

Overview of the DES

- A block cipher:

Oencrypts blocks of 64 bits using a 64 bit key
Ooutputs 64 bits of ciphertext
OA product cipher

- performs both substitution and transposition (permutation) on the bits
Obasic unit is the bit
- Consists of 16 rounds (iterations) each with a round key generated from the user-supplied key

Controversy

- Considered too weak

ODiffie, Hellman said in a few years technology would allow DES to be broken in days
-Design using 1999 technology published
ODesign decisions not public
-S-boxes may have backdoors

Undesirable Properties

- 4 weak keys

OThey are their own inverses

- 12 semi-weak keys

OEach has another semi-weak key as inverse

- Complementation property
$\operatorname{ODES}_{k}(m)=c \Rightarrow \operatorname{DES}_{k}(m)=c^{\prime}$
- S-boxes exhibit irregular properties

ODistribution of odd, even numbers non-random
OOutputs of fourth box depends on input to third box
OReasons for structure were suspicious

Differential Cryptanalysis

- A form of chosen plaintext attack

Olnvolves encrypting many texts that are only slightly different from one another and comparing results
ORequires 2^{47} plaintext, ciphertext pairs

- Revealed several properties

OSmall changes in S-boxes reduce the number of pairs needed
OMaking every bit of the round keys independent does not impede attack

- Linear cryptanalysis improves result

ORequires 2^{43} plaintext, ciphertext pairs

DES Modes

CBC Mode Decryption

- Electronic Code Book Mode (ECB):

OEncipher each block independently

- Cipher Block Chaining Mode (CBC)

OXOR each block with previous ciphertext block
OUses an initialization vector for the first one

Self-Healing Property

- Initial message

O3231343336353837 3231343336353837 32313433363538373231343336353837

- Received as (underlined 4c should be 4b)

Oef7c4cb2b4ce6f3b f6266e3a97af0e2c $746 a b 9 a 6308 f 4256$ 33e60b451b09603d

- Which decrypts to

Oefca61e19f4836f1 3231333336353837 32313433363538373231343336353837
OIncorrect bytes underlined; plaintext "heals" after 2 blocks

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
ODesigned to withstand attacks that were successful on DES

Public Key Cryptography

- Two keys

OPrivate key known only to individual
OPublic key available to anyone

- Idea

OConfidentiality:

- encipher using public key,
- decipher using private key

Olntegrity/authentication:

- encipher using private key,
- decipher using public one

Requirements

1. Given the appropriate key, it must be computationally easy to encipher or decipher a message
2. It must be computationally infeasible to derive the private key from the public key
3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

Diffie-Hellman

- Compute a common, shared key

OCalled a symmetric key exchange protocol

- Based on discrete logarithm problem

OGiven integers n and g and prime number p, compute k such that $n=g^{k} \bmod p$
OSolutions known for small p
OSolutions computationally infeasible as p grows large - hence, choose large p

Algorithm

- Constants known to participants

Oprime p; integer g other than 0,1 or $p-1$

- Alice: $\left(\right.$ private $=k_{A}$, public $\left.=K_{A}\right)$
- Bob: $\left(\right.$ private $=k_{B}$, public $\left.=K_{B}\right)$
$O K_{A}=g^{k A} \bmod p$
$O K_{B}=g^{k B} \bmod p$
- To communicate with Bob,

OAnne computes $S_{A, B}=K_{B}{ }^{k A} \bmod p$

- To communicate with Alice,

OBob computes $S_{B, A}=K_{A}{ }^{k B} \bmod p$

- $S_{A, B}=S_{B, A}$?

Example

- Assume $p=53$ and $g=17$
- Alice chooses $k_{A}=5$

$$
\begin{aligned}
& \text { Let } \mathrm{p}=5, \mathrm{~g}=3 \\
& K_{A}=4, K_{B}=3 \\
& K_{A}=?, K_{B}=?, \\
& S=?,
\end{aligned}
$$

Bob chooses $k_{B}=7$

RSA

- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n
- Totient function $\phi(\mathrm{n})$

O Number of +integers less than n and relatively prime to n

- Relatively prime means with no factors in common with n
- Example: $\phi(10)=4$

O $1,3,7,9$ are relatively prime to 10

- $\phi(77)$?
- $\phi(\mathrm{p})$?
O When p is a prime number
$O K_{B}{ }^{k A} \bmod p=6^{5} \bmod 53=38$
$O K_{A}{ }^{k B} \bmod p=40^{7} \bmod 53=38$
- $\phi(\mathrm{pq})$?

O When p and q are prime numbers

Algorithm

- Choose two large prime numbers p, q

OLet $n=p q$; then $\phi(n)=(p-1)(q-1)$
OChoose $e<n$ relatively prime to $\phi(n)$.
OCompute d such that $\operatorname{ed} \bmod \phi(n)=1$

- Public key: (e, n); private key: $d(o r(d, n))$
- Encipher: $c=m^{e} \bmod n$
- Decipher: $m=c^{d} \bmod n$

Confidentiality using RSA

INFSCI 2935: Introduction to Computer Security

Example: Confidentiality

- Take $p=7, q=11$, so $n=77$ and $\phi(n)=60$
- Say Bob chooses $\left(K_{B}\right) e=17$, making $\left(k_{B}\right) d=53$ O $17 \times 53 \bmod 60=$?
- Alice wants to send Bob secret message HELLO [07 04 1111 14]
$007^{17} \bmod 77=28$
$004^{17} \bmod 77=16$
$011^{17} \bmod 77=44$
$011^{17} \bmod 77=44$
$014^{17} \bmod 77=42$
- Alice sends ciphertext [28 164444 42]

Example

- Bob receives [28 164444 42]
- Bob uses private key $\left(k_{B}\right), d=53$, to decrypt the message:
$\mathrm{O} 28^{53} \bmod 77=07$
H
$016{ }^{53} \bmod 77=04 \quad E$
$044^{53} \bmod 77=11 \quad L$
$044^{53} \bmod 77=11 \quad \mathrm{~L}$
$\mathrm{O} 42^{53} \bmod 77=14 \quad \mathrm{O}$
- No one else could read it, as only Bob knows his private key and that is needed for decryption

Example:

Origin Integrity/Authentication

- Take $p=7, q=11$, so $n=77$ and $\phi(n)=60$
- Alice chooses $\left(K_{A}\right) e=17$, making $\left(K_{A}\right) d=53$
- Alice wants to send Bob message HELLO [07 041111 14] so Bob knows it is what Alice sent and there was no changes in transit
$007^{53} \bmod 77=35$
$004{ }^{53} \bmod 77=09$
$011^{53} \bmod 77=44$
$011^{53} \bmod 77=44$
$014{ }^{53} \bmod 77=49$
- Alice sends [35 094444 49]

Example

- Bob receives 3509444449
- Bob uses Alice's public key (KA), $e=17, n=77$, to decrypt message:
$\bigcirc 35^{17} \bmod 77=07 \mathrm{H}$
O $09^{17} \bmod 77=04 \mathrm{E}$
O $44^{17} \bmod 77=11 \mathrm{~L}$
O $44{ }^{17} \bmod 77=11$ L
○ $49^{17} \bmod 77=14$ O
- Alice sent it as only she knows her private key, so no one else could have enciphered it
- If (enciphered) message's blocks (letters) altered in transit, w ould not decrypt properly

Example:

Confidentiality + Authentication

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
O Alice's keys: public (17, 77); private: 53
O Bob's keys: public: $(37,77)$; private: 13
- Alice enciphers HELLO [07 041111 14]:
$\mathrm{O}\left(07^{53} \mathrm{mod} 77\right)^{37} \mathrm{mod} 77=07$
$O(0453 \bmod 77)^{37} \bmod 77=37$
$O\left(11^{53} \bmod 77\right)^{37} \bmod 77=44$
$O(1153 \bmod 77)^{37} \bmod 77=44$
$O(1453 \bmod 77)^{37} \bmod 77=14$
- Alice sends [07 374444 14]

Example:

Confidentiality + Authentication
OAlice's keys: public (17, 77); private: 53
OBob's keys: public: $(37,77)$; private: 13

- Bob deciphers (07 374444 14):
$\mathrm{O}\left(07^{13} \bmod 77\right)^{17} \bmod 77=07 \quad \mathrm{H}$
$\left.O\left(37{ }^{13} \bmod 77\right)\right)^{17} \bmod 77=04 \quad E$
$O\left(44^{13} \bmod 77\right)^{17} \bmod 77=11 \quad L$
$O\left(44^{13} \bmod 77\right)^{17} \bmod 77=11 \quad L$
$O\left(14^{13} \bmod 77\right)^{17} \bmod 77=14$

Security Services

- Confidentiality

OOnly the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key

- Authentication

OOnly the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

Warnings

- Encipher message in blocks considerably larger than the examples here
Olf 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
OAttacker cannot alter letters, but can rearrange them and alter message meaning
- Example: reverse enciphered message of text ON to get NO

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k=n$).
$O k$ is smaller then n except in unusual circumstances
OKeyed CC: requires a cryptographic key $h=C_{K}(M)$
OKeyless CC: requires no cryptographic key
\bullet Message Digest or One-way Hash Functions
$h=H(M)$
- Can be used for message authentication

OHence, also called Message Authentication Code (MAC)

Mathematical characteristics

- Every bit of the message digest function potentially influenced by every bit of the function's input
- If any given bit of the function's input is changed, every output bit has a 50 percent chance of changing
- Given an input file and its corresponding message digest, it should be computationally infeasible to find another file with the same message digest value

Definition

- Cryptographic checksum function $h: A \rightarrow B$:

1. For any $x \in A, h(x)$ is easy to compute

- Makes hardware/software implementation easy

2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that $h(x)=y$

- One-way proerpty

3. It is computationally infeasible to find $x, x^{\prime} \in A$ such that $x ? x^{\prime}$ and $h(x)=h\left(x^{\prime}\right)$
3'. Alternate form (Stronger): Given any $x \in A$, it is computationally infeasible to find a different $X^{\prime} \in A$ such that $h(x)=h\left(x^{\prime}\right)$.

Collisions

- If x ? x^{\prime} and $h(x)=h\left(x^{\prime}\right), x$ and x^{\prime} are a collision
OPigeonhole principle: if there are n containers for $n+1$ objects, then at least one container will have 2 objects in it.
OApplication: suppose $n=5$ and $k=3$. Then there are 32 elements of A and 8 elements of B, so at least one element of B has at least 4 corresponding elements of A

Keys

- Keyed cryptographic checksum: requires cryptographic key
ODES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
OMD5 and SHA- 1 are best known; others include MD4, HAVAL, and Snefru

Message Digest

Hash Message Authentication Code (HMAC)

- MD2, MD4, MD5 (Ronald Rivest)

O Produces 128 -bit digest;
O MD2 is probably the most secure, longest to compute (hence rarely used)
O MD4 is a fast alternative; MD5 is modification of MD4

- SHA, SHA-1 (Secure Hash Algorithm)

O Related to MD4; used by NIST's Digital Signature
O Produces 160 -bit digest
O SHA-1 may be better

- SHA-256, SHA-384, SHA -512

O 256-, 384-, 512 hash functions designed to be use with the Advanced Encryption Standards (AES)

- Example:

O MD5(There is $\$ 1500$ in the blue bo) $=$ f80b3fde8ecbac 1b515960b9058de7a1
O MD5(There is $\$ 1500$ in the blue box) $=a 4 a 5471 \mathrm{aO} 0019 \mathrm{a} 4 \mathrm{a} 502134 \mathrm{~d} 38 \mathrm{fb} 64729$

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of Ibytes. k^{\prime} is cryptographic key of length b bytes
Olf short, pad with 0 bytes; if long, hash to length b
- ipadis 00110110 repeated b times
- opadis 01011100 repeated b times
- HMAC-h(k, m) = h(k' opad \| $\left.h\left(k^{\prime} \oplus i p a d \| m\right)\right)$
$\bigcirc \oplus$ exclusive or, || concatenation

Security Levels

- Unconditionally Secure

OUnlimited resources + unlimited time
OStill the plaintext CANNOT be recovered from the ciphertext

- Computationally Secure

OCost of breaking a ciphertext exceeds the value of the hidden information

OThe time taken to break the ciphertext exceeds the useful lifetime of the information

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
OOr one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
OComputationally infeasible to derive one from the other

Issues

- Authentication and distribution of keys OSession key
OKey exchange protocols
OKerberos
- Mechanisms to bind an identity to a key
- Generation, maintenance and revoking of keys

Notation

Session, Interchange Keys

- $X \rightarrow Y:\{Z \| W\} k_{X, Y}$

OX sends Y the message produced by concatenating Z and W enciphered by key $k_{X, r}$, which is shared by users X and Y

- $A \rightarrow T:\{Z\} k_{A} \|\{W\} k_{A, T}$
$O A$ sends T a message consisting of the concatenation of Z enciphered using $k_{A} A$'s key, and W enciphered using $k_{A, T}$ the key shared by A and T
- r_{1}, r_{2} nonces (nonrepeating random numbers)

Benefits

- Limits amount of traffic enciphered with single key
OStandard practice, to decrease the amount of traffic an attacker can obtain
- Makes replay attack less effective
- Prevents some attacks

OExample: Alice will send Bob message that is either "BUY" or "SELL".
OEve computes possible ciphertexts \{"BUY"\} k_{B} and \{"SELL"\} k_{B}.
OEve intercepts enciphered message, compares, and gets plaintext at once

Key Exchange Algorithms

- Goal: Alice, Bob use a shared key to communicate secretely
- Criteria

OKey cannot be sent in clear

- Attacker can listen in
- Key can be sent enciphered, or derived from exchanged data plus data not known to an eavesdropper
OAlice, Bob may trust third party
OAll cryptosystems, protocols publicly known
- Only secret data is the keys, ancillary information known only to Alice and Bob needed to derive keys
- Anything transmitted is assumed known to attacker

Classical Key Exchange

- How do Alice, Bob begin?

OAlice can't send it to Bob in the clear!

- Assume trusted third party, Cathy

OAlice and Cathy share secret key k_{A}
OBob and Cathy share secret key k_{B}

- Use this to exchange shared key k_{s}

Simple Key Exchange Protocol

Problems

- How does Bob know he is talking to Alice? OReplay attack: Eve records message from Alice to Bob, later replays it; Bob may think he's talking to Alice, but he isn't OSession key reuse: Eve replays message from Alice to Bob, so Bob re-uses session key
- Protocols must provide authentication and defense against replay

Needham-Schroeder

Argument: Alice talking to Bob

Argument: Bob talking to Alice

- Third message

OEnciphered using key only he, Cathy know

- So Cathy enciphered it

ONames Alice, session key

- Cathy provided session key, says Alice is other party
- Fourth message

OUses session key to determine if it is replay from Eve

- If not, Alice will respond correctly in fifth message
- If so, Eve can't decipher r_{2} and so can't respond, or responds incorrectly

Problem with Needham-Schroeder

- Assumption: all keys are secret
- Question: suppose Eve can obtain session key. How does that affect protocol?
Oln what follows, Eve knows k_{s}

Solution: Denning-Sacco Modification

- In protocol above, Eve impersonates Alice
- Problem: replay in third step

OFirst in previous slide

- Solution: use time stamp T to detect replay ONeeds synchronized clocks
- Weakness: if clocks not synchronized, may either reject valid messages or accept replays
OParties with either slow or fast clocks vulnerable to replay
OResetting clock does not eliminate vulnerability

Otway-Rees Protocol

- Corrects problem

OThat is, Eve replaying the third message in the protocol

- Does not use timestamps

ONot vulnerable to the problems that DenningSacco modification has

- Uses integer n to associate all messages with a particular exchange

```
The Protocol
Alice }\frac{n|\mathrm{ Alice | Bob |{ {r | |n| Alice | Bob } k}\mp@subsup{k}{A}{}}{\mathrm{ Cob }
Cathy }n|{\mp@subsup{r}{1}{}|\mp@subsup{k}{s}{}}\mp@subsup{k}{A}{}|{\mp@subsup{r}{2}{}|\mp@subsup{k}{s}{}}\mp@subsup{k}{B}{}\quad\mathrm{ Bob
Alice }\quadn|{\mp@subsup{r}{1}{}|\mp@subsup{k}{s}{}}\mp@subsup{k}{A}{

\section*{Argument: Alice talking to Bob}
- Fourth message

Olf \(n\) matches first message, Alice knows it is part of this protocol exchange
OCathy generated \(k_{s}\) because only she, Alice know \(k_{A}\)
OEnciphered part belongs to exchange as \(r_{1}\) matches \(r_{1}\) in encrypted part of first message

\section*{Argument: Bob talking to Alice}
- Third message

Olf \(n\) matches second message, Bob knows it is part of this protocol exchange
OCathy generated \(k_{s}\) because only she, Bob know \(k_{B}\)
OEnciphered part belongs to exchange as \(r_{2}\) matches \(r_{2}\) in encrypted part of second message

\section*{Replay Attack}
- Eve acquires old \(k_{s}\), message in third step

On\|\{ \(\left.r_{1} \| k_{s}\right\} k_{A} \|\left\{r_{2} \| k_{s}\right\} k_{B}\)
- Eve forwards appropriate part to Alice

OAlice has no ongoing key exchange with Bob: nmatches nothing, so is rejected
OAlice has ongoing key exchange with Bob: \(n\) does not match, so is again rejected
- If replay is for the current key exchange, and Eve sent the relevant part before Bob did, Eve could simply listen to traffic; no replay involved

\section*{Kerberos}
- Authentication system

O Based on Needham-Schroeder with Denning-Sacco modification
O Central server plays role of trusted third party ("Cathy")
- Ticket (credential)

O Issuer vouches for identity of requester of service
- Authenticator

O Identifies sender
- Alice must
1. Authenticate herself to the system
2. Obtain ticket to use server \(S\)

\section*{Overview}
- User u authenticates to Kerberos server

OObtains ticket \(T_{\mu, T G S}\) for ticket granting service (TGS)
- User \(u\) wants to use service s:

OUser sends authenticator \(A_{u}\), ticket \(T_{u, \text { TGS }}\) to TGS asking for ticket for service
OTGS sends ticket \(T_{u, s}\) to user
OUser sends \(A_{\mu}, T_{u, s}\) to server as request to use \(s\)
- Details follow

\section*{Ticket}

- Credential saying issuer has identified ticket requester
- Example ticket issued to user \(u\) for service \(s\) \(T_{u, s}=s \|\left\{u \| u\right.\) 's address \(\|\) valid time \(\left.\| k_{u, s}\right\} k_{s}\) where:
O \(k_{u, s}\) is session key for user and service
OValid time is interval for which the ticket is valid
O u's address may be IP address or something else
- Note: more fields, but not relevant here

\section*{Authenticator}
- Credential containing identity of sender of ticket

OUsed to confirm sender is entity to which ticket was issued
- Example: authenticator user \(u\) generates for service s
\[
A_{u, s}=\left\{u \| \text { generation time } \| k_{t}\right\} k_{u, s}
\] where:
O \(k_{t}\) is alternate session key
OGeneration time is when authenticator generated
- Note: more fields, not relevant here


\section*{Analysis}
- First two steps get user ticket to use TGS

OUser \(u\) can obtain session key only if \(u\) knows key shared with Cathy
- Next four steps show how u gets and uses ticket for service \(s\)
OService \(s\) validates request by checking sender (using \(A_{u, s}\) ) is same as entity ticket issued to
OStep 6 optional; used when \(u\) requests confirmation

\section*{Problems}
- Relies on synchronized clocks

Olf not synchronized and old tickets, authenticators not cached, replay is possible
- Tickets have some fixed fields

ODictionary attacks possible
OKerberos 4 session keys weak (had much less than 56 bits of randomness); researchers at Purdue found them from tickets in minutes

\section*{Public Key Key Exchange}
- Here interchange keys known
\(O e_{A}, e_{B}\) Alice and Bob's public keys known to all
\(O d_{A}, d_{B}\) Alice and Bob's private keys known only to owner
- Simple protocol
\(\mathrm{O} k_{s}\) is desired session key


\section*{Problem and Solution}

- Vulnerable to forgery or replay

OBecause \(e_{B}\) known to anyone, Bob has no assurance that Alice sent message
- Simple fix uses Alice's private key
\(O k_{s}\) is desired session key

\section*{Notes}
- Can include message enciphered with \(k_{s}\)
- Assumes Bob has Alice's public key, and vice versa
Olf not, each must get it from public server
Olf keys not bound to identity of owner, attacker Eve can launch a man-in-the-middle attack (next slide; Cathy is public server providing public keys)



\section*{Key Generation}
- Goal: generate difficult to guess keys
- Problem statement: given a set of \(K\) potential keys, choose one randomly
OEquivalent to selecting a random number between 0 and \(K-1\) inclusive
- Why is this hard: generating random numbers OActually, numbers are usually pseudo-random, that is, generated by an algorithm

\section*{What is "Random"?}
- Sequence of cryptographically ransom numbers: a sequence of numbers \(n_{1}, n_{2}\), ... such that for any integer \(k>0\), an observer cannot predict \(n_{k}\) even if all of \(n_{1}\), \(\ldots, n_{k-1}\) are known
OBest: physical source of randomness
-Electromagnetic phenomena
- Characteristics of computing environment such as disk latency
-Ambient background noise

\section*{What is "Pseudorandom"?}
- Sequence of cryptographically pseudorandom numbers: sequence of numbers intended to simulate a sequence of cryptographically random numbers but generated by an algorithm OVery difficult to do this well
- Linear congruential generators \(\left[n_{k}=\left(a n_{k-1}+b\right) \bmod n\right]\) broken ( \(\mathrm{a}, \mathrm{b}\) and n are relatively prime)
- Polynomial congruential generators \(\left[n_{k}=\left(a_{j} n_{k-1}{ }^{j}+\ldots+\right.\right.\) \(\left.\left.a_{1} n_{k-1} a_{0}\right) \bmod n\right]\) broken too
- Here, "broken" means next number in sequence can be determined

\section*{Best Pseudorandom Numbers}
- Strong mixing function: function of 2 or more inputs with each bit of output depending on some nonlinear function of all input bits
OExamples: DES, MD5, SHA-1
OUse on UNIX-based systems:
(date; ps gaux) md5
where "ps gaux" lists all information about all processes on system

\section*{Digital Signature}
- Construct that authenticates origin, contents of message in a manner provable to a disinterested third party ("judge")
- Sender cannot deny having sent message (service is "nonrepudiation")
OLimited to technical proofs
- Inability to deny one's cryptographic key was used to sign

OOne could claim the cryptographic key was stolen or compromised
- Legal proofs, etc., probably required;

\section*{Common Error}
- Classical: Alice, Bob share key \(k\)

OAlice sends \(m \|\{m\} k\) to Bob
This is a digital signature
WRONG
- This is not a digital signature

OWhy? Third party cannot determine whether Alice or Bob generated message

\section*{Classical Digital Signatures}
- Require trusted third party

O Alice, Bob each share keys with trusted party Cathy
- To resolve dispute, judge gets \(\{m\} k_{\text {Alice }}\{m\} k_{\text {Bob, }}\) and has Cathy decipher them; if messages matched, contract was signed


\section*{Public Key Digital Signatures}
- Alice's keys are \(d_{\text {Alice }} e_{\text {Alice }}\)
- Alice sends Bob
\[
m \|\{m\} d_{\text {Alice }}
\]
- In case of dispute, judge computes
\(\left\{\{m\} d_{\text {Alice }}\right\} e_{\text {Alice }}\)
- and if it is \(m\), Alice signed message

OShe's the only one who knows \(d_{\text {Alice! }}\) !```

