number of incoming messages few
- Network load is too costly
 - Signaling consumes bandwidth
 - Processing and database updates are costly

Case II:

- Number of location updates is few and infrequent
- A larger area needs to be paged in order to locate the MS
- Resource waste
 - Paging in cells where the MS is not
- Delay
 - Depending on how the paging is performed, the response from the MS may be delayed
 - e.g. Paging is performed in the cell in which the MS is located *after* paging other cells

24

Location update algorithms (1)

Static Algorithms

- Network topology decides the updates
- Most common approach is based on the "location area" (LA) concept
 - BSs are grouped into LAs
 - Each BS periodically broadcasts its LA over a control channel
 - When the MS discovers that the LA identifier has changed, it will initiate a location update with the new identifier
 - The databases are updated

Example of Static Location Updates in GSM

- The LA in GSM consists of all BTSs that are controlled by a BSC
- Location updates are performed
 - When the MS powers up and detects a change in LA identifier
 - When the MS crosses the boundary of a LA
 - Periodically after some time elapses
 - This time is determined by the network

Problems with static location updates

- If a MS frequently crosses a LA, it can lead to the ping-pong effect
- Common solution
 - Use a dwell timer
 - Use a biasing factor to define the cell boundary

Location update algorithms (2)

Dynamic Algorithms

- State-based
 - MS decides to make an update based on its current state
 - State information includes
 - Time elapsed since the last update
 - Distance traveled
 - Number of calls received
 - Number of LA's crossed
- User-profile based
 - Maintains a sequential list of LAs where the MS is usually located (e.g. Oakland, Wilkinsburg, Monroeville)

Broadcasting a message to the MS requiring it to respond in a group of cells where it is expected to be located

Blanket paging

- Page all cells in a LA simultaneously
- Response is received in the first paging cycle delays are reduced
- Used in GSM

Closest cells first

- The cell in which the MS was last seen is paged first followed by the first ring of cells and so on
- Sometimes several rings of cells are paged simultaneously like blanket paging

Location information dissemination

- At the bare minimum, the anchor in the network needs to be updated about the location of the MS
 - A single anchor for all MSs can lead to bottlenecks and failure
- The "home database" maintains all information associated with a MS
 - The MS identification
 - Authentication keys
 - Subscriber profile
 - Accounting
 - Location as determined by the "visiting database"
- The "visiting database" keeps track of MSs in its serving area and what happens to them
 - A single VDB may serve several LAs

+ Handoff Management

- Two categories of handoff
 - Intrasystem handoff (3 cases)
 - Intra-cell handoff (different sector of same cell)
 - Standard handoff (cells attached to same BSC)
 - Inter BSC handoff (same MSC)
 - Intersystem handoff
 - Cells attached to two different MSCs
 - Require specialized signaling
 - Three cases
 - A. Handoff Forward
 - B. Handoff Back
 - C. Handoff to a Third

Intersystem Handoff – Handoff Forward

The situation after a handoff forward from System A (anchor system) to System B (serving system).

33

After a Handoff Forward

From MSC-A to MSC-B

User may move back to a cell attached to anchor MSC-A

Use HANDOFF BACK command to prevent call going from MSC-A to MSC-B back to MSC-A in wired network

Called the "shoelace" effect

Simple Case of two Handoff Forwards – results in the call path shown above after handoff forward to System C.

Current Solution is HANDOFF to a THIRD command

• If there are circuits connecting MSC-A and MSC-C, the system can perform handoff to third with this result.

• Yields better routes in wired network

35

36

IEEE 802.11 Mobility Types

No Transition

MS is static or moving within a BSA

BSS Transition

The MS moves from one BSS to another within the same ESS

ESS Transition

- The MS moves from one BSS to another BSS that is part of a new ESS
- Upper layer connections may break (needs Mobile IP)

+ Inter-AP Protocol (802.11f)

- APs register with a "Registration Service" in the distribution system
 - They use the IAPP-INITIATE and IAPP-TERMINATE to register and deregister
- An MS in 802.11 can be associated with only one AP
- When the MS sends a reassociation request and obtains an association frame, the new AP sends an IAPP-MOVE-notify packet to the old AP
 - The old AP address is obtained from the registration service
 - If the registration service cannot be located, the AP will issue an IAPP-ADD-notify packet to the broadcast MAC address on the LAN
- The old AP sends an IAPP-MOVE-response packet with any context information it had for the MS