
GUI Design

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

08/23/2000 Introduction to Java 2

Overview of Part 1 of the Course

• Demystifying Java: Simple Code
• Introduction to Java
• An Example of OOP in practice
• Object Oriented Programming Concepts
• OOP Concepts -- Advanced
• Hints and for Java
• I/O (Streams) in Java
• Graphical User Interface Coding in Java
• Exceptions and Exception handling

This slide set

08/23/2000 Introduction to Java 3

Overview of Java GUI Programming

• Introduction and Observations
• Events Models
• IDEs versus hand-rolled code
• Interfaces and Adapters
• Layout methods
• Interface Objects

• Heavyweight Containers
• Containers
• Components

08/23/2000 Introduction to Java 4

Interface Programming

• Historically, user interfaces were developed after the
difficult coding was completed

• Over the years, the amount of the programming effort
dedicated to the interface has increased dramatically

• Understanding how the interface coding works makes it
easier to debug problems or learn new approaches

• While we encourage the use of Integrated Development
Environments (IDEs), this first course focuses on hand
tooled code.

08/23/2000 Introduction to Java 5

Integrated Development
Environments

• Integrated Development Environments (IDEs) are
used to build complex AND standard interfaces

• many of the IDE efforts to simplify Java interface
coding have resulting in non standard Java

• "Hand tooling" gives you a better sense of what's
going on underneath

• this is important for helping you better understand
building quality code

08/23/2000 Introduction to Java 6

GUIs are event driven systems

• The interface consists of a hierarchy of objects -- sometimes
referred to as window objects or widgets.

• These objects fall into two broad categories:
• components are the basic objects in the interface -- buttons, lists,

menus, etc
• containers are the basic objects that are used to hold objects --

panels, dialogs, etc. (Technically, containers are a subclass of
components, but ignore that for now)

• Widgets generate events as the result of user action.
• These events are passed to “event handlers” -- methods that

wait “listening” for an event to occur.
• In Java these methods are implemented as interface methods

from java.awt.event classes.

08/23/2000 Introduction to Java 7

Evolution of Java HCI Components

• Java has developed rapidly over the last few years
• The original set of Java widgets was weak

• The Java 1.0 Abstract Windowing Toolkit (AWT) had few
components and a weak event model

• The Java 1.1 AWT improved event handling
• In Java 1.2, new window objects were added

• These widgets, are called “Swing” and are just one part of a
broader set known as as the Java Foundation Class (JFC)

• The Swing widgets more than double the number of interface
objects and very substantially increase functionality.

• The JFC contains a number of features including drag and drop,
keyboard accelerators, look and feel, tool tips, etc.

08/23/2000 Introduction to Java 8

Swing

• The Swing component and container classes
provide a rich basis for interface construction

• The Java 1.2, the 2D Graphics API provides
additional drawing capabilities
• in Java 1.1 the graphics drawing capabilities were

primitive -- all line were only one pixel wide!
• Keep in mind that while Swing is built upon the

AWT, the use of the AWT is denigrated
• AWT continues to be imported, primarily because of

its event classes

08/23/2000 Introduction to Java 9

Developing an Interface

• There are four basic steps
• Create the interface objects
• Create methods to handle events generated by the objects
• Register the event generators and event handlers
• Run the program

• This means we need to know
• how do we create the interface

• what classes we have available for constructing objects
• how do we position the objects

• how do we define methods to handle events
• how do we link the objects generating the events with the

listener methods

08/23/2000 Introduction to Java 10

Swing Interface Objects

• The Swing package contains a large number of parts
• We examine only a few of them in three categories

• heavyweight containers
• lightweight containers
• components

• The various classes are in the javax.Swing package
• The classes are named JXxxx:

• each class is prefaced by the letter capital J
• The object name follows the J and starts with a capital letter e.g.

JPanel
• Most Swing classes are lightweight

• Lightweight components are not mapped to their own window --
they share the window of a parent.

08/23/2000 Introduction to Java 11

Heavyweight Containers

• Heavyweight containers are used for base windows
• Heavyweight containers are JWindow, JFrame, and JDialog
• JFrame

• this is the base class for developing stand alone applications
• it is enhanced in several ways over the AWT frame

• for example, it knows how to close itself
• still need to override the close method to exit
• it has a default container for components (a JPanel)

• JDialog
• an important aspect of a dialog is its ability to be modal
• unlike a frame, it does not have a menubar

08/23/2000 Introduction to Java 12

Lightweight Containers

• There are many different kinds of panels all of which have
interesting and useful function

• System designers should have some sense of what can and
can’t be done with each

• JPanel is the most basic container
• this is the container used most frequently to group objects in

frames or dialogs
• is the basic panel and can contain both text and graphics

• In this section we:
• briefly examine the JRootPane
• take a little longer look at the JSplitPane
• define the functionality of a JTabbedPane

08/23/2000 Introduction to Java 13

JRootPane

• A basic panel used for the content of frames, windows, and
dialogs

• It is generally not created, but simply used
• It is constructed of

• contentPane (JPanel) which contains the components
• glassPane (JPanel) which traps the mouse events
• layerdPane (JLayeredPane) which holds contentPane and

menubar
• It has several important methods

• getContentPane()
• getGlassPane()
• setContentPane()

08/23/2000 Introduction to Java 14

JSplitPane

• the basic focus of this object is to allow a sliding
window on two components
• in an editor, this might be two separate text windows

on the same document
• it could also be a graphical and textual view of the

same object

• it provides utilities for updating the components in
the split pane

08/23/2000 Introduction to Java 15

JSplitPane Constructors

• the constructors (selected) include:
• JSplitPane() Returns a new JSplitPane configured to arrange the

child components side-by-side horizontally with no continuous
layout. (Two buttons are used for the default components.)

• JSplitPane(int newOrientation, boolean newContinuousLayout)
Returns a new JSplitPane with the specified orientation and
redrawing style.

• JSplitPane(int newOrientation, boolean newContinuousLayout,
Component newLeftComponent, Component
newRightComponent) Returns a new JSplitPane with the
specified orientation and redrawing style, and with the specified
components.

08/23/2000 Introduction to Java 16

Selected JSplitPane Fields

• a JSplitPane has several properties, including:
• bottomComponent the component to the bottom or right
• rightComponent the component to the bottom or right
• topComponent the component to the top or left
• leftComponent the component to the top or left
• dividerLocation

• either a real which gives a proportion of the window, or
• an integer which gives the pixel location

• orientation an int specifying the orientation
• the default is horizontal

08/23/2000 Introduction to Java 17

Selected JSplitPane Methods

• JSplitPane informational methods include:
• Component getBottomComponent() Returns the component

below, or to the right of the divider.
• int getDividerLocation()Returns the location of the divider from

the look and feel implementation.
• int getDividerSize()Returns the size of the divider.
• int getMaximumDividerLocation() Returns the maximum

location of the divider from the look and feel implementation.
• int getOrientation() Returns the orientation.
• boolean isContinuousLayout() Returns true if the child

components are continuously redisplayed and layed out during
user intervention.

• boolean isOneTouchExpandable() Returns true if the pane
provides a UI widget to collapse/expand the divider.

08/23/2000 Introduction to Java 18

Selected JSplitPane Methods

• JSplitPane action methods include:
• void remove(Component component) Removes the child

component, component from the pane.
• void resetToPreferredSizes() Messaged to relayout the

JSplitPane based on the preferred size of the children
components.

• void setBottomComponent(Component comp) Sets the
component below, or to the right of the divider.

• void setDividerLocation(double proportionalLocation) Sets the
divider location as a percentage of the JSplitPane's size.

• void setOrientation(int orientation) Sets the orientation, or how
the splitter is divided.

08/23/2000 Introduction to Java 19

JTabbedPane

• provides an environment for organizing large
amounts of information
• allows a progressive disclosure of information
• utility functions allow placement and tab titling among

other things
• tabs can set top, bottom, right or left of the window
• whole tabs can be enabled or disabled

08/23/2000 Introduction to Java 20

Exercise

• Look up the Fields, Contructors, and Methods for a
JTabbedPane and summarize them, suggesting
several possible uses for this container.

• Consider other containers as well including:
• JScrollPane
• JEditorPane
• JTextPane
• JLayeredPane

08/23/2000 Introduction to Java 21

Components

• Components are the action producers and display objects
that make up the user interface

• They can be very simple -- a JLabel or JButton
• They can be very complex -- a JComboBox, JTextArea, or

JMenu
• The Swing components have many new features and

utilities that make them powerful and flexible
• This section begins with a look at JComponent
• We then look at four components in some detail -- JLabel,

JButton, JTextField, and JTextArea
• Finally, we give a functional overview of JMenu

08/23/2000 Introduction to Java 22

JComponents

• The class from which all components are derived
• It provides incredible common functionality

• A "pluggable look and feel" (plaf)
• Easy extension to create custom components.
• Keystroke-handling that works with nested components.
• Border property.
• The ability to set the preferred, minimum, and maximum size for

a component.
• ToolTips -- short descriptions that pop up on cursor linger.
• Autoscrolling -- automatic scrolling in a list, table, or tree during

mouse drag.
• Support for Accessibility and international Localization.

08/23/2000 Introduction to Java 23

JLabel

• Provides graphic, text,and combination labels
• it also now allows the use of html text
• to use html text, begin with "<html>…

• nb the use of lower case
• the most general constructors are:

• JLabel(String text) Creates a JLabel with the specified text.
• JLabel(Icon image) Creates a JLabel with the specified icon.
• JLabel(String text, Icon icon, int horizontalAlignment) Creates a

JLabel instance with the specified text, image, and horizontal
alignment

• methods are generally not used,

08/23/2000 Introduction to Java 24

Component with a Border

• A new feature all components inherit from Jcomponent is
the ability to have various borders

• The method is setBorder(border);
• A border argument is most easily created using the

javax.Swing class BorderFactory
• Here is an html label with a text labeled border.

JPanel LP = new JPanel (new GridLayout(3,1));
String LT2="<html>Red text, line
" +
"break and white text</html>";
JLabel l3 = new JLabel(LT2, JLabel.CENTER);
l3.setBorder(BorderFactory.createTitledBorder("HTML Label"));
LP.add(l3);

08/23/2000 Introduction to Java 25

JButtons

• Provides both text and graphic buttons
• Most methods come from the AbtractButton class

• AbstractButton also supports JMenuItem and JToggleButton
• the constructors are

• Button() Creates a button with no set text or icon.
• JButton(Icon icon) Creates a button with an icon.
• JButton(String text) Creates a button with text.
• JButton(String text, Icon icon) Creates a button with initial text

and an icon.
• An ActionListener is the appropriate event handler for a

JButton

08/23/2000 Introduction to Java 26

JTextField

• Provides the basic capability to exchange textual
information across the interface

• inherits most of its methods from JTextComponent , as does
JTextArea

• Constructors include:
• TextField()Constructs a new text field.
• TextField(int columns) Constructs a new empty text field with

the specified number of columns.
• TextField(String text) Constructs a new text field initialized with

the specified text.
• TextField(String text, int columns) Constructs a new text field

initialized with the specified text to be displayed, and wide
enough to hold the specified number of columns.

08/23/2000 Introduction to Java 27

Selected JTextField Methods
• Some of the more interesting methods include

• void setText(String t) Sets the text that is presented by this text
component to be the specified text.

• void setHorizontalAlignment (int Alignment) Sets the alignment
of the text in the text component

• String getSelectedText() Gets the selected text from the text that
is presented by this text component.

• String getText() Gets the text that is presented by this text
component.

• void select(int selectionStart, int selectionEnd) Selects the text
between the specified start and end positions.

• void setCaretPosition(int position) Sets the position of the text
insertion caret for this text component.

• void setEditable(boolean b) Sets the flag that determines
whether or not this text component is editable.

08/23/2000 Introduction to Java 28

JTextArea

• Provides a two dimensional text area
• Inherits most methods from the JTextComponent
• The constructors include:

• TextArea() Constructs a new text area.
• TextArea(int rows, int columns) Constructs a new empty text

area with the specified number of rows and columns.
• TextArea(String text, int rows, int columns) Constructs a new

text area with the specified text, and with the specified number
of rows and columns.

• TextArea(String text, int rows, int columns, int scrollbars)
Constructs a new text area with the specified text, and with the
rows, columns, and scroll bar visibility as specified.

08/23/2000 Introduction to Java 29

Selected JTextArea Methods

• Methods include those available to JTextField
• Added methods related to the multiline nature include

• void append(String str) Appends the given text to the text area's
current text.

• Dimension getPreferredSize() Determines the preferred size of this
text area.

• int getScrollbarVisibility() Gets an enumerated value that indicates
which scroll bars the text area uses.

• void insert(String str, int pos) Inserts the specified text at the
specified position in this text area.

• void replaceRange(String str, int start, int end) Replaces text between
the indicated start and end positions with the specified replacement
text.

• void setColumns(int columns) Sets the # of columns for this text
area.

• void setRows(int rows) Sets the # of rows for the text area.

08/23/2000 Introduction to Java 30

JMenu

• Menus can be placed in any container, including applets
• like buttons and labels, icons can be associated with any

menu
• a menu is part of a menubar
• a menu is made up of menu items
• thus to create a JMenu, you must first create a JMenuBar

• You will then add JMenuItem's to the JMenu's
• for JMenuItem, it will be necessary to add an action listener

08/23/2000 Introduction to Java 31

Layout Methods

• how objects are laid out is controlled by layout methods.
• every container has an approach to how the components in

the container should be laid out
• the object that will be used most to control layout is the

panel
• a panel using one layout for its components can be placed in

another panel that uses a different layout
• by nesting objects in panels, within panels, it becomes

possible to move and arrange sets of objects
• the basic layout methods are flow layout and border layout

08/23/2000 Introduction to Java 32

FlowLayout

• The most basic -- simply fills the container with the
added objects

• adds object left to right and top to bottom
• objects are center aligned in each row
• when a row is filled, a new row is begun
• the alignment can be changed to left or right

08/23/2000 Introduction to Java 33

BorderLayout

• allows objects to be placed CENTER, EAST,
WEST, NORTH and SOUTH

• is restricted to five components
• you can specify a pixel gap between components
• if a position for a component is not specified, it is

not displayed
• if more than one component is specified to a

position, only the last is seen

08/23/2000 Introduction to Java 34

GridLayout

• allows a number of rows and columns to be
specified

• optionally, the vertical and horizontal gap between
components can also be specified

• the objects are laid out in sequence as added

08/23/2000 Introduction to Java 35

CardLayout

• this layout manager is best conceptualized as a deck
of cards

• only the top most card is visible.
• each card is normally a pane with components on it
• this would generally be replaced now by a tabbed

pane

08/23/2000 Introduction to Java 36

GridBagLayout

• this is the most flexible and complicated of all the layout
managers -- it builds on the grid layout

• objects can vary in size
• objects can be added in any order
• objects can occupy multiple rows or columns
• using a GridBagLayout requires the specification of

GridBagConstraints
• the x and y weight parameters of the constraints specify growth
• when the container grows, how much of the growth accrues to

the component
• if it is 0, the component does not participate in growth

08/23/2000 Introduction to Java 37

New Layout Methods in Swing

• These methods and more on layout will be covered
in course 2.

• ScrollPaneLayout -- built into the JScrollPane
• ViewportLayout -- built into the JViewPort
• BoxLayout
• OverlayLayout

08/23/2000 Introduction to Java 38

Events

• there are two event models in Java, one for 1.0,
another for 1.1
• the 1.0 model is sometimes still needed to write

applets for 1.0 compliant browsers
• the 1.1 model is more mature and more inline with

what we might expect
• the 1.1 events are contained in the java.awt package,

specifically java.awt.event.*
• there are some additional event classes in

java.Swing.

08/23/2000 Introduction to Java 39

1.0 Event handler model
• Events are represented by the class Event
• Events are sent first to the handleEvent method of the

originating component. Events not handled by a component are
passed to its parent

• The event object has fields that help the method such as
• id specifies event type (defined in the class)
• target specifies the object that generated the event
• x,y specify location data

• There are several event processing methods that may be defined
for a component
• action() lostFocus() gotFocus()
• keyUp()keyDown() mouseUp()
• mouseDown() mouseMove() mouseDrag()

• The top of the hierarchy handles all events.

08/23/2000 Introduction to Java 40

The Java 1.1 event model

• The classes of events are made more specialized.
• ActionEvent AdjustmentEvent
• ComponentEvent ContainerEvent
• FocusEvent ItemEvent
• KeyEvent MouseEvent
• TextEvent WindowEvent

• A more conventional model of event handling is used
• objects that wish to handle events register as event listeners
• components/objects maintain lists of listeners
• in order to get an event, a target object must implement the

appropriate interface
• ActionListener interface is an example
• MouseMotionListener is another example

08/23/2000 Introduction to Java 41

Event Handlers Classes (Interfaces)

• An event handler is introduced to a class by implementing
an interface --

class BFrame extends JFrame implements WindowListener

• The more common basic event listener interfaces include the
following:
ActionListener AdjustmentListener
ComponentListener ContainerListener
FocusListener ItemListener
KeyListener MouseListener
MouseMotionListener TextListener
WindowListener

• In Swing, there are more than 40 interfaces for specific
types of events and components

08/23/2000 Introduction to Java 42

The Methods of an Interface

• You have used two to event handler interfaces
• WindowListener
• ActionListener

• WindowListener has seven methods:
• public void windowClosing(WindowEvent e) {}
• public void windowClosed(WindowEvent e) {}
• public void windowIconified(WindowEvent e) {}
• public void windowOpened(WindowEvent e) {}
• public void windowDeiconified(WindowEvent e) {}
• public void windowActivated(WindowEvent e) {}
• public void windowDeactivated(WindowEvent e) {}

• ActionListener has only one method:
• public void actionPerformed(ActionEvent e){}

08/23/2000 Introduction to Java 43

Adapters

• For interfaces with multiple methods, it may be the case that
only one of the methods is really needed

• Adapters provide a way to define a single method
• adapters provide null override methods
• only the needed method is overridden by the user

• Assume a subclass of JFrame has been instantiated
• use the addWindowListener method
• the argument to the addWindowListener method is a

WindowAdapter defining the necessary method

addWindowListener(new WindowAdapter()
{
public void windowClosing(WindowEvent evt)

{
System.exit(0);
}

});

08/23/2000 Introduction to Java 44

Exercise

• Use the base source code provided
• Expand the code by adding text areas, menus, and

other components

