
 1

Lab

Access Control and Security Issues

in Smart Contracts:

Healthcare Scenario
Version 1.1

LERSAIS

School of Computing and Information

University of Pittsburg

This lab is designed by Chao Li and Runhua Xu and also part of lab module for SAHI Project

 2

Goal

The goal of this lab is to illustrate how to manage access control and security issues of using

Ethereum smart contract in healthcare scenarios.

In this lab, you will learn the following objects:

1) The access control in smart contracts

2) The common security issues in smart contracts and their countermeasures

Part 0 Required Tools

This lab requires the following tools:

1) Get Node and npm installed.

a. https://www.npmjs.com/get-npm

b. If you are not sure whether your system installed or not, you can check the

following commands in the terminal environment.
$ node -v

$ npm -v
If the commands return the corresponding version number, you are all set;

otherwise, follow the instruction from the above link to install the tools.

2) Get the following packages installed

a. Install 'ethereumjs-util' package through

https://github.com/ethereumjs/ethereumjs-util

b. Install 'web3-utils' package through

https://github.com/ethereum/web3.js/tree/1.0/packages/web3-utils

3) You will use the following online tools

a. Remix (https://remix.ethereum.org/)

b. Etherscan (https://etherscan.io/)

c. MetaMask (https://metamask.io/)

Note that the screenshot in the rest of the lab is captured in the Win10 environment. The node

and npm tool also support other operation system.

 3

Part I Environment setup

In this part, we describe the environment setup.

1) Open Chrome browser, go to Remix (https://remix.ethereum.org/).

a. You will see a webpage like this:

b. Remix is an online Ethereum IDE that consists of four windows:

• W1: storage browser

• W2: editor

• W3: console

• W4: control panel

c. The rest of this lab extensively relies on the use of Remix. For more details,

please refer to the following documents:

i. https://theethereum.wiki/w/index.php/Remix

ii. https://remix.readthedocs.io/en/latest/

2) Install MetaMask (https://metamask.io/) as an extension of Chrome browser.

a. You will see the extension icon of MetaMask on your Chrome

browser, click it.

b. Show a screenshot of MetaMask after the click.

c. Create an account.

d. Good job! You now own a MetaMask account as shown below. This is your first

account and is named Account 1. In this lab, you will need to set three accounts.

Before going further, please first get familiar with this MetaMask control panel.

W1
W2

W3

W4

 4

• P1: you can copy the address of account 1 by clicking it.

• P2: you can get more details of account 1.

• P3: you can switch Ethereum networks.

• P4: some more functionalities.

• P5: you can manage your accounts.

e. Please click P3 and show a screenshot of the optional networks. Please make sure

that you are at the Kovan Test Network throughout this lab.

f. Now, let’s create two more accounts. Click P5 and then ‘create account’. Please

create two accounts and call them Account 2 and Account 3, respectively. You

should now have three accounts like this:

g. What are account balances of your three accounts?

h. What are the addresses of your three accounts?

3) Next, let’s get some free ‘money’ for your accounts.

a. Go to the Kovan faucet (https://faucet.kovan.network/).

b. Login with your Github account. If you don’t have one, please create a new

Github account for free.

P2 P1

P3

P4

P5

 5

c. You will then see:

d. Input your Account 1 address and click ‘send me KETH’. You should then see:

e. Click ‘Etherscan’, you will then be navigated to https://kovan.etherscan.io/ where

you can monitor the Kovan Ethereum blockchain. You will see the details of the

transaction that the faucet account sent 1 Ether to your Account 1. Show a

screenshot of the transaction. What is the address of the faucet account?

f. At the above ‘Etherscan’ page showing transaction details, click your account 1

address after ‘To:’. You will be navigated to your account page. Have you

received the 1 Ether? Show a screenshot of your account balance.

g. Good job! Your Account 1 now should have 1 Ether. Next, let’s transfer 0.2 Ether

from Account 1 to Account 2 and Account 3, respectively.

i. Click P4 of MetaMask control panel and then click ‘Expand View’. You

should then see a new window opened in Chrome. This is an expanded

version of MetaMask control panel. In the rest of this lab, we will only use

this expanded version.

ii. You should see this (your balance should be 1 ETH):

iii. Click ‘SEND’, you should see this:

 6

iv. Change the ‘Recipient Address’ to your Account 2 address and change the

value of ‘Amount’ from 0 ETH to 0.2 ETH. Click ‘NEXT’ and later

‘CONFIRM’.

v. Redo iv. for your Account 3. Now what are the balances of your three

accounts?

4) Go back to Remix. In W1, click + of and name the new file as ‘lab_01.sol’

and click ‘OK’. You should then find this new in browser folder of W1. Open it to W2

and copy the contract codes below (in blue) to W2.

5) Good job! You have completes all tasks of this part. In the next part, we will study access

control of smart contrasts using the healthCare contract you have just copied.

pragma solidity ^0.5.2;

import "github.com/OpenZeppelin/zeppelin-solidity/contracts/math/SafeMath.sol";

contract healthCare {

 using SafeMath for uint;

 // ----------> storage area <----------
 // doctor
 address doctorA;
 address doctorB;

 // patient
 mapping(address => patient_info) patient;
 struct patient_info {
 bool gender;
 uint age;
 uint accountBalance;
 address doctor;
 uint testResultA;
 uint testResultB;
 uint testResultC;
 // other info ...
 }

 // constructor
 constructor(address _doctorA, address _doctorB) public {
 doctorA = _doctorA;
 doctorB = _doctorB;
 }

 // ----------> modifier area <----------
 // modifier
 modifier paymentCheck {
 require(msg.value >= 0.01 ether);
 _;
 }

 modifier balanceCheck(uint _amount) {
 require(patient[msg.sender].accountBalance >= _amount);
 _;
 }

 modifier doctorApproval(address _doctor, uint8 _v, bytes32 _r, bytes32 _s) {
 bytes32 h = keccak256(abi.encodePacked(msg.sender));
 address signer = ecrecover(h, _v, _r, _s);
 require(signer == doctorA || signer == doctorB);
 require(signer == _doctor);
 _;
 }

 7

 modifier allDortors {
 require(msg.sender == doctorA || msg.sender == doctorB);
 _;
 }

 modifier yourDoctorOnly(address _patient) {
 require(msg.sender == patient[_patient].doctor);
 _;
 }

 // ----------> function area <----------

 // register
 function patientRegister(bool _gender, uint _age, address _doctor, uint256 _v, bytes32 _r, bytes32 _s) public payable paymentCheck
doctorApproval(_doctor, uint8(_v), _r, _s) {
 patient[msg.sender].gender = _gender;
 patient[msg.sender].age = _age;
 patient[msg.sender].accountBalance = msg.value - 0.01 ether;
 patient[msg.sender].doctor = _doctor;
 }

 // payment
 function recharge() payable public {
 patient[msg.sender].accountBalance += msg.value;
 }

 function withdraw_danger(uint _amount) public balanceCheck(_amount) {
 msg.sender.call.value(_amount)("");
 patient[msg.sender].accountBalance -= _amount;
 }

 function withdraw_safe(uint _amount) public balanceCheck(_amount) {
 patient[msg.sender].accountBalance -= _amount;
 msg.sender.transfer(_amount);
 }

 // setter
 function setTestResultA(address _patient, uint _testResultA) public allDortors {
 patient[_patient].testResultA = _testResultA;
 }

 function setTestResultB(address _patient, uint _testResultB) public yourDoctorOnly(_patient) {
 patient[_patient].testResultB = _testResultB;
 }

 function setTestResultC_danger(address _patient) public allDortors {
 patient[_patient].testResultC = patient[_patient].testResultA + patient[_patient].testResultB;
 }

 function setTestResultC_safe(address _patient) public allDortors {
 patient[_patient].testResultC = patient[_patient].testResultA.add(patient[_patient].testResultB);
 }

 // getter
 function getPatientInfo(address _patient) public view returns(
 bool gender,
 uint age,
 uint accountBalance,
 address doctor,
 uint testResultA,
 uint testResultB,
 uint testResultC) {
 gender = patient[_patient].gender;
 age = patient[_patient].age;
 accountBalance = patient[_patient].accountBalance;
 doctor = patient[_patient].doctor;
 testResultA = patient[_patient].testResultA;
 testResultB = patient[_patient].testResultB;
 testResultC = patient[_patient].testResultC;
 // other info ...
 }

 // other functions ...

}

 8

Part II Access Control in Smart Contracts

In this part, you will learn access control in smart contracts using your three accounts and the

healthcare contract.

1) First, let’s get more familiar with the healthcare contract.

a. In the storage area of this contract, we record the addresses of doctor A and doctor

B and also use a mapping and a struct to record information of each patient.

Specifically, in this lab, please use your Account 1 as the patient account, Account

2 as the doctor A account and Account 3 as the doctor B account.

b. We would like this contract to be created and controlled by two doctors (A and B),

indicating that either doctor A or B should deploy the contract to the Ethereum

network.

c. After that, a patient can call the function patientRegister() to make his or her

information get recorded. To be able to call this function, the patient must pay at

least 0.01 ETH and submit the approval of doctor A or doctor B (access control

1).

d. Later, the test results A, B, C can be set by doctors. Both doctor A or B can set

TestResultA or TestResultC while only the doctor providing approval to the

patient can set TestResultB for the patient (access control 2).

2) Now, let’s implement 1) a. and b.

a. Switch to your Account 2 in MetaMask, which corresponds to doctor A.

b. In Remix W4, select compiler version 0.5.2:

c. Compile ‘lab_01.sol’. You should see this in Remix W4. Ignore the warnings.

 9

d. Switch from ‘compile’ to ‘run’ in Remix W4. You will see this:

• P1: Make sure your environment is Kovan. If not, change it in MetaMask.

Your current account may be Account 2. You may change your account in

MetaMask.

• P2: you will deploy smart contracts here.

• P3: you will call functions of deployed smart contract here.

e. Now let’s use your Account 2 (i.e., doctor A) to deploy this healthcare contract.

• Expend ‘deploy’ in P2. You should see:

• Input your Account 2 address and Account 3 address as the addresses for

doctor A and B, respectively. Then click transact.

• You will see a MetaMask notification window, click ‘confirm’.

• Have you seen any change in P3? Please expand the new deployed

contract and show a screenshot.

P1

P2

P3

 10

f. Good job! You have just deployed your first smart contract, the healthcare

contract.

3) Next, let’s implement 1). c, namely the first access control problem. In P3 of the Remix

W4. You have expanded the deployed healthcare contract and have seen all the functions.

Let’s first register a new patient.

a. Switch to Account 1 in MetaMask. Make sure that the account displayed in P1 of

Remix W4 is now your Account 1 (i.e., patient).

b. Expand function patientRegister() in P3, input ‘true’, ‘30’ to _gender and _age

and also input your Account 2 address to _doctor.

c. Click ‘transact’ of function patientRegister(), are you seeing a MetaMask

notification window? If not, show what’s new in Remix W3.

d. The reason that you failed to call the function patientRegister() is that you did not

meet the two access control policies. By checking the codes of this function in

Remix W2, you may find that this function has two Modifiers, namely

paymentCheck and doctorApproval.

i. The paymentCheck Modifier requires that the patient to pay at least

0.01ETH to be registered.

ii. The doctorApproval Modifier requires the patient to get the approval from

doctor A or B.

e. To satisfy the paymentCheck access control policy, you may easily change the

value in P1 of Remix W4 from ‘0 wei’ to ‘0.01 ether’. After that, by the time you

call the function patientRegister(), your transaction will also send 0.01 ETH to the

healthcare contract.

f. To satisfy the doctorApproval access control policy, you will need to get a

signature from doctor A or B, say doctor A in this example. Now, imagine that you

are doctor A (i.e., your Account 2) and you will generate the signature for a

patient (i.e., your Account 1). You need to do the following:

i. Open your terminal (i.e., command prompt in windows)
ii. $ node

iii. >var ethUtils = require('ethereumjs-util');

iv. >var web3Utils = require('web3-utils');

v. >var addr_bytes = new Buffer(‘Account1Addr’,'hex')

 11

1. Please replace AccountAddr with abs…e23 if your
Account 1 address is 0xabs…e23

vi. >var addr_hash = ethUtils.keccak256(addr_bytes)

vii. >var h_code = '0x'+ addr_hash.toString('hex')

viii. >var privkey = new Buffer('Account2Privkey', 'hex')

1. Please replace Account2Privkey with the private key
of your Account 2. You may find the key by click

‘Details’ in MetaMask, then click ,

input your password and finally click ‘Confirm’. What

is the private key?

ix. >var h_code_hex = new Buffer(h_code.slice(2), 'hex');

x. >var vrs = ethUtils.ecsign(h_code_hex, privkey);

xi. >var v = vrs.v

xii. >var r = vrs.r.toString('hex')

xiii. >var s = vrs.s.toString('hex')

g. Please list the v, r, s. They three together form the signature, namely the approval

that doctor A will assign to the patient.

h. Okay, now you can input the v,r,s to function patientRegister() in P3 of Remix

W4. Please double-check that you have changed the value in P1 of Remix W4 to

‘0.01 ether’. Also, please switch to the patient account (i.e., your Account 1).

i. Now, click ‘transact’ of function patientRegister(). You should see a popup

Metamask notification window, click ‘Confirm’. You will see a new link in W3 of

Remix W4. By clicking the link, you will be navigated to the transaction you just

sent in Etherscan. Please show a screenshot of your transaction as well as a

screenshot of the healthcare contract in Etherscan. What is the current balance of

the healthcare contract?

j. Finally, input the patient address (i.e., your Account 1) to the function

getPatienInfo() in P3 of Remix W4 and call this function. Please list the current

information of the patient.

4) Next, let’s implement 1). d, namely the second access control problem.

a. The function setTestResultA() allows setting the test result A. It uses the

allDortors Modifier, so both Doctor A and B can pass its access control policy.

Please keep using your Account 1 (i.e., patient), expand the function

 12

setTestResultA(), input your Account 1 address and

115792089237316195423570985008687907853269984665640564039457584007

913129639934 as _patient and _testResultA respectively. By clicking ‘transact’,

can you successfully send out this transaction? What is the problem?

b. Now switch your account to Account 3 (i.e., doctor B), redo 4).a, did the

transaction get sent out this time? Redo 3).j, what is the current information of the

patient?

c. The function setTestResultB() allows setting the test result B. Doctor B (i.e., your

Account 3) wants to set the test result B as 1 through calling this function. Will he

be successful? Way?

d. Switch your account to Account 2 (i.e, doctor A), redo 4).c, will doctor A be

successful? What is the current information of the patient?

5) Good job! You have completed the study of access control in smart contracts. Let’s go to

the last part of this lab!

Part III Hierarchical Role Based Access Control

In this part, you will go on a relatively complex access control smart contract comparing to the

last part. code that we are going to use is given below. You need to paste it into the remix web

browser. Write the file name as blockchain_lab3_<yourname>.sol
pragma solidity ^0.5.1;
import "github.com/OpenZeppelin/zeppelin-solidity/contracts/math/SafeMath.sol";

contract roleBasedAccessControl
{
 using SafeMath for uint;
 // ----------> storage area <----------

 // First Role: Doctor
 address doctor;

 // Second Role: Nurse
 mapping(address => nurse_info) nurse;
 struct nurse_info
 {
 bool gender;
 uint age;
 uint accountBalance;
 address doctor;
 }

 // Third Role: Patient
 mapping(address => patient_info) patient;
 struct patient_info
 {
 bool gender;
 uint age;
 uint accountBalance;
 //address doctor;
 address nurse;

 13

 }

 // constructor
 constructor(address _doctor) public
 {
 doctor = _doctor;
 }
 // ----------> modifier area <----------

 // modifier
 modifier paymentCheck
 {
 require(msg.value >= 0.01 ether);
 _;
 }

 modifier balanceCheck(uint _amount)
 {
 require(patient[msg.sender].accountBalance >= _amount);
 _;
 }

 modifier doctorApproval(address _doctor, uint8 _v, bytes32 _r, bytes32 _s)
 {
 bytes32 h = keccak256(abi.encodePacked(msg.sender));
 address signer = ecrecover(h, _v, _r, _s);
 //require(signer == doctor);
 require(signer == _doctor);
 _;
 }

 modifier nurseApproval(address _nurse, uint8 _v, bytes32 _r, bytes32 _s)
 {
 bytes32 h = keccak256(abi.encodePacked(msg.sender));
 address signer = ecrecover(h, _v, _r, _s);
 //require(signer == nurse);
 require(signer == _nurse);
 _;
 }

 // ----------> function area <----------

 // doctor approves the nurse to get register in the system
 function nurseRegister(bool _gender, uint _age, address _doctor, uint256 _v, bytes32 _r, bytes32 _s) public payable paymentCheck
 doctorApproval(_doctor, uint8(_v), _r, _s)
 {
 nurse[msg.sender].gender = _gender;
 nurse[msg.sender].age = _age;
 nurse[msg.sender].accountBalance = msg.value - 0.01 ether;
 nurse[msg.sender].doctor = _doctor;
 }

 // nurse approves the patient to get approved into the system
 function patientRegister(bool _gender, uint _age, address _nurse, uint256 _v, bytes32 _r, bytes32 _s) public payable paymentCheck
 nurseApproval(_nurse, uint8(_v), _r, _s)
 {
 patient[msg.sender].gender = _gender;
 patient[msg.sender].age = _age;
 patient[msg.sender].accountBalance = msg.value - 0.01 ether;
 patient[msg.sender].nurse = _nurse;
 }

 // payment
 function recharge() payable public
 {
 patient[msg.sender].accountBalance += msg.value;
 }

 function withdraw_danger(uint _amount) public balanceCheck(_amount)
 {
 msg.sender.call.value(_amount)("");
 patient[msg.sender].accountBalance -= _amount;
 }

 function withdraw_safe(uint _amount) public balanceCheck(_amount)
 {

 14

 patient[msg.sender].accountBalance -= _amount;
 msg.sender.transfer(_amount);
 }

 // getter function for the nurse's information
 function getNurseInfo(address _nurse) public view returns
 (
 bool gender,
 uint age,
 uint accountBalance,
 address doctor
)
 {
 gender = nurse[_nurse].gender;
 age = nurse[_nurse].age;
 accountBalance = nurse[_nurse].accountBalance;
 doctor = nurse[_nurse].doctor;
 }

 // getter function for patient's information
 function getPatientInfo(address _patient) public view returns
 (
 bool gender,
 uint age,
 uint accountBalance,
 address nurse
)
 {
 gender = patient[_patient].gender;
 age = patient[_patient].age;
 accountBalance = patient[_patient].accountBalance;
 nurse = patient[_patient].nurse;
 }
}
This code demonstrates one of the examples of hierarchical role-based access control in the

healthcare sector. This concepts and code logic can be extended/used for any application which

requires hierarchy. Hierarchy that is used is doctor approves nurse, nurse approves patients into

the system.

Remember, this one is the advanced lab on Blockchain and you need to build on top of what you

already learnt on prior two labs. So, it requires step by step solution from your end. Code on

which you need to build up is provided. You can use that and need to include and modify it

where ever applicable.

List of tasks you need to perform is given below-

1. Can you provide any other hierarchical role-based example? List 3 such examples.

2. In lab-2, you already acquire some hands-on experience on two types of access control.

How you can accomplish that here? Write step by step approach that you performed to

observe the hierarchical role-based access control (code is already provided). Steps should

be detail and you are supposed to provide screenshots at every step.

3. You need to change the code-sample to include the following scenario:

New hierarchy should have hospitalOwner->doctor->headNurse->Nurse->{Patient

and one family member of patient} i.e. either of the patient or one of his close family

member can access the system on behalf of the patient. This facility is needed so that when

 15

the patient is unable to provide access or in dying situation, his/her family members can

provide the necessary authorization. Submit the code and output. Name this code as

newHiaerarchy_yourname.sol

4. Can you add 5 doctors into the docttor’s list instead of just one? Remember this is your

new code. So, don’t change into the previous one directly. Rather create another version

and change on that. Name this code as fiveDoctors_yourName.sol

5. Submit both the code and include screenshots for every step.

6. In all the labs, extensively we are using mapping and modifier concepts. In your own words,

write down what you need that. Is there any alternative by which the same applicability

can be shown but without using modifier or mapping? If so, write down the alternative

code snippet.

7. With all the labs, you gained some fare enough idea on several blockchain based

application in healthcare scenario. Now, can you write think about a new application

irrespective of all which you already did? There is no need to write the code. Instead,

demonstrate it using diagram.

8. In the fiveDoctors_yourName.sol smart contract, can you point out at least three security

vulnerability? [Hint: you can refer to lab-2 manual]

Submit all the mentioned codes and screenshots.

Congratulations!! You have successfully completed all the blockchain labs.

Part IV Common Security Issues in Smart Contracts and Countermeasures

In this last part, you will learn two common security issues of smart contracts and their

corresponding countermeasures. Let’s first study the integer-overflow problem and then the

reentrancy attack.

1) The integer-overflow problem:

 16

a. In part II.4), we have set testResultA and testResultB to

115792089237316195423570985008687907853269984665640564039457584007

913129639934 and 1, respectively.

b. Now, use your Account 2 (i.e., doctor A) to call function setTestResultC_danger()

with the patient address. What is the current information of the patient? What is

the current test result C of this patient?

c. Redo part II.4).d by using your Account 2 to set test result B of the patient to 2.

Then, redo part III.1).b. What is the current test result C of this patient?

d. Can you explain the reason? Hint: In Solidity, the uint256 data type supports

integer in the range [0, 2^256-1].

e. The integer-overflow problem can be notified by using the SafeMath library,

which have been imported in the healthcare contract.

f. Now, use your Account 2 (i.e., doctor A) to call function setTestResultC_safe()

with the patient address. Can you successfully send out the transaction? Show the

screenshot of the popup window.

g. [optional] Why the SafeMath library can help? Please refer to the function add()

in the ‘SafeMath.sol’ file. You may find it under the github folder in Remix W1.

2) The c:

a. Create a new smart contract in Remix and call it ‘lab_02.sol’.

b. Copy the following codes into ‘lab_02.sol’.
pragma solidity ^0.5.2;

contract attack {

 address payable owner;
 address target;

 constructor(address _target) public payable {
 owner = msg.sender;
 target = _target;
 }

 function register(bool _gender, uint _age, address _doctor, uint8 _v, bytes32 _r, bytes32 _s) public {
 target.call.value(0.02 ether)(abi.encodeWithSignature("patientRegister(bool,uint256,address,uint256,bytes32,bytes32)",
_gender, _age, _doctor, _v, _r, _s));
 }

 function callTarget() public {
 target.call(abi.encodeWithSignature("withdraw_danger(uint256)", 0.01 ether));
 }

 function() payable external {
 target.call(abi.encodeWithSignature("withdraw_danger(uint256)", 0.01 ether));
 }

 function withdraw() public {
 selfdestruct(owner);
 }

 17

}

c. This is the attack contract. In Ethereum, transactions may be sent by either a

External Owned Account (EOA) controlled by a user through a pair of keys or a

Contract Account (CA) controlled by a deployed smart contract. In this scenario,

you will perform as an adversary, who deploys this attack contract and use the

deployed attack contract to launch the reentrancy attack for the purpose of

stealing money in the healthcare contract.

d. First, use your Account 2 to transfer 0.1 ETH to the healthcare contract. You can

do this by setting the value to ‘0.1 ether’ and call the function recharge() of the

healthcare contract. Show the screenshot of the current balance of the healthcare

contract in Etherscan.

e. Now, you may use your Account 1 as the adversary to perform the the healthcare

contract. To do that, switch to Account 1, compile the attack contract and deploy

it with the address of the healthcare contract as argument. Please make sure that

you set value in P1 of Remix W4 to ‘0.02 ether’ before you deploy the attack

contract, this will give the deployed attack contract a balance of 0.02 ether, which

will be used later to launch the reentrancy attack. Show a screenshot of the

attack contract in Etherscan.

f. The attack contract has four functions. The first task of the adversary is to register

the attack contract as a patient in the healthcare contract. To do that, use your

Account 1 to call the function register(). The arguments can follow the ones in

part II.3).f. However, the signature v,r,s needs to be recomputed by changing the

Account1Addr in part II.3).f.v to the address of the attack contract. (i.e., if the

attack contract address is 0xfds…3gf, then use fds…3gf). Call the getPatienInfo()

in P3 of Remix W4 with the attack contract address, show the result.

i. Notice: You will need to increase the gas limit. Specifically, when you see

the popup MetaMask notification window, click ‘EDIT’, then switch to

‘Advanced’ and set ‘Gas Limit’ to a value over 500,000.

 18

g. Next, use your Account 1 to call the function callTarget() in the attack contract.

This time, please increase the gas limit to 3,000,000. Show the screenshot of the

balance of the attack contract and the healthcare contract in Etherscan.

h. You have successfully launched the reentrancy attack. The function callTarget()

has called the withdraw_danger() function in the healthcare contract, requesting

the healthcare contract to refund 0.01 ETH to the attack contract. Remember that

the attack contract owned 0.02 ETH at the beginning. It registered itself to the

healthcare contract with this 0.02 ETH, so its balance in the healthcare contract

is 0.01 ETH. Upon being called, the withdraw_danger() function first check

whether the balance of the attack contract in the healthcare contract has at least

0.01 ETH. If the result is true, the withdraw_danger() function will send 0.01

ETH back to the attack contract and decrease the balance of the attack contract by

0.01 ETH. Unfortunately, when the withdraw_danger() function execute sthe

code ‘msg.sender.call.value(_amount)("");´ to transfer 0.01 ETH to the attack

contract, it will automatically invoke the fallback function (i.e., the function with

no name) in the attack contract. The attack contract leverage this fallback

function to reenter the healthcare contract by calling the withdraw_danger()

function again. At this moment, the code ‘patient[msg.sender].accountBalance -=

_amount;’ has not been executed, so the balance of the attack contract in the

healthcare contract is still 0.01 ETH and another 0.01 ETH will be sent back to

the attack contract, which will invoke the fallback function in the attack contract

again…

 19

i. There are two ways to resolve the reentrancy attack. One is to replace the low-

level call function in ‘msg.sender.call.value(_amount)("");’ to a transfer function.

What is the other way? Hint: compare withdraw_danger() and withdraw_safe().

j. Finally, use your Account 1 to call the function withdraw() in the attack contract.

Show the screenshot of the balance of the attack contract and your Account 1.

3) Good job! You have completed this lab! Congratulations!

