Spiders are network applications that traverse the Web, accumulating statistics about the content found. The algorithm of our spider is straightforward: 

1. Create a queue of URLs to be searched beginning with one or more known URLs. 

2. Pull a URL out of the queue and fetch the Hypertext Markup Language (HTML) page that can be found at that location. 

3. Scan the HTML page looking for new-found hyperlinks. Add the URLs for any hyperlinks found to the URL queue. 

4. If there are URLs left in the queue, go to step 2. 

Once the spider has downloaded the HTML source for a web page, we can find any hypertext links embedded in the page and use them as a starting point for a further search. This is exactly what the spider program does; it scans the HTML content for <A HREF="url">, <FRAME SRC=”url”>, <IMG SRC=”url”> and adds any link it finds to its queue of URLs. 

A hyperlink in an HTML page can be in one of several forms. Some of these must be combined with the URL of the page in which they're embedded or the <BASE HREF=”url”>, if any, to get a complete URL. This is done by the fqURL() function. It combines the URL of the current page or the <BASE HREF=”url”> and the URL of a hyperlink found in that page to produce a complete URL for the hyperlink. 

For example, here are some links which might be found in a fictitious web page at http://www.ddd.com/clients/index.html, together with the resulting URL produced by fqURL(). 

	URL in Anchor Tag
	Resulting URL

	http://www.eee.org/index.html
	http://www.eee.org/index.html

	att.html
	http://www.ddd.com/clients/att.html

	/att.html
	http://www.ddd.com/att.html


As these examples show, the spider can handle both a fully-specified URL and a URL with only a document name. When only a document name is given, it can be either a fully qualified path or a relative path. In addition, the spider can handle URLs with port numbers embedded, e.g., http://www.ddd.com:1234/index.html. 

Another function implemented in fqURL() is the stripping of back-references (../ and ./) from a URL. For example, the URL /test/../index.html is translated to /index.html, the URL /test/./index.html is translated to /test/index.html, and we know that they both point to the same document. 

Once we have a fully-specified URL for a hyperlink, we can add it to our queue of URLs to be scanned. One concern that crops up is how to limit our search to a given subset of the Internet. The approach spider.pl takes is to discard any URL that does not have the same host name as the beginning URL; thus, the spider is limited to a single host. We could also extend the program to specify a set of legal hosts, allowing a small group of servers to be searched for content. 

Another issue that arises when handling the links we've found is how to prevent the spider from going in circles. Circular hyperlinks are very common on the Web. For example, page A has a link to page B, and page B has a link back to page A. If we point our spider at page A, it finds the link to B and checks it out. On B it finds a link to A and checks it out. This loop continues indefinitely. The easiest way to avoid getting trapped in a loop is to keep track of where the spider has been and ensure that it doesn't return. Step 2 in the algorithm shown at the beginning suggests that we “pull a URL out of our queue'' and visit it. The spider program doesn't remove the URL from the queue. Instead, it marks that URL as having been scanned. If the spider later finds a hyperlink to this URL, it can ignore it, knowing it has already visited the page. Our URL queue holds both visited and unvisited URLs. 

The set of pages the spider has visited will grow steadily, and the set of pages it has yet to visit can grow and shrink quickly, depending on the number of hyperlinks found in each page. If a large site is to be traversed you may need to store the URL queue in a database, rather than in memory as we've done here. 

During the traversal of each page, all the data related to the page are written into files, including content length, last modified date, number of links, number of images etc. At last, the URL queue %URLqueue (its key is the URL link, its value is the number of times referenced by other pages) keeps the information of each page about the number of times referenced by other pages. 

