
09/28/2001 1

Advanced OOP Concepts in Java

Michael B. Spring
Department of Information Science and Telecommunications

University of Pittsburgh
spring@imap.pitt.edu

http://www.sis.pitt.edu/~spring

08/23/2000 Introduction to Java

Overview of Part 1 of the Course

• Demystifying Java: Simple Code
• Introduction to Java
• An Example of OOP in practice
• Object Oriented Programming Concepts
• OOP Concepts -- Advanced
• Hints and for Java
• I/O (Streams) in Java
• Graphical User Interface Coding in Java
• Exceptions and Exception handling

This slide set

08/23/2000 Introduction to Java

Overview of this Slide Set

• Nested Classes
• Inner Classes
• Member Classes
• Local Classes
• Anonymous Classes

08/23/2000 Introduction to Java 4

Nested classes and Inner classesNested classes and Inner classes

• Introduction: a taxonomy
• Nested top-level classes (and interfaces)
• -.class files and JVM
• Inner classes
• Member class
• Local class
• Containment hierarchy
• Anonymous class
• Visibility / Access

08/23/2000 Introduction to Java 5

Introduction: nested classesIntroduction: nested classes

• Java 1.0 allowed class declaration only at the package level.
Class names are therefore organized into packages, each
having its own name space. These are called top-level
classes.

• Java 1.1 allows class (and interface) declaration within the
class scope, nested inside the definition of another class.
These are called nested classes, and nested
interfaces.

• Nested interfaces are always static. Nested classes may or
may not be static. Static nested classes and interfaces are
functionally top-level classes, but non-static nested
classes are inner classes.

08/23/2000 Introduction to Java 6

Introduction: a taxonomyIntroduction: a taxonomy

• top-level classes and interfaces:
1) package level class or interface
2) static class or interface nested in class scope.

• inner classes:
• member class – declared as a member of the

containing class;
• local class – declared as a local variable within a

method body of the containing class;
• anonymous class – local class with no declaration

(and therefore no name), but an instance can be
created.

08/23/2000 Introduction to Java 7

Nested top-level class & interfaceNested top-level class & interface

• Nested top-level class must be declared static.
• Nested top-level interface is always static.
• Being static, it is functionally same as top-level.
• It is conveniently nested so that it does not

clutter the package level name space, often used in
a helper class such as an iterator designed for some
data structure.

08/23/2000 Introduction to Java 8

Nested top-level class & interfaceNested top-level class & interface
interface Link {

public Link getNext();
public void setNext(Link node);

}
class Node implements Link {

int i;
private Link next;
public Node(int i) { this.i = i; }
public Link getNext() { return next; }
public void setNext(Link node) { next = node; }

}
public class LinkedList {

private Link head;
public void insert(Link node) { … };
public void remove(Link node) { … };

}
u Link is an interface for nodes of a linked list, let us

define it inside the class scope of LinkedList.

08/23/2000 Introduction to Java 9

Nested top-level class & interfaceNested top-level class & interface
public class LinkedList {

public interface Link {
public Link getNext();
public void setNext(Link node);

}
private Link head;
public void insert(Link node) { … };
public void remove(Link node) { … };

}
class Node implements LinkedList.Link {

int i;
private LinkedList.Link next;
public Node(int i) { this.i = i; }
public LinkedList.Link getNext()

{ return next; }
public void setNext(LinkedList.Link node)

{ next = node; }
}

08/23/2000 Introduction to Java 10

Nested top-level class & interfaceNested top-level class & interface

• Note how we may import a static nested class…

import LinkedList.*; // Import nested classes.
class Node implements Link {

private int i;
private Link next;
public Node(int i) { this.i = i; }
public Link getNext() { return next; }
public void setNext(Link node) { next =
node; }

}

08/23/2000 Introduction to Java 11

-.class files and JVM-.class files and JVM

• When we compile a Java source (-.java) file with nested
class defined, note the class (-.class) files generated.

• When we compile LinkedList.java, we generate
LinkedList.class
LinkedList$Link.class

• The Java Virtual Machine (JVM) knows nothing about
nested classes. But the Java compiler uses the “$” insertion
to control the class name space so that JVM would interpret
the -.class files correctly.

08/23/2000 Introduction to Java 12

Inner ClassesInner Classes

• Nested classes which are not static are called inner
classes. They appear in these ways:

– member class – declared as a member of the containing
class;

– local class – declared as a local variable within a method
body of the containing class;

– anonymous class – local class with no declaration (and
therefore no name), but an instance can be created.

• An inner class is therefore associated with the
containing class in which it is defined.

08/23/2000 Introduction to Java

Inner Classes Examples
class A { … };
class B
{

class MC { … }; // Example of Member Class: MC
public void meth()
{

class LC { … }; // Example of Local Class: LC
// … creating an object of an Anonymous Class
// … which is a subclass of A.
A a = new A() { void meth() { … } };
…

}
}
// … An inner class is associated with a containing class.
// … Each inner class object is also associated with an
// … object of the containing class.

08/23/2000 Introduction to Java

Member Class

• Use a member class (instead of a nested top-level class)
when the member class needs access to the instance fields
of the containing class.

• Consider the LinkedList class we had before. If we have a
linked-list (a LinkedList object), and we want to have an
enumerator (an Enumerator object) to iterate through the
elements in the linked-list, the Enumerator object must be
associated with the LinkedList object.

• Let us first define the LinkedListEnumerator as a helper
class at the top-level, and then make it into a Member Class
within the LinkedList class.

08/23/2000 Introduction to Java

LinkedList and Enumerator
public class LinkedList {

public interface Link {
public Link getNext();
public void setNext(Link node);

}
private Link head; // …helper class cannot get to head.
public Link gethead() { return head; } // …added.
public void insert(Link node) { … };
public void remove(Link node) { … };

}

class Node implements LinkedList.Link {
int i;
private LinkedList.Link next;
public Node(int i) { this.i = i; }
public LinkedList.Link getNext() { return next; }
public void setNext(LinkedList.Link node)
{ next = node; }

}

08/23/2000 Introduction to Java

LinkedList and Enumerator
class LinkedListEnumerator {

private LinkedList list;
private LinkedList.Link current;
public LinkedListEnumerator(LinkedList ll) {

list = ll;
current = list.gethead();

}
public boolean hasMoreElements()

{ return(current != null); }
public LinkedList.Link nextElement() {

LinkedList.Link node = current;
current = current.getNext();
return node;

}
}

• Observe that LinkedListEnumerator is a helper
class; each of its object is associated with a
LinkedList object (ref: constructor); we then want
to make it into a Member Class within the
LinkedList Class…

08/23/2000 Introduction to Java

LinkedList and Enumerator
public class LinkedList {

public interface Link {
public Link getNext();
public void setNext(Link node);

}
private Link head; // …helper class can get to head now...
public void insert(Link node) { … };
public void remove(Link node) { … };
public class Enumerator {

private Link current;
public Enumerator() { current = head; }
public boolean hasMoreElements()

{ return(current != null); }
public Link nextElement() {

Link node = current;
current = current.getNext();
return node;

}
}

}

08/23/2000 Introduction to Java

Member Class

• Member class methods have access to all fields and
methods of the containing class.

• In the Member class method definition, a field/method name
is resolved first in the local scope, and then the class scopes
– first the inherited classes and then the containment
classes, unless there is explicit scope specified.

• Explicit access: <ClassName>.this.<FieldName>
• A Member Class cannot be named the same as one of its

containing classes.
• A Member Class cannot have static fields/methods.

08/23/2000 Introduction to Java

Member Class: accessing fieldspublic class A {
public String name = “A";
public class B {

public String name = “B";
public class C {

public String name = “C";
public void print_names() {

System.out.println(name);
System.out.println(this.name);
System.out.println(C.this.name);
System.out.println(B.this.name);
System.out.println(A.this.name);

}}}}
… // …prints out: C
A a = new A(); // C
A.B b = a.new B(); // C
A.B.C c = b.new C(); // B
c.print_names(); // A

08/23/2000 Introduction to Java

Local Class
• A Local Class is a class declared and defined within the

local scope (like a local variable) of a method definition of
the containing class. The class name is only visible within
the local scope.

• A Local Class is similar to a Member Class – and must
obey all the restriction of a Member Class – but the
methods of a local class cannot access other local
variables within the block except when they are final.

• A Local Class cannot be declared public, private,
protected, or static.

• Common use of local classes is for event listeners in Java
1.1, using the new AWT event model.

08/23/2000 Introduction to Java

Local Class exampleclass A { protected char a = 'A'; }
class B { protected char b = 'B'; }
public class C extends A {

private char c = 'C';
public static char d = 'D';
public void createLocalObject(final char e) {

final char f = 'F'; int i = 0;
class LocalClass extends B {

char g = 'G';
public void printVars() {

System.out.print(g); // (this.g) … of this class
System.out.print(f); // f … final local variable
System.out.print(e); // e … final local variable
System.out.print(d); // (C.this.d) containing class
System.out.print(c); // (C.this.c) containing class
System.out.print(b); // b … inherited from B
System.out.print(a); // a … inherited from A

}
}
LocalClass lc = new LocalClass();
lc.printVars();

}
public static void main(String[] as) {

C c = new C();
c.createLocalObject('E');

}
} // …prints out: GFEDCBA

08/23/2000 Introduction to Java

Anonymous Class
• An Anonymous Class is essentially a local class without a

name.
• Instead of defining a local class and then create an

instance (probably the only object) of the class for use,
Anonymous Class does that in just one step.

• An Anonymous Class must then also obey all the
restrictions of a local class, except that in using new
syntax, an Anonymous Class is defined at the point an
instance of the class is created.

• Common use of anonymous classes is in the adapter
classes used as event listeners in GUI programming using
the AWT event model.

08/23/2000 Introduction to Java

Anonymous Class: an example
import java.io.*;
public class Lister {

public static void main(String[] arg) {
File f = new File(arg[0]);
Class JavaFilter extends

FilenameFilter {
public boolean accept(File f,

String s)
{ return(s.endsWith(“.java”); }

}
JavaFilter jfilter = new

JavaFilter();
String[] list = f.list(jfilter);
for (int i=0; i < list.length; i++)
System.out.println(list[i]);

08/23/2000 Introduction to Java

Anonymous Class: an example
import java.io.*;
public class Lister {

public static void main(String[] arg) {
File f = new File(arg[0]);
String[] list = f.list(

new FilenameFilter() {
public boolean accept(File f,

String s)
{ return(s.endsWith(“.java”);

}
});

for (int i=0; i < list.length; i++)
System.out.println(list[i]);

}
}

08/23/2000 Introduction to Java

Anonymous Class
Some style guidelines for using anonymous class:
• The class has a very short body.
• Only one instance of the class is needed at a time.
• The class is used immediately after it is defined.
• A name for the class does not make the code easier to

understand.

Since an anonymous class has no name, it is not possible to
define a constructor. Java 1.1 has a new feature –
instance initializer – to conveniently initialize the
object created for an anonymous class. But the feature
applies to all classes.

08/23/2000 Introduction to Java

Instance Initializer
• An instance initializer is a block of code (inside braces)

embedded in a class definition, where we normally have
definition of fields and methods.
public class InitializerDemo {

public int[] array;
{

array = new int[10];
for (int i=0; i<10; ++i) array[i] = i;

}
}

• There can be more than one instance initializer in the class
definition.

• The instance initializers are executed in order, after the
superclass constructor has returned, before the
constructor of the current class is called.

08/23/2000 Introduction to Java 27

ExerciseExercise

• Provided: an abstract which defines a banking
account with its abstract class.

• To do: write a program that subclasses the abstract
class, defines the abstract methods, and provides
some additional functionality.

08/23/2000 Introduction to Java

