1. Define (4)

Principle of security:

If an access is not permitted within an individual system, it must not be permitted under secure interoperation

Principle of autonomy:

If an access is permitted within an individual system, it must also be permitted under secure interoperation

2. True or false (6)

[F]
$$D_k(E_k(D_k(y))) = E_k(D_k(E_k(x)))$$
 for $x = y$

[F]
$$D_k(E_k(D_k(y))) = E_k(D_k(E_k(z)))$$
 for $y = E_k(x)$ and $z = (D_k(E_k(x)))$

- [F] product of two relatively prime numbers is a prime
- [T] for an RBAC configuration with no role hierarchy, *assigned_users(r)* and *authorized_users(r)* would be the same each role *r*.
- [T] Even if each security domain is secure, when we allow cross-domain accesses, they can introduce security holes in a system.
- [T] In known plaintext attack, the attacker's primary goal is to find the key K used.
- [F] Cæsar is a transposition cipher and its key weakness is that the key is too short.
- [T] The key to attacking Vigenere cipher is to find out the period of the key.
- [F] For k = 5, "ALIVE" would mean "FQMAJ".
- [T] If $(a \equiv r \mod m)$ then for some integer q, $a = m \cdot q + r$.
- [T] If $(RS, n) = (\{r1, r2, r3\}, 2)$ defines a SSD constraint, then the user assignment UA = $\{(u, r1), (u, r2)\}$ is not valid.
- [F] If $(RS, n) = (\{r1, r2, r3\}, 2)$ defines a DSD constraint, then the user assignment UA = $\{(u, r1), (u, r2)\}$ is not valid.