

Lecture 11

Wireless Network Operations - I

Cell Search and Radio Resource Management

- How does a MS know what BS is serving an area, what frequencies, time slots or codes it can use with this BS?
 - Cell search
- How does a MS know which BS, frequencies, time slots or codes are the "best" to use?
 - Radio resource management
- How does the network know where to route calls or packets for a MS?
 - Mobility (Location) Management
- How does a BS know whether it "can" provide service to a MS and what services are allowed? How do you authenticate an MS? How do you bill an MS?
 - Authentication, authorization, accounting
- So, should a MS be on all the time and monitor the channel all the time?

Wireless Network Operations

- Cell Search and Registration
 - How does a mobile station know "how to connect" to the network?
- Radio Resource Management RRM
 - Deals with power control, channel assignment and handoff decisions
 - Includes Power Management PM
 - Deals with protocols and management for allowing MSs to save power
- Mobility Management MM
 - Deals with location management and handoff management
- Authentication, authorization, and accounting AAA
 - Deals with security, billing and access control
- Location Services
 - Deals with E-911 and other positioning aspects

Cell Search and Registration

Cell Search

- When a MS is first powered on, it has to find base stations or access points
- Procedures vary by the technology
- General idea
 - You have a "beacon" signal to help the MS
 - Beacon, n. "a fire or light set up in a high or prominent position as a warning, signal, or celebration"¹
- Challenges
 - Frequency channels and quality

Registration

- MS needs to let the network know that it is "active" and can be now reached
- Messaging between MS and network
- It is complex!
 - What if the MS is connecting at a place very different from the last time?
 - What if a MS cannot find its own service provider, but a different one?

5

In Brief: Cell Search/Registration in AMPS

- AMPS has 30 kHz channels
 - 395 voice and 21 control channels
- MS looks for the "forward" control channels
 - Picks the strongest control channel
- Control channel
 - Broadcasts system ID and other types of information
 - MS needs to decode this information and see who it is connected to
 - If decoding fails, it is common to pick up the next strongest control channel
- MS transmits its ID and some other information on the reverse control channel to register with the network
 - Actual procedure is more complex than this

6

In Brief: Cell Search/Registration in GSM

- Cell search (Time multiplexed channels)
 - MS scans RF carriers and picks up the strongest it can sense
 - "Framing"
 - Uses an unmodulated carrier (all zeros) to synchronize the frequency (frequency correction channel – FCCH)
 - Use a synchronization channel (SCH) to get the timing for TDMA
- Beacon is the Broadcast Control Channel (BCCH)
 - Sends synchronization parameters, cell ID, etc.
 - It is decoded next to get information about the system/network
- A registration procedure follows
 - Many messages are exchanged to convey information about the mobile to the network and vice versa

+ In Brief: Cell Search in IS-95

Search correlator output: 5 strong signals have been detected

- Primary and Secondary Carriers used in all cells
 - Remember reuse = 1
- Pilot channel on primary carrier is tracked first
 - The MS processes the pilot channel to find the strongest signal
 - A search correlator sweeps through all possible pilot chip offsets to identify BSs in the area
- The MS picks the strongest pilot signal
 - This has a "PN-offset" that essentially identifies the cell
 - The MS uses the PN-offset of this pilot to track the synch channel and register

Cell Search Procedure in 3G UMTS

In IS-95 how is the cell search procedure?

In UTRA

- No BS synchronization
- Same PN code is NOT used in all cells
 - Different scrambling codes in different cells
 - Cannot search for 512 different codes of duration 10 ms each easily
 - Too many comparisons and correlations
- It is a difficult problem
- The pilot channel is NOT used for cell search in UTRA
 - Instead the SCH is used in a different way

Cell search procedure – II

- Step 1: The primary SCH code is the same for all cells
 - It is the same in each slot
 - Detection of a peak can be used to determine the slot boundary
- Step 2: Detection of secondary SCH code
 - The MS seeks the largest peak among 64 secondary SCH codes also of length 256 chips
 - Scrambling codes are divided into 64 code groups
 - It needs to check this in each of the 15 slots that make up a frame
 - Once the secondary SCH code is picked up
 - The code group is known
 - There is frame synchronization as well
- Step 3: Each code group has 8 primary scrambling codes
 - The MS tests each of these codes over the duration of the frame to determine the correct code
 - For this, it employs the CPICH

+ Cell search in UMTS Vs IS-95

In Brief: Cell Search in LTE

- OFDMA and time/frequency resource blocks (RBs)
- Problems
 - Different bandwidths supported in LTE (1.25, 2.5, 5, 10, 20 MHz)
 - Need smaller delay for cell search
- Sync Channel
 - Uses "central" 1.25 MHz bandwidth
 - Comprises of 76 sub-carriers with a spacing of 15 kHz
 - Within these, a primary (P-SCH) and secondary (S-SCH) synchronization channel is transmitted
 - Each carries part of the Cell-ID
- Reference Signal (RS)
 - Used for downlink channel estimation

+ Cell Search in LTE

"Cell Search" in IEEE 802.11

There is no real "cell search" in 802.11

MS scans the air for the various channels specified in IEEE 802.11

Recall the 5 MHz separation and 25 MHz bandwidth

- MS uses the "beacon" message to pick the strongest signal
 - Beacon is decoded
 - If network (B/E SSID) is known, it "associates" with the AP
 - If it is unknown, user may be prompted (or not it may simply associate itself)

IEEE 802.11 Protocol Architecture

MAC layer independent of Physical Layer (mostly) Physical varies with standard (802.11, 802.11a, etc.) PLCP: Physical Layer Convergence Protocol PMD: Physical Medium Dependent

Data Link Layer	LLC		Station Management
	MAC	MAC Management	
Physical Layer	PLCP	PHY Management	
	PMD		

14

* More on the Protocol Stack

IEEE 802.11 data link layer has two sublayers

- Logical Link Layer
 - Determined by wired network interface
- Media Access Control (MAC) layer :
 - Security, reliable data delivery, access control
 - Provides coordination among MSs sharing radio channel

MAC Management Frames in 802.11

Beacon

 timestamp, beacon interval, capabilities, ESSID, traffic indication map (TIM)

Probe

ESSID, Capabilities, Supported Rates

Probe Response

- same as beacon except for TIM
- Re-association Request
 - Capability, listen interval, ESSID, supported rates, old AP address
- Re-association Response
 - Capability, status code, station ID, supported rates

Beacon is a message that is transmitted quasi-periodically by the access point

- It contains information such as the BSS-ID, timestamp (for synchronization), traffic indication map (for sleep mode), power management, and roaming
- Beacons are always transmitted at the expected beacon interval unless the medium is busy
- RSS measurements are made on the beacon message

Association

- 18
- In order to deliver a frame to a MS, the distribution system must know which AP is serving the MS
- Association is a procedure by which a MS "registers" with an AP
- Only after association can a MS send packets through an AP
- How the association information is maintained in the distribution system is NOT specified by the standard

Re-association and Dissociation

- The *re-association* service is used when a MS moves from one BSS to another within the same ESS
- It is always initiated by the MS
- It enables the distribution system to recognize the fact that the MS has moved its association from one AP to another

- The *dissociation* service is used to terminate an association
- It may be invoked by either party to an association (the AP or the MS)
- It is a notification and not a request. It cannot be refused
- MSs leaving a BSS will send a dissociation message to the AP which need not be always received

What is Radio Resource Management?

- RRM should
 - Continuously provide the "best" possible RF channel between the MS and the fixed network
- Questions
 - What is "best"?
 - What parameters are part of the provision of the RF channel?
 - How does this change over time?
- In general, RRM needs a reference channel that is known, stable and can be used for comparison
 - Beacon in 802.11, BCCH in GSM/GPRS, pilot channels in CDMA etc.

Why Radio Resource Management?

Problem: Interference

+

- Types of interference
 - Uplink interference and downlink interference
 - Intra-cell and inter-cell interference

Solution: Power Control

- Control the power transmitted by MSs and BSs
 - The smaller the transmitted power, lower the interference
- By-product
 - Saves on the battery consumption at the MS

Problem: Cellular topology requires handoff

- Issue
 - At some point of time the MS must make a decision to handoff
 - Handoffs have penalties loss of quality, increasing interference, increasing signaling load etc.

Required Solution: Handoff Decision

 Exactly one handoff must be made at the right time at the right place

A more formal definition of RRM

To each active MS, assign

- A base station
- A waveform (or channel)
 - Frequency, time slot, group of time slots, or codes, or group of codes, modulation scheme, coding scheme
- A transmit power
- When we do this at a cell boundary it is "handoff decision"
- Is it fixed for the rest of the time within the cell? How does it change for voice? For data?
- Constraints
 - Link quality should be acceptable for all MSs
 - Constraints are satisfied for as many MSs as possible
- Objective function
 - Maximize revenue with QoS constraints what does this mean?

+ RRM Functions

- Base station and rate/channel assignment
 Link adaptation
- Transmit power assignment
 - Power control
- Handoff decision
 - Intra-cell handoff
 - Inter-cell handoff
 - Soft handoff

- Technology specific issues
 - Dynamic Frequency Selection
 - How to select the frequency of operation in a BSS of HIPERLAN/2 or IEEE 802.11a
 - Channel hopping in CDPD

+ BS Selection: How to select the best channel?

-80 dBm threshold leaves "holes"

+ BS Selection: How to select the best channel?

-90 dBm threshold makes transmission to another cell deep inside a cell

+ Solution?

No "single variable" algorithm such as RSS will satisfy all variations

- Use many parameters to make a decision
 - Use those most appropriate for the propagation characteristics
 - A channel with adequate signal level should not be selected
 - In general the channel with the STRONGEST RSS is always selected to start since it is most likely a local channel (physically closest)
 - (Compare using the largest SIR instead)

Link Adaptation and Adaptive Multi-rate Transmissions

- RRM typically handles the messages that are transmitted in support of link adaptation
- Measurements of RSS, power levels, etc. are exchanged between the RRM layers in the mobile and BSC/RNC/Node-B/e-Node B as needed
- You can think of this as being related to the "channel assignment" problem

Power Control

Co-channel interference management

Excessive transmit power in a cell at a frequency can effectively lock the channel up preventing it's use in co-channel cells

CDMA systems

- Very very important to prevent the near-far effect
- Affects capacity of the system
- Affects the life of the battery in a MS

28

Power Control (2)

What is the ideal solution?

- Early systems tried to maintain a constancy of RSS at the receiver
 - Eliminates the need for receivers to have a large dynamic range
- Today: A MS should transmit at the *minimum* power that results in an "acceptable SIR" for voice
 - Transmitting above this power wastes the battery power and causes interference
 - Transmitting below this power increases the error rates

Classification of Power Control Schemes

30

Parameters of power control schemes

Quality measure

- RSS
- SIR and BER
 - If the SIR is constant, so is the BER
 - If the SIR is fluctuating, the average SIR ≠ average BER
- Available measurements
 - Measurements reports of RSSI received signal strength indicator or CQI channel quality indicator
- Constraints
 - What the maximum and minimum transmit powers allowed by the hardware, the system regulations, etc.
- Time delays
 - Measuring RSS or BER and signaling this information requires time
- Step size
 - Usually power control has to be performed in discrete steps (1 dB to 5 dB)
 - The step size could be fixed or adaptive depending on how dynamic the channel is

Open Loop Power Control

Usually implemented on the reverse link

- The MS measures the quality of the reference channel and decides what transmit power to use
 - If the RSS is above a threshold or the BER is small, the MS may reduce its transmit power
 - If the frame error rate is large, the MS may increase its transmit power

Advantages

Simple to implement

Disadvantages

- The forward channel is much different from the reverse channel they are usually NOT correlated
- Delay in implementing this, especially in TDMA systems

Example of Open Loop Power Control: IS-95 Systems

Reverse Link

- Upon powering up, a MS listens to the pilot channel (the reference channel in IS-95)
- The MS transmits signals such that its transmit power is inversely proportional to the total RSS on the pilot channels from all BSs
 - The signal is called an "access probe"
 - If there is no ACK for the access probe, it is retransmitted with a higher power
 - The process is repeated till an ACK is received or the transmit power becomes the maximum allowed
- If no ACK is received, the MS backs off and repeats the process again (up to 15 times)

Closed Loop Power Control

- There is a feedback mechanism between the BS and the MS
 - On the forward control channel, the BS indicates what steps the MS has to take to change its transmit power

Example: GSM/GPRS

- The MS reports the RSS from up to six neighbouring BTSs to the serving BS
- The serving BTS measures the RSS from the MS and its distance (crude) and computes the minimum required transmit power
- Afterwards, power control is performed in steps of 2 dB

35

Closed Loop Power Control in IS-95

Inner loop

- Suppose the target E_b/N_t is Q dB
- Every 1.25 ms, the BS computes whether the E_b/N_t value is greater than Q or not by sampling it 16 times
- If it is greater, the MS is instructed to decrease its power by 1 dB,
- otherwise it is instructed to increase it by 1 dB

Closed Loop Power Control in IS-95 (2)

Outer Loop Power Control

- The target E_b/N_t value is varied over time to reflect changes in the environment like velocity of the MS, fading etc. to obtain the same frame error rate
- It is reduced by X dB every 20 ms, where 100X = 3 dB
- It is increased when a frame error occurs

Operation of the Forward Traffic Channel (Rate Set 1)

Operation of the FTCH (RS-1)

Speech data is sent through a rate ½ convolutional encoder

- Output rates will be 19.2, 9.6, 4.8 or 2.4 kbps
- Same convolutional encoder as synch/paging channel
- Difference: The encoder is reset to all zero state after 20 ms
- Depending on the output of the convolutional encoder, the symbols are repeated
 - 19.2 kbps no repetition
 - 9.6 kbps 1 repetition, 4.8 kbps 3 repetitions and 2.4 kbps 7 repetitions
- Final output is ALWAYS 19.2 kbps for 20 ms => a total of 384 bits

Further steps in FTCH operation

The 384 bits are interleaved over 20 ms

- The bits are scrambled using the long code
 - The long code mask is either public or private
 - The private long code mask is NOT specified
 - Used to provide privacy of voice
- The data is then multiplexed with a power control subchannel
 - This contains 1 bit every 1.25 ms (800 bps)
 - If the bit is 1 the MS reduces its transmit power by 1 dB
 - If the bit is 0 the MS increases its transmit power by 1 dB

Public long code mask for traffic channel

Multiplexing with the power control subchannel

- The power control bits steal bit positions from encoded data
 - The power control information occupies two symbols in the traffic stream
 - The traffic stream has been at least doubled because of the convolutional coding
- The convolutional code is used to correct the introduced errors

More on the power control subchannel

A 20 ms frame is divided into 16 *power control groups*

- One power control group = 20/16 = 1.25 ms
- 1.25 ms has 19.2 x 1.25 = 24 bits

More on power control (2)

- If the last four long code scrambling bits are a₂₀ a₂₁ a₂₂ a₂₃, the position is determined by a₂₃ a₂₂ a₂₁ a₂₀
- Why is the position of the power control bit not fixed?
 - If the MS is asked to raise or lower power in the same way over several PC groups and the bit position is fixed, a spectral line can be created because of the periodicity
 - By using the long code bits, the position is randomized
- Power control bits are always transmitted at 100% power
- The power control bit in a PCG is determined based on the measured power two PCGs prior to it
- How does the MS know where the PC bits are located?

Power Control Procedures in UMTS

- Open Loop Power Control
 - MS sets transmit power to some specific level
 - Tolerance is \pm 9 dB (normal) and \pm 12 dB (extreme)

Closed Loop Power Control

- Inner Loop Forward Link
 - Enables BS to adjust its transmit power in steps of 0.5 or 1 dB
 - The MS sends a TPC command to the BS
 - Goal to maintain a satisfactory SIR at the MS
- Inner Loop Reverse Link
 - The MS adjusts its transmit power in response to a TPC command from the BS
 - Step size is 1,2, or 3 dB
- Outer Loop Power Control
 - Sets the target SIR to satisfy a given frame error rate

Reverse Link Power Control – I

- The MS starts transmitting on the reverse DPCCH using a power set by the higher layers
- The serving cell measures the received SIR
 - The SIR is compared with a threshold
 - If the received SIR > threshold, a TPC command of 0 is transmitted
 - The MS reduces its power by 1 or 2 dB as dictated by higher layers
 - If the received SIR < threshold, a TPC command of 1 is transmitted</p>
 - The MS increases its power level
 - If both a DPDCH and a DPCCH are present, both powers are increased or decreased simultaneously
 - The reverse DPCCH should immediately adjust the pilot transmit power

*Reverse Link Power Control - II

DPCCH

45

Forward Link Power Control

DPCCH

time

Control of the Power Control Mechanism

Distributed power control

- The open and closed loop power control mechanisms discussed previously
- They deal with the powers of each MS individually
- This is a distributed mechanism although the control is with a central authority the BS or BSC
- The MSs should reach ideal transmit power and SIR levels iteratively
- Centralized power control
 - The BS or BSC has knowledge of all radio links in the system
 - RSS, SIR, BER for all MS-BS combinations are known
 - An optimal power allocation can be derived
 - Practically impossible to keep track of all links in the system

Power Control in Wireless LANs

- As they exist today, there is NO power control in WLANs
 - Potential problems
 - Carrier sensing, hidden and exposed terminals
- In Europe, power control is mandated for operation in the 5 GHz bands
 HIPERLAN/2 specifies transmitter power control
- In the USA, the IEEE 802.11h group looked at power control issues

IEEE 802.11h proposal

- Defines only the PHY and MAC changes necessary to implement power control
- Actual algorithms are implementation dependent
- Suggested absolute TX Power Settings for all MSs
 - -15 dBm to +30 dBm, 3 dB steps
 - 16 settings use a 4 bit representation
 - Closely follows HIPERLAN/2

Other details of the proposal

- Power levels can be controlled in both a centralized and a distributed fashion
 - AP can use global TX power limit within BSS
 - MSs can request power level changes from other MSs
 - AP (and MSs) can individually set power level for each destination MS/AP

IEEE 802.11 Protocol Architecture

Data Link Layer	LLC		Statio
	MAC	MAC Management	on Ma
Physical Layer	PLCP	PHY	Inage
	PMD	Management	ment

PLCP: Physical Layer Convergence Protocol PMD: Physical Medium Dependent

MAC Management Frames in 802.11

Beacon

 timestamp, beacon interval, capabilities, ESSID, traffic indication map (TIM)

Probe

ESSID, Capabilities, Supported Rates

Probe Response

Same as beacon except for TIM

Re-association Request

Capability, listen interval, ESSID, supported rates, old AP address

Re-association Response

Capability, status code, station ID, supported rates

MAC changes in IEEE 802.11

- Power control information is exchanged with "Probe Request" and "Probe Response" frames
- Use a "command" bit
 - A "zero" requests the current transmit power level information
 - A "one" instructs setting the transmit power level to a given value
- Global power levels are communicated in the beacon
 - e.g. maximum transmit power in a BSS or IBSS

Why Power Management?

Limited battery power at the MS

- Reasons for power consumption
 - Transmissions
 - Channel monitoring
 - Device operation
 - Backlight
 - Accessing disk space
 - CPU
- Solution approaches
 - Power saving mechanisms
 - Suspended modes of operation
 - Energy efficient protocol design
 - Minimize unnecessary transmissions
 - Energy efficient software/device designs

Power saving mechanisms

Transmissions and receptions consume a lot of power

- Measurements of the old Lucent Wavelan cards indicated that a 15 dBm card consumes
 - 1.83 W in transmit mode
 - 1.8 W in receive mode
 - 0.18 W in standby mode
- A MS must spend as much time in standby mode as possible to conserve power
 - Voice terminals discontinuous transmission using the voice activity factor & standby modes
 - Data terminals sleep modes when there is no data to transmit or receive
 - There must be provisions in the network to handle calls or packets that arrive for a MS that is sleeping

+ Power Saving in 802.11

- All MSs switch off the radio part when unnecessary
- They have to be synchronized to wake up at a particular time when a sender will transmit buffered frames for them
- All unicast messages are announced in the TIM (traffic indication map) of the beacon
- MSs request delivery if they wake up on time (usually) and discover the existence of buffered packets for them
- DTIMs (Delivery TIMs) are used for multicast/broadcast messages less periodically
- ATIMs (Ad Hoc TIMs) are used by MSs in an ad hoc configuration in special time windows