
School of Computing and Information

University of Pittsburgh

Lab Project 2

Secure Mobile Application Development
Integration with the Google Cloud Service

Version 1.1

This lab is based on mHealth project by Haobing Huang and Runhua Xu.

School of Computing and Information

University of Pittsburgh

Read the following guidelines before working in the project

Lab Project Goal:

The goal of this project is to learn the basic skills for developing a secure mobile health app. This
project will involve the following tasks.

• Secure the outsourced medical record
o Learn to use common widgets of the app
o Learn to use cloud key management service provided by Google Cloud
o Secure the medical record before outsourcing to the Firebase cloud

• Proximity based access control
o Learn to use nearby service as the proximity -based access control approach

General Guidelines:

For this project, you will first need to review the developer’s guides for Android, Google Firebase
and Cloud Key Management Service if you don’t have the relevant background and experiences.
Check the following materials:

• Documentation for app developers [https://developer.android.com/docs/]

• Documentation for Google Firebase [https://firebase.google.com/docs/]

• Documentation for Google Cloud Key Management Service [
https://cloud.google.com/kms/docs/]

NOTE:
Please note that we have integrated the Firebase by providing our LERSAIS’s google-services.json
file in the project. It may not allow you to manage the backend server, namely, the Firebase
console. If you want to debug/test your project using your own Firebase console, please follow the
instructions provided by Firebase and replace the google-services.json file that have been
provided to you in the project skeleton with your own.

Moreover, we have also integrated the Google Cloud Key Management Service and provided the
LERSAIS-mHealth-KMS-bdd9f7acef42.json file in the assets folder in the skeleton. You do not need
to create your own.

Our LERSAIS lab has real android phones for testing in case you need. Please schedule a time slot
with TA.

https://developer.android.com/docs/
https://firebase.google.com/docs/
https://cloud.google.com/kms/docs/

School of Computing and Information

University of Pittsburgh

Secure Outsourcing Medical Record

and

Proximity-based Access Approaches

A Healthcare Scenario [extended version]

In your lab project 1, we have the following scenario:

Suppose that a patient needs to go to different hospitals/clinics for different healthcare
services/checkup/treatment. It is often tedious to fill the medical forms to provide his/her medical
history information such as allergy history, family genetic history, etc. Furthermore, the
staff/information systems of the hospital or health clinics/units may be not fully trustworthy to
store and manage his/her medical history record.

Thus, the goal here is to design a mobile healthcare application to help a user manage the medical
history record. It is a user-centric medical record management application where users have full
and complete control of their healthcare data.

Now, we add more features based on the above scenario:

The medical history record in your lab project 1 is stored in cloud database in plaintext. However,
the medical history record is sensitive data for patients due to privacy concerns. Thus, it is
necessary to encrypt the medical history record before outsourcing it to the cloud.

Then, we consider the medical history record usage scenario. Suppose that a patient is receiving
treatment in the treatment room and he/she needs to present his/her medical history record to a
group of people including attending physician, assistant physician, trainee physicians and nurses in
the treating room. Thus, it is necessary to design a proximity-based data access control
approaches with consideration of privacy concerns.

School of Computing and Information

University of Pittsburgh

Task 1: Secure Outsourcing of Medical Record

This task adopts Google Cloud Key Management Service to generate a key for each user. The
generated key will be used to encrypt/decrypt the medical record that will be stored in the
Firebase Database. Generally speaking, we treat the Cloud KMS as the trusted-third-party to help
manage users private key and the Firebase Database as the honest-but-curious cloud; this means
the cloud service executes the commands as per user’s requests, but it will try to collect/infer the
sensitive information from the data it manages, and the commands that users execute.

For documentation of Google Cloud KMS, please visit:

• https://cloud.google.com/kms/docs/

The procedure is described as follows:

1. Initialize a private key in the Cloud KMS when a new user registers in the app.
2. Different from lab project 1, before a user tries to save his/her medical in the cloud

database, the application first retrieves his/her private key and uses the encryption service
of the Cloud KMS to encrypt the medical record. Then the encrypted data will be saved in
the cloud database.

3. When the user wants to review his/her medical record, the app first downloads the
encrypted medical record from the cloud database, and then decrypts it using decryption
service of the Cloud KMS.

Go through the code provided in the skeleton. The interface/view is already provided to you, so
you do need to worry about designing it. Specifically, you will accomplish the following tasks:

Task 1.1 Initialize the crypto key. (SignupActivity)

Note that the Google Cloud KMS information has been provided in the skeleton. The service account json file
is provided in the assets folder. The project id, location, and key ring information has been provided in
Constant class.

Task 1.2 Implement the encryption/decryption function. (CloudKMSUtil)

Task 1.3 Familiarize yourself with the view of medical record and acquire/encapsulate the
information. (MedicalRecordEditActivity)

Note that model class MedicalHistoryRecord has been provided. What you need to do is acquire the
information from the view and encapsulate that into the MedicalHistoryRecord object/class, and vice versa.

Task 1.4 Implement the EHR encryption. (EncryptMedicalRecordThread)

Note that the basic encryption function has been provided in CloudKMSUtil (Task 1.2). What you need to do is
adopting the provided encryption function to encrypt an original MedicalHistoryRecord into an encrypted
MedicalHistoryRecord.

Task 1.5 Implement the EHR decryption (MedicalRecordViewActivity)

Note that we only provide MedicalRecordViewActivity in the skeleton. Thus, this is an open task. You can
refer to the the encryption procedure in Task 1.3/ 1.4 and related files as example to implement the
decryption algorithm and present the record in the view.

https://cloud.google.com/kms/docs/

School of Computing and Information

University of Pittsburgh

Task 2: Proximity-based Access Control

Recall the requirement in the scenario. A patient needs to share his/her medical record to a group
of doctors/nurses in the same room. Considering that the feature is based on location proximity,
we adopt the Google Nearby service to build simple interactions between nearby devices and
people. Nearby helps you find and interact with services and devices close to you (within about 30
m or 100 ft).
Specifically, this task adopts Nearby Messages and Nearby Connections service to implement the
proximity-based medical record access control, respectively.

• Nearby Messages exposes simple publish and subscribe methods that rely on proximity.
Your app publishes a payload that can be received by nearby subscribers.

o Discover and exchange information with other devices, without having to be on the
same local network. Nearby Messages enables seamless nearby interactions such
as multiplayer gaming, realtime collaboration, forming a group, broadcasting a
resource, or sharing content.

o The Nearby Messages API is available for Android and iOS, and enables
communication between the two platforms.

• Nearby Connections is a peer-to-peer networking API that allows apps to easily discover,
connect to, and exchange data with nearby devices in real-time, regardless of network
connectivity.

o Discover other devices nearby and create high-bandwidth peer-to-peer
connections for real-time cross-device experiences like gaming and file sharing.

School of Computing and Information

University of Pittsburgh

Task 2.1 Implement the nearby record sharing using Nearby Message API.

Note that we have provided a sample view and activity code in the skeleton. Go through
NearbyRecordOnlineShareActivity and activity_share views and add the missing parts. Specifically, the
procedures are as follows:

• The Medical Record Sender
o Task 2.1.1 Generate a random alphanumeric passcode and display
o Send the EHR using nearby message

▪ Task 2.1.2 Get the encrypted medical record from the cloud database
▪ Task 2.1.2 Decrypt the encrypted medical record
▪ Task 2.1.2 Form the message from the medical record using the passcode for

confidentiality and Share the medical record using Nearby Message
▪ Reference

• Nearby https://developers.google.com/nearby/messages/overview

• RNCryptorNative https://github.com/TGIO/RNCryptorNative

• The Medical Record Receiver
o Receive the EHR using nearby message

▪ Get the passcode from users’ input
▪ Task 2.1.3 Receive the medical record via nearby message
▪ Task 2.1.3 Decrypt the message and form the medical record using the passcode,

and display the medical record

Note that it is recommended to use two real cell phones to test such nearby functions.

Sample views

https://developers.google.com/nearby/messages/overview
https://github.com/TGIO/RNCryptorNative

School of Computing and Information

University of Pittsburgh

Task 2.2 (BONUS) Implement the nearby record sharing using Nearby Connection approach.

Note that we have provided a sample in the skeleton. Go through and activity_send view and try to create
NearbyRecordOfflineShareActivity to implement this task. We have integrated NearbyConnectionsActivity
from google samples which provide the basic functions for Nearby Connection. Your
NearbyRecordOfflineShareActivity can extend from the Activity and add the features you like.

A sample procedure is as follows:

• The Medical Record Sender
o Trigger the button to register the Nearby Connections Service
o Shake the device to start advertising and wait the connection
o Establish the connection by using an authentication method
o Send the data

• The Medical Record Receiver
o Trigger the button to register the Nearby Connections Service
o Shake the device to start advertising and wait for the connection
o Establish the connection by using an authentication method
o Receive the data

Reference from google samples to help you understand the Nearby Connections
https://github.com/googlesamples/android-nearby/tree/master/connections

Sample views

https://github.com/googlesamples/android-nearby/tree/master/connections

	Lab Project Goal:
	General Guidelines:
	Secure Outsourcing Medical Record
	and
	Proximity-based Access Approaches
	A Healthcare Scenario [extended version]
	Task 1: Secure Outsourcing of Medical Record
	Task 1.1 Initialize the crypto key. (SignupActivity)
	Task 1.2 Implement the encryption/decryption function. (CloudKMSUtil)
	Task 1.3 Familiarize yourself with the view of medical record and acquire/encapsulate the information. (MedicalRecordEditActivity)
	Task 1.4 Implement the EHR encryption. (EncryptMedicalRecordThread)
	Task 1.5 Implement the EHR decryption (MedicalRecordViewActivity)

	Task 2: Proximity-based Access Control
	Task 2.1 Implement the nearby record sharing using Nearby Message API.
	Task 2.2 (BONUS) Implement the nearby record sharing using Nearby Connection approach.

