GUI Design

Michael B. Spring
Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu
http://www.sis.pitt.edu/~spring

Overview of Part 1 of the Course

Demystifying Java: Simple Code

Introduction to Java

An Example of OOP In practice

Object Oriented Programming Concepts

OOP Concepts -- Advanced

Hintsand for Java

1/O (Streams) in Java

Graphical User Interface Coding in Java Thisslide set
Exceptions and Exception handling

08/23/2000 I ntroduction to Java

Overview of Java GUI Programming

Introduction and Observations
Events Modédls

DEs versus hand-rolled code
nterfaces and Adapters
_ayout methods

nterface Objects

* Heavyweight Containers
e Containers

* Components

08/23/2000 I ntroduction to Java

Interface Programming

Historically, user interfaces were developed after the
difficult coding was compl eted

Over the years, the amount of the programming effort
dedicated to the interface has increased dramatically

Understanding how the interface coding works makes it
easier to debug problems or learn new approaches

While we encourage the use of Integrated Devel opment
Environments (IDES), this first course focuses on hand

tooled code.

08/23/2000 I ntroduction to Java

Integrated Development

Environments
Integrated Development Environments (IDES) are
used to build complex AND standard interfaces

many of the IDE efforts to smplify Javainterface
coding have resulting in non standard Java

"Hand tooling" gives you a better sense of what's
going on underneath

this is important for helping you better understand
building quality code

08/23/2000 I ntroduction to Java

GUls are event driven systems

The interface consists of a hierarchy of objects -- sometimes
referred to as window objects or widgets.

These objects fall into two broad categories:

e components are the basic objects in the interface -- buttons, lists,
menus, etc

containers are the basic objects that are used to hold objects --
panels, dialogs, etc. (Technically, containers are a subclass of
components, but ignore that for now)

Widgets generate events as the result of user action.

These events are passed to “event handlers’ -- methods that
wait “listening” for an event to occur.

In Java these methods are implemented as interface methods
from java.awt.event classes.

08/23/2000 I ntroduction to Java

Evolution of Java HCI Components

Java has developed rapidly over the last few years

The original set of Java widgets was weak
* The Java 1.0 Abstract Windowing Toolkit (AWT) had few
components and aweak event model

TheJava1l.l AWT improved event handling

In Java 1.2, new window objects were added

* These widgets, are called “Swing” and are just one part of a
broader set known as as the Java Foundation Class (JFC)

* The Swing widgets more than double the number of interface
objects and very substantially increase functionality.

* The JFC contains a number of features including drag and drop,
keyboard accelerators, ook and feel, tool tips, etc.

08/23/2000 I ntroduction to Java

Swing

* The Swing component and container classes
provide arich basis for interface construction

 TheJaval.2, the 2D Graphics APl provides
additional drawing capabilities

* inJava 1.1 the graphics drawing capabilities were
primitive -- al line were only one pixel wide!

e Keep in mind that while Swing is built upon the
AWT, the use of the AWT Is denigrated

* AWT continues to be imported, primarily because of
ItS event classes

08/23/2000 I ntroduction to Java

Developing an Interface

e Therearefour basic steps
e Create the interface objects
* Create methods to handle events generated by the objects
* Register the event generators and event handlers
* Run the program
e Thismeanswe need to know
* how do we create the interface
what classes we have available for constructing objects
how do we position the objects
* how do we define methods to handle events

* how do we link the objects generating the events with the
listener methods

08/23/2000 I ntroduction to Java

Swing Interface Objects

The Swing package contains alarge number of parts

We examine only afew of them in three categories

* heavyweight containers
* lightweight containers
* components

The various classes are in the javax.Swing package

The classes are named JX XXX:

* each classis prefaced by the letter capital J

* The ce)lbj ect name follows the J and starts with a capital |etter e.g.
JPan

Most Swing classes are lightweight

* Lightweight components are not mapped to their own window --
they share the window of a parent.

08/23/2000 I ntroduction to Java

Heavywelght Containers

Heavyweight containers are used for base windows
Heavyweight containers are JWindow, JFrame, and JDialog

JFrame
* thisisthe base class for developing stand alone applications
* [tisenhanced in several ways over the AWT frame
for example, it knows how to close itself
still need to override the close method to exit
It has adefault container for components (a JPanel)
JDiaog
e an important aspect of adialog isits ability to be modal
* unlike aframe, it does not have a menubar

08/23/2000 I ntroduction to Java

Lightweight Containers

There are many different kinds of panels all of which have
Interesting and useful function

System designers should have some sense of what can and
can’t be done with each
JPandl Isthe most basic container

* thisisthe container used most frequently to group objectsin
frames or dialogs

* Isthe basic panel and can contain both text and graphics
In this section we:

* briefly examine the JRootPane

* takealittle longer look at the JSplitPane

 define the functionality of a JT abbedPane

08/23/2000 I ntroduction to Java

JROOtPane

* A basic panel used for the content of frames, windows, and
dialogs

e |tisgeneraly not created, but smply used

e |tisconstructed of

* contentPane (JPanel) which contains the components
 glassPane (JPanel) which traps the mouse events

* |ayerdPane (JLayeredPane) which holds contentPane and
menubar

* |t has several important methods
e getContentPang()
e getGlassPang()
* setContentPane()

08/23/2000 I ntroduction to Java

JSplitPane

 the basic focus of thisobject isto allow adiding
window on two components

* |n an editor, this might be two separate text windows
on the same document

* It could also be agraphical and textual view of the
same object

* |t provides utilities for updating the components in
the split pane

08/23/2000 I ntroduction to Java

JSplitPane Constructors

 the constructors (selected) include:

* JSplitPaneg() Returns a new JSplitPane configured to arrange the
child components side-by-side horizontally with no continuous
layout. (Two buttons are used for the default components.)

* JSplitPang(int newOrientation, boolean newContinuousL ayourt)
Returns a new JSplitPane with the specified orientation and
redrawing style.

e JSplitPane(int newOrientation, boolean newContinuousL ayout,
Component newL eftComponent, Component
newRightComponent) Returns anew JSplitPane with the
specified orientation and redrawing style, and with the specified
components.

08/23/2000 I ntroduction to Java

Selected JSplitPane Fields

e aJSplitPane has several properties, including:
bottomComponent the component to the bottom or right
rightComponent the component to the bottom or right
topComponent the component to the top or left
leftComponent the component to the top or left
dividerLocation
either areal which gives a proportion of the window, or
an integer which givesthe pixel location

orientation an int specifying the orientation
the default is horizontal

08/23/2000 I ntroduction to Java

Selected JSplitPane Methods

. JSpI ItPane informational methods include:

* Component getBottomComponent() Returns the component
below, or to the right of the divider.

Int getDividerL ocation()Returns the location of the divider from
the look and feel implementation.

Int getDividerSize()Returns the size of the divider.

Int getMaximumDividerLocation() Returns the maximum
location of the divider from the look and feel implementation.

Int getOrientation() Returns the orientation.

boolean isContinuousLayout() Returnstrue if the child
components are continuously redisplayed and layed out during
user intervention.

boolean isOneT ouchExpandable() Returns true if the pane
provides a Ul widget to collapse/expand the divider.

08/23/2000 I ntroduction to Java

Selected JSplitPane Methods

e JSplitPane action methods include:
 void remove(Component component) Removes the child
component, component from the pane.

void resetToPreferredSizes() Messaged to relayout the
JSplitPane based on the preferred size of the children
components.

void setBottomComponent(Component comp) Setsthe
component below, or to the right of the divider.

void setDividerL ocation(double proportional Location) Sets the
divider location as a percentage of the JSplitPane's size.

void setOrientation(int orientation) Sets the orientation, or how
the splitter isdivided.

08/23/2000 I ntroduction to Java

JTabbedPane

* provides an environment for organizing large
amounts of information
» alows aprogressive disclosure of information

e utility functions allow placement and tab titling among
other things

* tabs can set top, bottom, right or left of the window
* whole tabs can be enabled or disabled

08/23/2000 I ntroduction to Java

Exercise

* Look up the Fields, Contructors, and Methods for a
JT abbedPane and summarize them, suggesting
several possible uses for this container.

e Consider other containers as well including:

 JScrollPane

* JEditorPane

e JlextPane

* J_ayeredPane

08/23/2000 I ntroduction to Java

Components

Components are the action producers and display objects
that make up the user interface

They can be very ssimple -- a JLabel or JButton

They can be very complex -- a JComboBox, JTextArea, or
JMenu

The Swing components have many new features and
utilities that make them powerful and flexible

This section begins with alook at JComponent

We then look at four components in some detail -- JLabd,
JButton, JTextFeld, and JTextArea

Finally, we give afunctional overview of IMenu

08/23/2000 I ntroduction to Java

JComponents

e The class from which al components are derived

|t provides incredible common functionality
* A "pluggable look and feel" (plaf)
Easy extension to create custom components.
Keystroke-handling that works with nested components.
Border property.

The ability to set the preferred, minimum, and maximum size for
a component.

Tool Tips -- short descriptions that pop up on cursor linger.

Autoscrolling -- automatic scrolling in alist, table, or tree during
mouse drag.

Support for Accessibility and international Localization.

08/23/2000 I ntroduction to Java

JLabel

* Provides graphic, text,and combination labels
e |t aso now alows the use of html text
* to use html text, begin with "<html>...
nb the use of lower case

e the most general constructors are:
JLabel(String text) Creates a JLabel with the specified text.
JLabel(Icon image) Creates a JLabel with the specified icon.

JLabel(String text, Icon icon, int horizontal Alignment) Creates a
JL abel instance with the specified text, image, and horizontal
alignment

* methods are generally not used,

08/23/2000 I ntroduction to Java

Component with a Border

A new feature all components inherit from Jcomponent is
the ability to have various borders

The method Is setBorder(border);

A border argument is most easily created using the
javax.Swing class BorderFactory

Hereis an html label with atext |abeled border.

JPanel LP = new JPanel (new GidLayout(3,1));

String LT2="<ht mMl >Red text, |ine
" +

"br eak</ FONT> and white text</htmnl >";
JLabel 13 = new JLabel (LT2, JLabel . CENTER);

| 3. set Bor der (Bor der Fact ory. creat eTi t| edBorder ("HTM. Label "));
LP. add(| 3);

08/23/2000 I ntroduction to Java

JButtons

Provides both text and graphic buttons

Most methods come from the AbtractButton class
* AbstractButton also supports IMenultem and JT oggleButton

the constructors are
e Button() Creates a button with no set text or icon.
e JButton(lcon icon) Creates a button with an icon.
* JButton(String text) Creates a button with text.

* JButton(String text, Icon icon) Creates a button with initial text
and an icon.

An ActionListener is the appropriate event handler for a
JButton

08/23/2000 I ntroduction to Java

JTextField

Provides the basic capability to exchange textual
Information across the interface

Inherits most of its methods from JTextComponent , as does
JIextArea

Constructors include:
* TextField()Constructs a new text field.

* TextField(int columns) Constructs a new empty text field with
the specified number of columns.

* TextField(String text) Constructs a new text field initialized with
the specified text.

* TextFied(String text, int columns) Constructs a new text field
Initialized with the specified text to be displayed, and wide
enough to hold the specified number of columns.

08/23/2000 I ntroduction to Java

Selected JTextField Methods

e Some of the more interesting methods include

void setText(String t) Sets the text that is presented by this text
component to be the specified text.

void setHorizontal Alignment (int Alignment) Sets the alignment
of the text in the text component

String getSelectedText() Gets the selected text from the text that

IS presented by this text component.

String getText() Gets the text that is presented by this text
component.

void select(int selectionStart, int selectionEnd) Selects the text
between the specified start and end positions.

void setCaretPosition(int position) Sets the position of the text
Insertion caret for this text component.

void setEditable(boolean b) Sets the flag that determines
whether or not this text component is editable.

08/23/2000 I ntroduction to Java

JTextArea

* Provides atwo dimensional text area
 |nherits most methods from the JT extComponent

e The constructors include:
TextArea() Constructs a new text area.

TextArea(int rows, int columns) Constructs a new empty text
area with the specified number of rows and columns.

TextArea(String text, int rows, int columns) Constructs a new
text area with the specified text, and with the specified number
of rows and columns.

TextArea(String text, int rows, int columns, int scrollbars)
Constructs a new text area with the specified text, and with the
rows, columns, and scroll bar visibility as specified.

08/23/2000 I ntroduction to Java

Selected JTextArea Methods

 Methods include those available to JTextField

* Added methods ralated to the multiline nature include
void append(String str) Appends the given text to the text area's
current text.

Dimension getPreferredSize() Determines the preferred size of this
text area.

Int getScrollbarVisibility() Gets an enumerated value that indicates
which scroll bars the text area uses.

void insert(String str, int pos) Inserts the specified text at the
specified position in this text area.

void replaceRange(String str, int start, int end) Replaces text between
%hetl ndicated start and end positions with the specified replacement
ext.

void setColumns(int columns) Setsthe # of columns for this text
area.

void setRows(int rows) Setsthe # of rows for the text area.

08/23/2000 I ntroduction to Java

JMenu

Menus can be placed in any container, including applets

like buttons and |abels, icons can be associated with any
menu

amenu is part of a menubar
amenu is made up of menu items

thus to create a IMenu, you must first create a IMenuBar
* You will then add IMenultem's to the IMenu's
e for IMenultem, it will be necessary to add an action listener

08/23/2000 I ntroduction to Java

Layout Methods

how objects are laid out is controlled by layout methods.

every container has an approach to how the components in
the container should be laid out

the object that will be used most to control layout isthe
panel

a panel using one layout for its components can be placed in
another panel that uses a different |layout

by nesting objects in panels, within panels, it becomes
possible to move and arrange sets of objects

the basic layout methods are flow layout and border |ayout

08/23/2000 I ntroduction to Java

FlowLayout

The most basic -- smply fills the container with the
added objects

adds object |eft to right and top to bottom
objects are center aligned in each row

when arow isfilled, anew row is begun
the alignment can be changed to left or right

08/23/2000 I ntroduction to Java

BorderLayout

allows objects to be placed CENTER, EAST,
WEST, NORTH and SOUTH

IS restricted to five components
you can specify apixel gap between components

If aposition for a component is not specified, it is
not displayed

If more than one component is specified to a
position, only the last Is seen

08/23/2000 I ntroduction to Java

GridLayout

e alowsanumber of rows and columnsto be
specified

e optionally, the vertical and horizontal gap between
components can also be specified

* the objects are laid out in sequence as added

08/23/2000 I ntroduction to Java

CardLayout

this layout manager is best conceptualized as a deck
of cards

only the top most card is visible.
each card Is normally a pane with components on it

this would generally be replaced now by a tabbed
pane

08/23/2000 I ntroduction to Java

GridBagLayout

thisisthe most flexible and complicated of all the layout
managers -- it builds on the grid layout

objects can vary in size
objects can be added in any order
obj ects can occupy multiple rows or columns
using a GridBagL ayout requires the specification of
GridBagConstraints
* thex and y weight parameters of the constraints specify growth

* when the container grows, how much of the growth accruesto
the component

* 1f it is 0, the component does not participate in growth

08/23/2000 I ntroduction to Java

New Layout Methods In Swing

These methods and more on layout will be covered
IN course 2.

ScrollPanelayout -- built into the JScrollPane
ViewportLayout -- built into the JViewPort
BoxLayout

OverlaylL ayout

08/23/2000 I ntroduction to Java

Events

e there aretwo event modelsin Java, onefor 1.0,
another for 1.1

* the 1.0 modedl is sometimes still needed to write
applets for 1.0 compliant browsers

e the 1.1 modd is more mature and more inline with
what we might expect

* the 1.1 events are contained in the java.awt package,
specifically java.awt.event.*

e there are some additional event classesin
java.Swing.

08/23/2000 I ntroduction to Java

1.0 Event handler model

Events are represented by the class Event

Events are sent first to the handleEvent method of the
originating component. Events not handled by a component are

passed to its parent

The event object has fields that help the method such as

° 1id specifies event type (defined in the class)

* target gpecifiesthe object that generated the event

° XY specify location data
There are several event processing methods that may be defined
for a component

e action() lostFocus() gotFocus()

* keyUp() keyDown() mouseUp()

* mouseDown() mouseMove() mouseDrag()

* Jhetop of the hierarchy handles al events.

roduction to Java

The Java 1.1 event model

e The classes of events are made more specialized.

ActionEvent AdjustmentEvent
ComponentEvent ContainerEvent
FocusEvent l[temEvent

KeyEvent MouseEvent
TextEvent WindowEvent

e A more conventional model of event handling is used
objects that wish to handle events register as event listeners
components/objects maintain lists of listeners

In order to get an event, atarget object must implement the
appropriate interface

ActionListener interface is an example
MouseMotionL istener is another example

08/23/2000 I ntroduction to Java

Event Handlers Classes (Interfaces)

 Anevent handler isintroduced to aclass by implementing
an interface --

class BFrame extends JFrame implements WindowL istener

e Themore common basic event listener interfaces include the
following:

ActionListener AdjustmentL istener
ComponentListener ContainerListener

FocusL istener ltemListener
KeyListener MouseL istener

MouseM otionL istener TextListener
WindowL istener

e In Swing, there are more than 40 interfaces for specific
types of events and components

08/23/2000 I ntroduction to Java

The Methods of an Interface

* You have used two to event handler interfaces

* WindowLIistener
e ActionListener

* \WindowLIistener has seven methods:

* public void windowClosing(WindowEvent e) {}
public void windowClosed(WindowEvent €) {}
public void windowl conified(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}
public void windowDeiconified(WindowEvent €) {}
public void windowA ctivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

e ActionListener has only one method:
* public void actionPerformed(ActionEvent e){}

08/23/2000 I ntroduction to Java

Adapters

e For interfaces with multiple methods, it may be the case that
only one of the methods is really needed

* Adapters provide away to define a single method

 adapters provide null override methods
e only the needed method is overridden by the user

e Assume asubclass of JFrame has been instantiated

* use the addWindowListener method

* the argument to the addWindowL istener method is a
WindowAdapter defining the necessary method

add\{/\i’ ndowLi st ener (new W ndowAdapt er ()
public void w ndowd osi ng(W ndowEvent evt)

ystem exit (0);

1)

08/23/2000 I ntroduction to Java

Exercise

* Use the base source code provided

e Expand the code by adding text areas, menus, and
other components

08/23/2000 I ntroduction to Java

