Advanced OOP Concepts in Java

Michael B. Spring
Department of Information Science and Telecommunications
University of Pittsburgh
spring@imap.pitt.edu
http://www.sis.pitt.edu/~spring

09/28/2001

Overview of Part 1 of the Course

Demystifying Java: Simple Code

Introduction to Java

An Example of OOP In practice

Object Oriented Programming Concepts

OOP Concepts -- Advanced This slide set
Hintsand for Java

1/O (Streams) in Java

Graphical User Interface Coding in Java

Exceptions and Exception handling

08/23/2000 I ntroduction to Java

Overview of this Slide Set

Nested Classes
Inner Classes
Member Classes
Local Classes
Anonymous Classes

08/23/2000 I ntroduction to Java

Nested classes and Inner classes

|ntroduction: a taxonomy

Nested top-level classes (and interfaces)
-.classfilesand VM

Inner classes

Member class

Local class

Containment hierarchy

Anonymous class

Visbility / Access

08/23/2000 I ntroduction to Java

Introduction: nested classes

e Java 1.0 allowed class declaration only at the package level.
Class names are therefore organized into packages, each
having its own name space. These are called top-level
classes.

Java l.1 allows class (and interface) declaration within the
class scope, nested inside the definition of another class.
These are called nested classes, and nested
Interfaces.

Nested interfaces are always static. Nested classes may or
may not be static. Jatic nested classes and interfaces are
functionally top-level classes, but non-static nested
classes are iInner classes.

08/23/2000 I ntroduction to Java

Introduction: a taxonomy

e top-level classes and interfaces:

1) package level class or interface

2) static class or interface nested in class scope.
e Inner classes:

e member class — declared as a member of the
containing class;

* |ocal class— declared as alocal variable within a
method body of the containing class;

e anonymous class — local class with no declaration
(and therefore no name), but an instance can be
created.

08/23/2000 I ntroduction to Java

Nested top-level class & interface

Nested top-level class must be declared static.
Nested top-level interface is always static.
Being static, it is functionally same as top-level.

It Is conveniently nested so that it does not
clutter the package level name space, often used in
a helper class such as an iterator designed for some
data structure.

08/23/2000 I ntroduction to Java

Nested top-level class & interface

| nterface Lin
publ i c Link getNext();
public void setNext(Li nk node);

cl ass Node i npl enents Link {
Int 1 ;
private Link next;
publ i ¢ Node(I nt |) { this.i =1; }
public Link getNext() { return next;
public void setNext(Link node) { next = node; }

}
public class LinkedList {

private Link head;
public void insert(Link node) { ...};
public void renove(Li nk node) { ...};

}
® Li nk i1san interface for nodes of alinked list, let us

define it inside the class scope of Li nkedLi st .

08/23/2000 I ntroduction to Java

Nested toB-IeveI class & interface

public class nkedLi st {

public interface Link {

publ i c Link getNext();
public void setNext(Li nk node);

}

private Link head;
public void insert(Link node) { ...};
public void renove(Li nk node) { ...};

}

cl ass Node i1 npl enents LinkedList. Link {
Int 1 ;
private LinkedList.Link next;
public Node(int i) { this.i =1;
publ i ¢ Li nkedList. Link get Next ()
return next;

public void set Next (LinkedList.Link node)
{ next = node; }

08/23/2000 I ntroduction to Java

Nested top-level class & interface

* Note how we may import a static nested class...

| nport LinkedList.*; // Importnested classes

cl ass Node I nplenments Link {
private int i;
private Link next;
public Node(int 1) { this.i =1; }
public Link getNext() { return next,;
Rggllc voi d set Next (Li nk node) { next =

08/23/2000 I ntroduction to Java

-.class files and JVM

* When we compile a Java source (-.java) file with nested
class defined, note the class (-.class) files generated.

 When we compile LinkedList.java, we generate
Li nkedLi st . cl ass
Li nkedLi st $Li nk. cl ass

The Java Virtual Machine (JVM) knows nothing about
nested classes. But the Java compiler usesthe “$” insertion
to control the class name space so that VM would interpret
the -.class files correctly.

08/23/2000 I ntroduction to Java

Inner Classes

* Nested classes which are not static arecalled inner
classes. They appear in these ways.

— member class— declared as a member of the containing
class;

— |ocal class— declared as alocal variable within a method
body of the containing class,

— anonymous class — local class with no declaration (and
therefore no name), but an instance can be created.

e Aninner class istherefore associated with the
containing class in which it is defined.

08/23/2000 I ntroduction to Java

Inner Classes Examples

class A{ ...};
class B

{
class MC { ...}; // Exampleof Member Class. MC

public void meth()
{

class LC { ...}; // Exampleof Local Class. LC
/| ... creating an object of an Anonymous Class

/] ...whichisasubclassof A.
A a=newA() { void nmeth() { ...} };

}
}

/'l ... Aninner classisassociated with a containing class.
/| ... Each inner class object is also associated with an
/| ... object of the containing class.

08/23/2000 I ntroduction to Java

Member Class

e Useamember class (instead of a nested top-level class)
when the member class needs access to the instance fields
of the containing class.

Consider the LinkedList class we had before. If we have a
linked-list (a LinkedList object), and we want to have an
enumerator (an Enumerator object) to iterate through the
elements in the linked-list, the Enumerator object must be
associated with the LinkedList object.

Let usfirst define the LinkedListEnumerator as a helper
class a the top-level, and then make it into a Member Class
within the LinkedList class.

08/23/2000 I ntroduction to Java

LinkedList and Enumerator

public class LinkedList {

public interface Link {
public Link getNext();
public void set Next (Li nk node);

private Link head; // ...heper classcannot getto head.

public Link gethead() { return head; } // ...added.
public void insert(Link node) { ...};
public void renove(Li nk node) { ...};

ass Node i npl enents LinkedLi st. Link {
I nt 1 ;
private LinkedList.Link next;
public Node(int i) { this.i =1; }
public LinkedList.Link getNext() { return next; }
public void set Next (Li nkedLi st. Li nk node)
{ next = node; }

08/23/2000 I ntroduction to Java

LinkedList and Enumerator

cl ass Li nkedLi st Enuner at or {

private LinkedList |ist;

private LinkedList.Link current;

publ i ¢ Li nkedLi st Enuner at or (Li nkedList 1) {
list =11;
current = |ist.gethead();

publ i ¢ bool ean hasMor eEl enment s()
{ return(current != null

publ i ¢ Li nkedLi st. Li nk next El enent () {
Li nkedLi st. Li nk node = current;
current = current. get Next();
return node;

}

}

* Observethat LinkedListEnumerator is a helper
class; each of its object Is associated with a
LinkedList object (ref: constructor); we then want
to make it into a Member Classwithin the

08/23/2000, I ntroduction to Java

LinkedList Class...

LinkedList and Enumerator

public class LinkedList {
public interface Link {

public Link getNext();
public void set Next (Li nk node);

private Link head; // ...nhelper classcan gettohead now...
public void |nsert(L|nk node) { ...};
public void renove(Link node) { ...};
public class Enunerator {
private Link current;
public Enunmerator() { current = head; }
publ i ¢ bool ean hasMor eEl enent s()
{ return(current !'= null); }
public Link nextElenment() {
Li nk node = current;
current = current. get Next();
return node;

}
}

08/23/2000 I ntroduction to Java

Member Class

Member class methods have access to all fields and
methods of the containing class.

In the Member class method definition, a field/method name
IS resolved first in the local scope, and then the class scopes
—first the iInherited classes and then the containment
classes, unless there is explicit scope specified.

Explicit access. <ClassName>.t hi s.<FieldName>

A Member Class cannot be named the same as one of Its
containing classes.

A Member Class cannot have static fields/methods.

08/23/2000 I ntroduction to Java

Nember Class: accessing fields

public String nane = “A";
publlc class B {
public String nane = “B";
public class C {
public String nane = “C';
public void print_nanmes(
Syst em out . pri ntl n(nal
Syst em out .
Syst em out .
Syst em out .

..printsout: C

Local Class

A Local Classisaclass declared and defined within the
local scope (like alocal variable) of a method definition of
the containing class. The class name is only visible within
the local scope.

A Local Classissimilar to aMember Class — and must
obey all the restriction of a Member Class — but the

methods of alocal class cannot access other |ocal
variables within the block except when they arefinal.

A Local Class cannot be declared public, private,
protected, or static.

Common use of local classesis for event listenersin Java
1.1, using the new AWT event model.

08/23/2000 I ntroduction to Java

Xé rpple

ol d createlLocal (nj ect (final char e) {
char f ="'"F: int 1 = 0;
ss Local O ass extends B {
char g = 'G;
public void prlntVars() \; _ _
Systemout.print(g); / (this.g) ...of this

cl ass
Varlab§ystemout.pr|nt(f), [/ T ...final |ocal

vari gpyStemout.print(e); // e ..final local
cl ass Systemout.print(d); // (Cthis.d) containing
¢l ass Systemout.print(c); // (Cthis.c) containing

Systemout.printgbg; [/ b ...inherited fromB
System out . print , [/ a ...inherited fromA

{ocal Class I ¢c = new Local d ass();
| c. printVars();

|}oubl Ic static void main(String[] as) {
C c = new C(?
c.createlLocal Gbject('E);
08/23/4)00 Introduction to Java

} /1 ...printsout: GFEDCBA

Anonymous Class

An Anonymous Classis essentially alocal classwithout a
name.

Instead of defining a local class and then create an
Instance (probably the only object) of the class for use,
Anonymous Class does that in just one step.

An Anonymous Class must then also obey all the

restrictions of alocal class, except that in using new
syntax, an Anonymous Class is defined at the point an
Instance of the classis created.

Common use of anonymous classes is in the adapter
classes used as event listeners in GUI programming using
the AWT event model.

08/23/2000 I ntroduction to Java

Anonymous Class: an example
| nport java.lo.*;
public class Lister {
public static void main(String[] arg) {
File f = new File(arg[0]);
Cl ass JavaFilter extends
Fil enaneFilter {
publ i ¢ bool ean accept(File f,
String s)
{ return(s.endsWth("“.java”),; }

}

JavaFilter jfilter = new
JavaFi lter();

String[] list =f.list(jfilter);
osizzizoo0 O (1 Nt T =QirodbatiotoJla St . 1 €NQGL h; 1 ++4)
Systemout.println(list[i :

Anonymous Class: an example
| nport java.lo.*;
public class Lister {
public static void main(String[] arg) {
File f = new File(arg[O0]);
String[] list = f.li1st(
new Fi |l enaneFilter() {
publ i ¢ bool ean accept(File f,
String s)
{ return(s.endsWth(“.java”);

}
b))
for (int 1=0; I < list.length; i++)
Systemout.printin(list[i]);

08/23/20})0 I ntroduction to Java

Anonymous Class

Some style guidelines for using anonymous class:
e Theclass hasavery short body.

e Only one instance of the classis needed at atime.
e Theclassisused immediately after it is defined.

* A namefor the class does not make the code easier to
understand.

Since an anonymous class has no name, it is not possible to
define a constructor. Javal.1l has anew feature —
Instance initializer —to conveniently initialize the
object created for an anonymous class. But the feature
appliesto all classes.

08/23/2000 I ntroduction to Java

Instance Initializer

 Aninstanceinitializer isablock of code (inside braces)
embedded in a class definition, where we normally have
definition of fields and methods.

public class InitializerDeno {
ublic int[] array;

array = nem1|nt [10] ; _
for {I | =0; 1<10; ++i) array[i] =1;

}

e There can be morethan oneinstance initializer in the class
definition.

* Theinstanceinitializers are executed in order, after the

superclass constructor has returned, before the
constructor of the current classis called.

08/23/2000 I ntroduction to Java

Exercise

* Provided: an abstract which defines a banking
account with i1ts abstract class.

* Todo: write aprogram that subclasses the abstract
class, defines the abstract methods, and provides
some additional functionality.

08/23/2000 I ntroduction to Java

08/23/2000 I ntroduction to Java

