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pair. Since #26-gauge copper wire has 41 ! per 1000 feet, a single wire that is one mile

long has resistance = 41 × 5.28 = 210 !. If the detector at B is a 180-! resistor, the

circuit’s net “round-trip” resistance is 210+ 180+ 210 = 600 !. Then, a 12-Volt battery
at A produces 12

600
= 20 mA. The received signal is 20 mA × 180 = 3.6 Volts, which is

only 3.6
12

= 30% of the signal’s intensity at A.

While DC signals suffer loss only due to resistance, AC signals also suffer loss due

to capacitive and inductive reactance. Even without turns, a wire has a series distributed

inductance and a pair of wires has a parallel distributed capacitance. Like its resistance, the

total net inductive and capacative reactance of a wire-pair is proportional to the length of

the pair. So, the pair’s total net opposition to current, its impedance, is directly proportional

to its length.

If a signal with intensity A0 is transmitted over a wire, co-axial cable, or ber, then it

loses intensity as it moves along the path. If A(z) is the signal’s intensity at position z then
the signal loses intensity “exponentially” over distance as:

A(z) = A0e
−αz . (9.3)

This equation motivates the use of the “dB scale” in which quantities are expressed

logarithmically.

9.2.4 Decibels

While the logarithmic “dB” scale may be initially confusing, it is very useful for handling

number that vary over wide ranges. Since gain is multiplicative, translating to a log-

scale allows us to add instead of multiplying. If loss is divisive, translating to a log-scale

allows us to subtract instead of divide. If loss is exponential over distance, a log scale is

convenient because it lets us multiply instead of raising to a power. The telecom industry

has universally adopted the decibel scale, which:

• Uses the base-10 logarithm, which is then multiplied by 10,

• Measures power instead of voltage or current,

• Measures relative power (arguments of logarithms are dimensionless).

Specically, P1 is said to be “Y dB greater than” P2 if:

Y dB = 10 log10
P1

P2
. (9.4)

Let P1 and P2 be the power intensities, in Watts, of two different signals, such as the input

and output powers of an optical transmission link. If P1 is R times greater than P2 on the

real scale, then P1 is 10 log10 R incrementally bigger than P2 on the logarithmic dB-scale.

Each ten-fold multiplication of power corresponds exactly to a 10 dB increment and each

doubling of power corresponds approximately to a 3 dB increment (because log10 2 = .3).
So, if a wire transmission line has a loss such that a signal’s power is halved every kilometer,

we express this as:

10 log10
Pout

Pin
= 10 log10(.5) = −3 “dB per km.” (9.5)
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Table 9.1

Some decibel calculations.

P1/P2 # dB P1/P2 # dB

1 0 128 (27) 21 (3× 7)

2 3 160 (16× 10) 22 (12+ 10)

4 (22) 6 (3× 2) 200 (2× 100) 23 (3+ 20)

8 (23) 9 (3× 3) 256 (28) 24 (3× 8)

10 10 320 (32× 10) 25 (15+ 10)

16 (24) 12 (3× 4) 400 (4× 100) 26 (6+ 20)

20 (2× 10) 13 (3+ 10) 512 (29) 27 (3× 9)

32 (25) 15 (3× 5) 640 (64× 10) 28 (18+ 10)

40 (4× 10) 16 (6+ 10) 800 (8× 100) 29 (9+ 20)

64 (26) 18 (3× 6) 1000 (103) 30 (10× 3)

80 (8× 10) 19 (9+ 10) 1024 (210) 30 (3× 10)

100 (102) 20 (10× 2)

Example. Examine these useful numerical examples.

P1 : P2 dB

P1 = P2 10× log10(1) = 10× 0 = 0

P1 = 10P2 10× log10(10) = 10× 1 = 10

P1 = P2
10

10× log10

(
1
10

)
= 10× −1 = −10

P1 = 10k P2 10× log10(10
k) = 10× k = 10k

P1 = 2P2 10× log10(2) = 10× 3.1 ≈ 3

P1 = P2
2

10× log10

(
1
2

)
= 10× (−3.1) ≈ −3

P1 = 2k P2 10× log10(2
k) = 10× k × 3.1 ≈ 3k

Based on these examples, and their combinations, we can develop Table 9.1 without ever

looking up another logarithm value.

Reciprocal ratios just have the negative value of dB. The last two entries in this table

are shown to be equal and, of course, they can’t be. The problem comes from using

log10(2) ≈ 3 instead of log10(2) = 3.1. Clearly, the last entry should be 31 (3.1 × 10)

dB, and clearly some of the other entries are also a little inaccurate.

The “dB” scale always expresses a signal’s power relative to the power of some other

signal. This comparative relationship is convenient for measuring the gain of an amplier

or the loss in a link. But, the dB-scale can also measure an absolute power by comparing it

against a standard value.

While several references are dened, the most common by far is the dBm equation,

which is referenced to 1 mW.

# dBm = 10 log10

(
P

10−3

)
(9.6)
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Example. Consider some sample calculations.

Power dBm

1 µW −30 dBm
10 µW −20 dBm
1 mW 0 dBm

3 mW 2 dBm

1 W 30 dBm

Example. Let a signal be transmitted at 20 mW. This transmit power is 20-times (two

orders-of-magnitude) greater than 1 mW, or 10 log
(
20mW
1mW

)
= +13 dBm. If this signal is

transmitted down an 11-Km line, whose loss is 3 dB per km, then the power of the received

signal is:

13 dBm− (3 dB/Km× 11 Km) = −20 dBm, (9.7)

which is 20 dB (two orders-of-magnitude) below 1 mW, or 10 µW.

Example. Consider a transmission system: the transmit power is 8 mW, the transmission

line attenuates the signal at 5 dB/km, two in-line ampliers provide gain of 20 each. If

the received signal power must be greater than .1 mW, how long may the line be? After

converting to dB, the system’s equation is 9 dBm − 5L dB + 2 × (13 dB) = −10 dBm.
So, L = (19+26)

5
= 9 km.

We have two equations that describe how attenuation reduces signal power along a channel.

• If the channel’s exponential attenuation factor is α, then PT Watts of transmitted

signal power attenuates to P(x) = PT e
−αx Watts at a point x meters away from the

transmitter.

• In the logarithmic dB-scale, channel attenuation is linear in x . So, if the channel’s

log-linear attenuation factor is ξ dB/kM, then PT dBm of transmitted signal power
attenuates to P(x) = PT − ξ x dBm at a point x meters away from the transmitter.

These two attenuation factors are related: 10 log10

[
P(x)
PT

]
= 10 log10

[
e−αx

]
= −10αx

log10[e] = −4.343αx . The exponential attenuation factor α, with dimension m−1, is used
when calculating in Watts and meters; and the log-linear attenuation factor ξ = 4343α
species the attenuation in dB/kM. So, a channel that is L meters long delivers PT e

−αL

Watts, or PT (in dBm) −4.343αL dBm, of signal power to its receiver.
While the dB scale is dened to translate power ratios, it can be used to translate

voltage ratios, and to translate absolute power values. It is common practice to plug the



422 The Physical Layer of Communications Systems

power equation, P = V 2

R
, into the dB equation to get:

# dB = 10 log10

(
P1

P2

)

= 10 log10

[
(V 21 /R)

(V 22 /R)

]

= 10 log10

(
V 21

V 22

)

= 10 log10

[(
V1

V2

)2]

= 20 log10

(
V1

V2

)
(9.8)

So, the dB equation for power ratios seems to extend to voltage ratios, by changing the

multiplier from 10 to 20. But, the derivation works only if the resistances associated with

each voltage are equal. The second step really should be 10 log10

[
(V 21 /R1)

(V 22 /R2)

]
, and the third

step follows only if R1 = R2, which happens only under a rare coincidence. Nevertheless,

this equation is actually used in practice. It shouldn’t be. Caveat emptor.

9.3 NOISE

When we communicate acoustically, like when trying to speak while some motor is

running, we call the undesired signal “noise.” But electromagnetic interference (EMI) can

add to the electronic analog of a voice signal within a communications system. The primary

impediment to correctly recovering a signal as it was transmitted is noise. If the noise

level is high, we will have unacceptable “crackle” or “static” in analog audio transmission,

“snow” in analog television signal transmission, or “bit error rate” in digital transmission.

Noise is itself a signal, and so it can be loosely dened as an undesirable signal that

impacts the quality of a desired signal. Immediately, we are faced with two questions—

what do we mean by the quality of a desired signal and how does noise impact it? The goal

of this section is to qualitatively consider physical phenomena that cause noise and use

some quantitative methods to (a) model noise manifestations and (b) dene signal quality

and understand how noise may impact it using these models.

Natural phenomena that cause noise signals that can be voltages, currents or electro-

magnetic radiation. We can never avoid these natural phenomena because some of them are

internal to the electronics within a receiver [1]. Other sources of noise are external such as

man-made interference, ionized atmospheric gases, and solar ares. It is common to model

noise as a random process because the natural events that cause noise are either themselves

random or too complex to model deterministically. Occasionally, man made transmissions

also interfere with one another in which case, it may be possible to consider such noise

signals as somewhat deterministic.

We consider some common forms of internal and external noise below.


