

Introduction to Computer Security

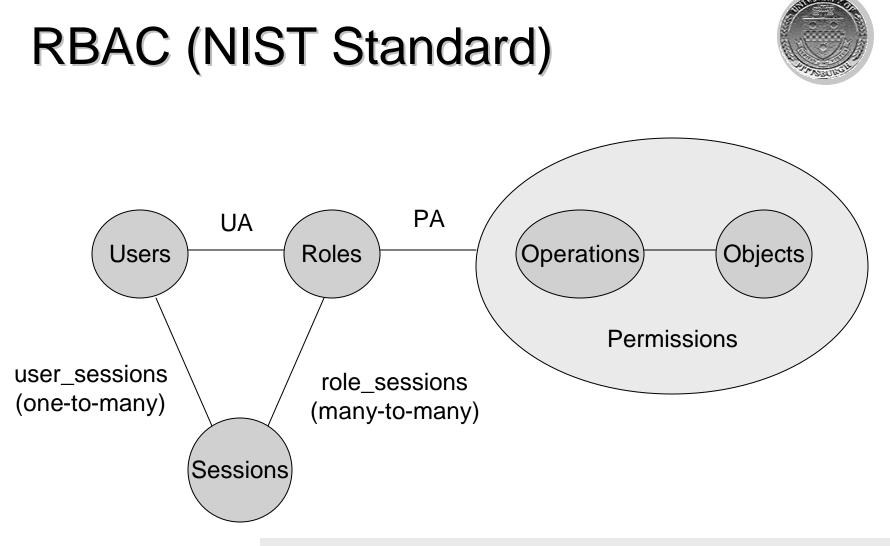
Lecture 5 RBAC, Policy Composition Basic Cryptography

September 25, 2003

Announcements

- TA: Rachata Peechavanish
- Office hours: Tuesdays, 2pm-4pm
- Email: rapst49@pitt.edu
- Place: 2nd Floor Lounge

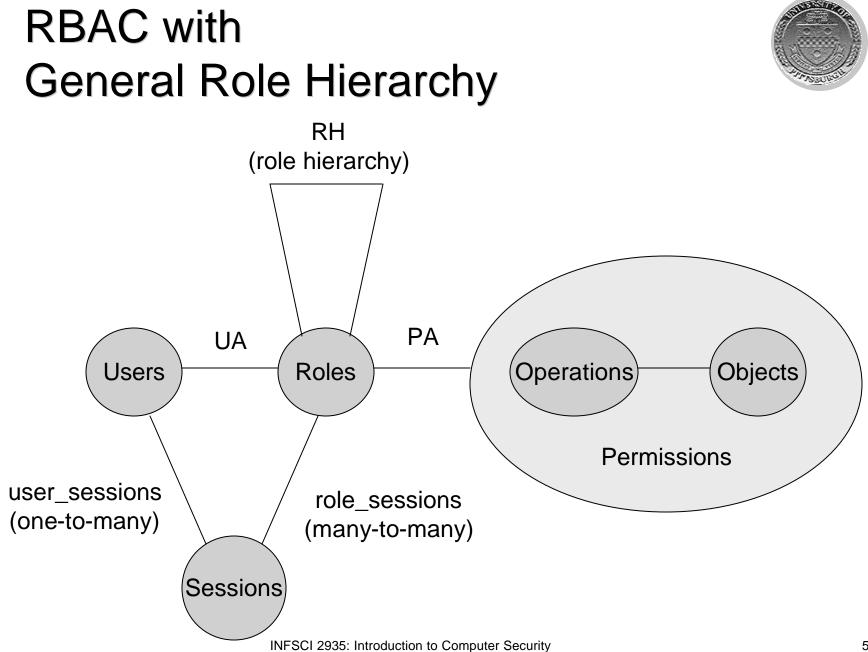
• HW2: Due tomorrow ODrop in Room 719, or OEmail me by that time



An important difference from classical models is that Subject in other models corresponds to a Session in RBAC

Core RBAC (relations)

- Permissions = 2^{Operations x Objects}
- UA ? Users x Roles
- PA? Permissions x Roles
- assigned_users: Roles $\rightarrow 2^{Users}$
- assigned_permissions: Roles $\rightarrow 2^{\text{Permissions}}$
- Op(p): set of operations associated with permission p
- Ob(p): set of objects associated with permission p
- user_sessions: Users $\rightarrow 2^{\text{Sessions}}$
- session_user. Sessions \rightarrow Users
- session_roles: Sessions → 2^{Roles}
 O session_roles(s) = {r | (session_user(s), r) ∈ UA)}
- avail_session_perms: Sessions → 2^{Permissions}



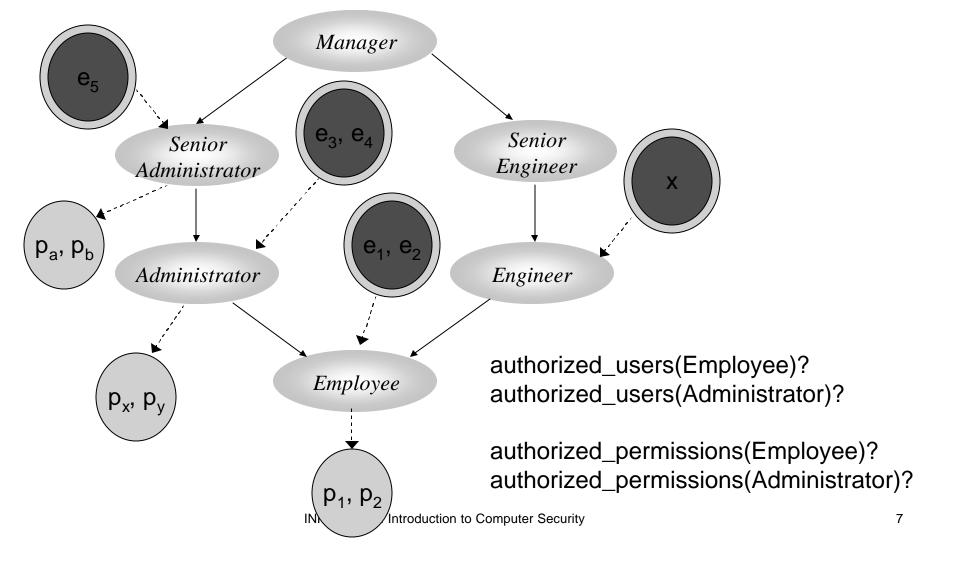
RBAC with General Role Hierarchy

• authorized_users: Roles $\rightarrow 2^{Users}$

authorized_users(r) = { $u \mid r' = r \& (r', u) \in UA$)

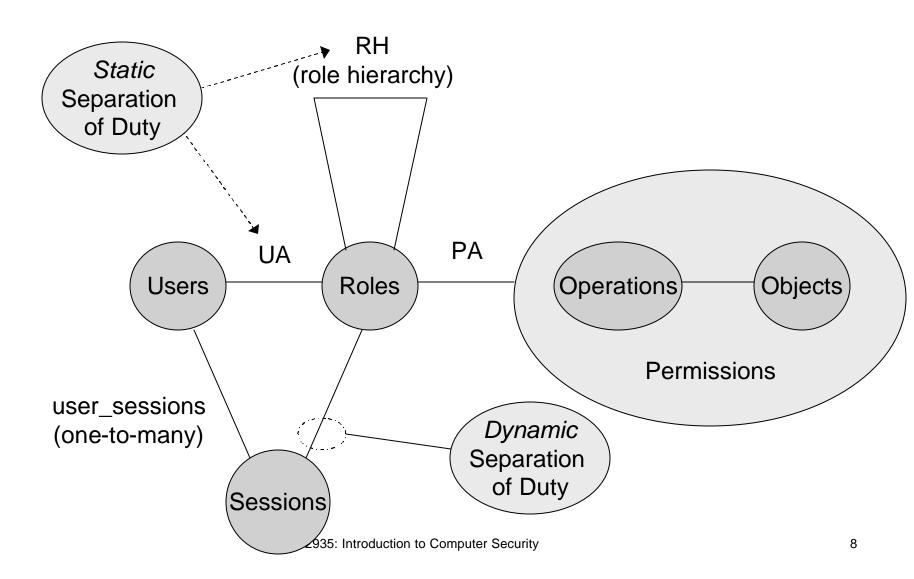
- authorized_permissions: Roles $\rightarrow 2^{\text{Permissions}}$ authorized_users(r) = {p | $r' = r \& (p, r') \in PA$)
- RH? Roles x Roles is a partial order
 Ocalled the inheritance relation
 Owritten as =.

 $(r_1 = r_2) \rightarrow authorized_users(r_1)$? $authorized_users(r_2)$ & $authorized_permisssions(r_2)$? $authorized_permisssions(r_1)$



Example

Constrained RBAC



Static Separation of Duty

- SSD? 2^{Roles} x N
- In absence of hierarchy
 - O Collection of pairs (*RS*, *n*) where *RS* is a role set, n = 2; for all (*RS*, *n*) ∈ *SSD*, for all t? *RS*:

 $|t| = n \rightarrow n_{r \in t} assigned_users(r) = \emptyset$

• In presence of hierarchy

O Collection of pairs (RS, n) where RS is a role set, n = 2; for all (RS, n) ∈ SSD, for all t? RS:

 $|t| = n \rightarrow n_{r \in t}$ authorized_uers(r)= \emptyset

• DSD? 2^{Roles} x N

OCollection of pairs (*RS*, *n*) where *RS* is a role set, n = 2;

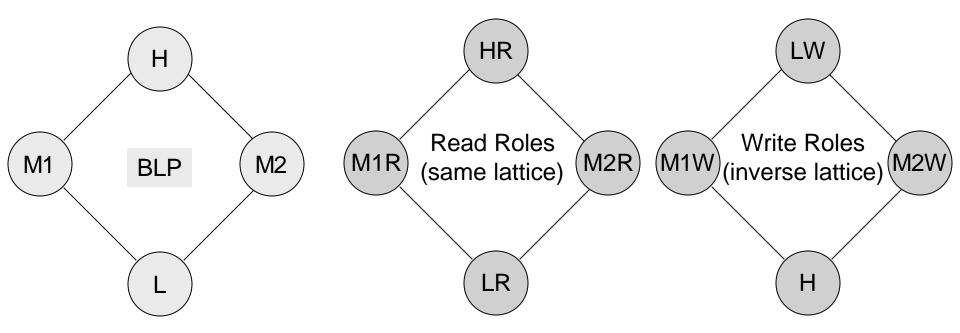
OA user cannot activate *n* or more roles from RS OFormally?? [HW3?]

OWhat if both SSD and DSD contains (*RS*, *n*)?

•Consider (*RS*, *n*) = ({ r_1 , r_2 , r_3 }, 2)?

- If SSD can r_1 , r_2 and r_3 be assigned to u?
- If DSD can r_1 , r_2 and r_3 be assigned to u?

MAC using RBAC



Transformation rules

- $R = \{L_1R, L_2R, ..., L_nR, L_1W, L_2W, ..., L_nW\}$
- Two separate hierarchies for $\{L_1R, L_2R, ..., L_nR\}$ and $\{L_1W, L_2W, ..., L_nW\}$
- Each user is assigned to exactly two roles: xR and LW
- Each session has exactly two roles yR and yW
- Permission (o, r) is assigned to xR iff (o, w) is assigned to xW)

RBAC's Benefits

TABLE 1: ESTIMATED TIME (IN MINUTES) REQUIRED FOR ACCESS ADMINISTRATIVE TASKS

TASK	RBAC	NON-RBAC	DIFFERENCE
Assign existing privileges to new users	6.14	11.39	5.25
Change existing users' privileges	9.29	10.24	0.95
Establish new privileges for existing users	8.86	9.26	0.40
Termination of privileges	0.81	1.32	0.51

Cost Benefits

 Saves about 7.01 minutes per employee, per year in administrative functions
 OAverage IT amin salary - \$59.27 per hour

OThe annual cost saving is:

•\$6,924/1000; \$692,471/100,000

- Reduced Employee downtime
 - O if new transitioning employees receive their system privileges faster, their productivity is increased
 - O 26.4 hours for non-RBAC; 14.7 hours for RBAC
 - O For average employee wage of \$39.29/hour, the annual productivity cost savings yielded by an RBAC system:
 - •\$75000/1000; \$7.4M/100,000

Policy Composition

Problem: Consistent Policies

Policies defined by different organizations
 ODifferent needs
 OBut sometimes subjects/objects overlap

• Can all policies be met?

ODifferent categories

• Build lattice combining them

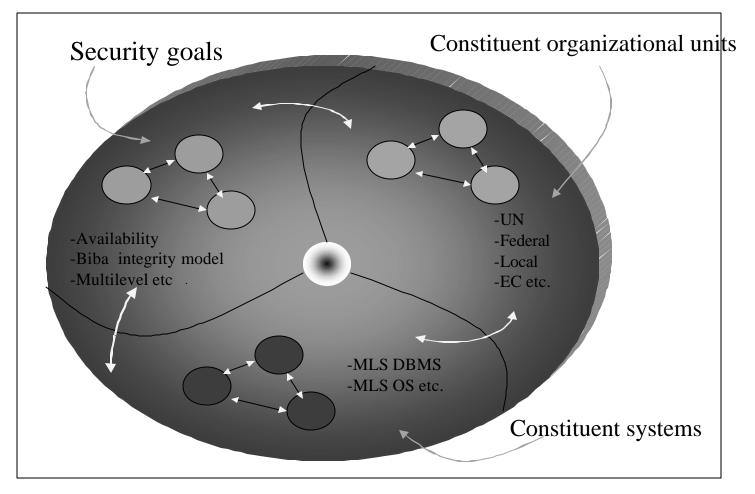
ODifferent security levels

Need to be *levels* – thus must be able to order

OWhat if different DAC and MAC policies need to be integrated?

Multidomain Environments

• Heterogeneity exists at several levels



Multidomain Challenges

Key challenges

- Semantic heterogeneity
- Secure interoperation
- Assurance and risk propagation
- Security Management

Semantic heterogeneity

- Different systems use different security policies Oe.g., Chinese wall, BLP policies etc.
- Variations of the same policies Oe.g., BLP model and its variations
- Naming conflict on security attributes O Similar roles with different names O Similar permission sets with different role names
- Structural conflict

Odifferent multilevel lattices / role hierarchies

 Different Commercial-Off-The-Self (COTS) products **INFSCI 2935: Introduction to Computer Security**

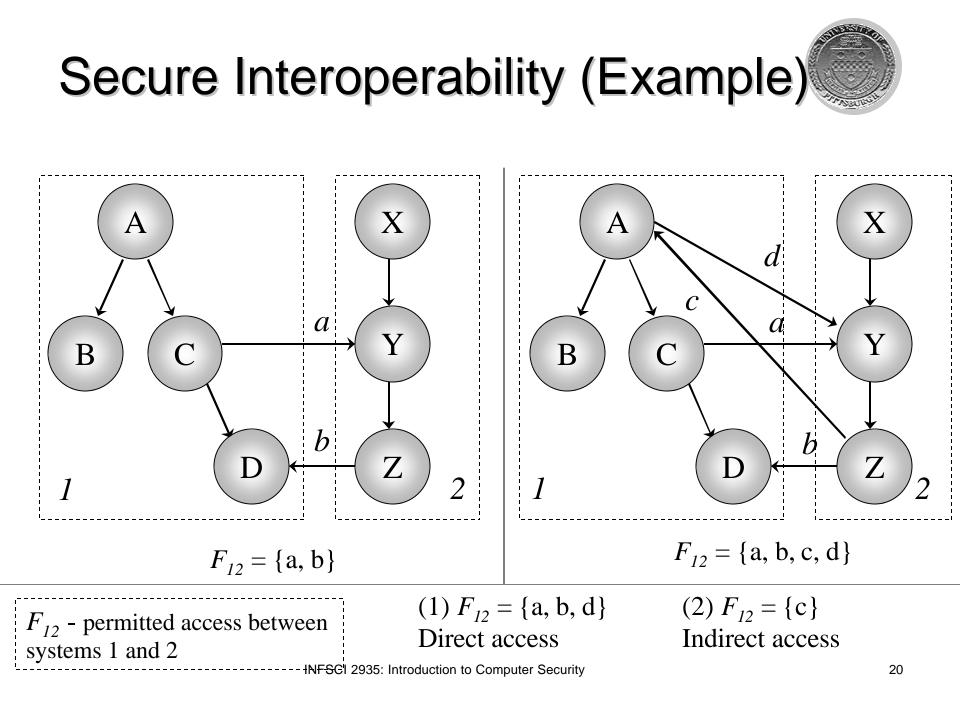
Secure Interoperability

• Principles of secure interoperation [Gong, 96] Principle of autonomy

• If an access is permitted within an individual system, it must also be permitted under secure interoperation

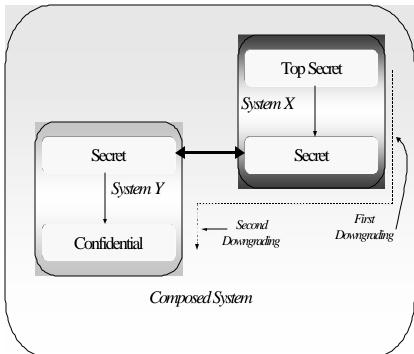
Principle of security

- If an access is not permitted within an individual system, it must not be permitted under secure interoperation
- Interoperation of secure systems can create new security breaches



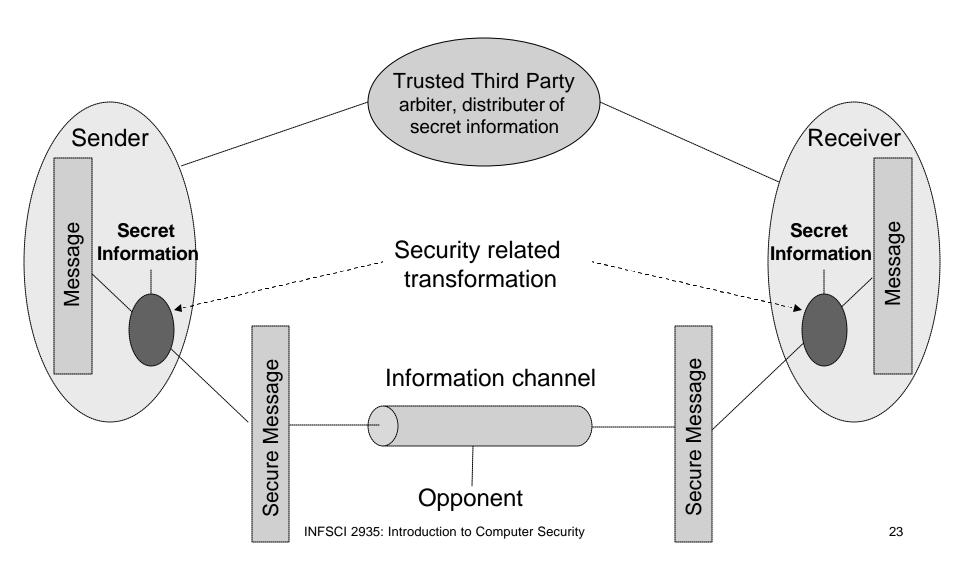
Assurance and Risk Propagation & Security Management

- Assurance and Risk propagation
 - OA breach in one component affects the whole environment
 - OCascading problem
- Management
 - OCentralized/Decentralized OManaging metapolicy OManaging policy evolution

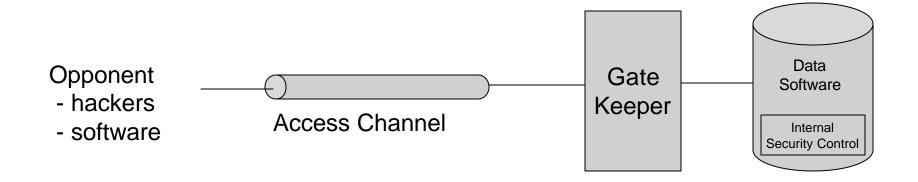


Cryptography & Network Security

Secure Information Transmission (network security model)



Security of Information Systems (Network access model)



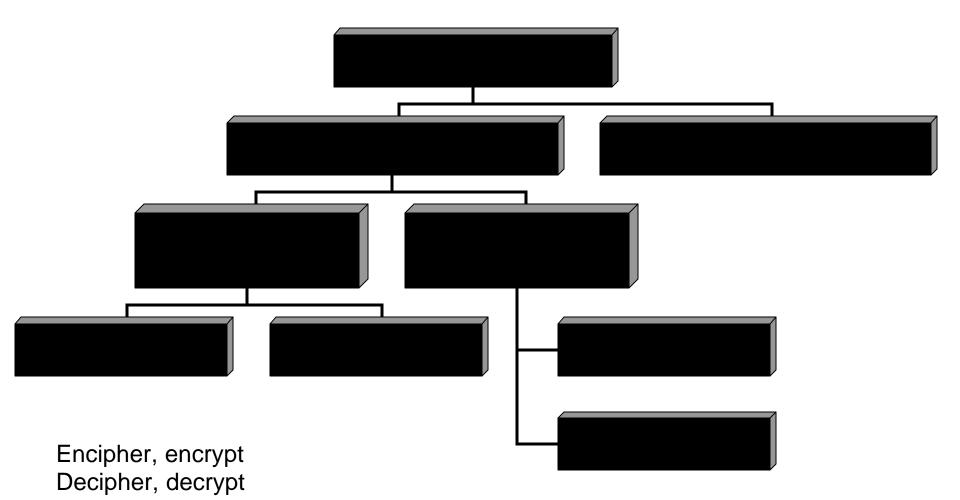
Gatekeeper – firewall or equivalent, password-based login

Internal Security Control – Access control, Logs, audits, virus scans etc.

Issues in Network security

- Distribution of secret information to enable secure exchange of information is important
- Effect of communication protocols needs to be considered
- Encryption (cryptography) if used cleverly and correctly, can provide several of the security services
- Physical and logical placement of security mechanisms
- Countermeasures need to be considered

Cryptology



INFSCI 2935: Introduction to Computer Security

The modulo operation

• What is 27 mod 5?

Definition

O Let a, r, m be integers and let m > 0

O We write $a \equiv r \mod m$ if m divides r - a (or a - r) and $0 \le r < m$

O m is called the modulus

O r is called the remainder

• Note that *r* is positive or zero

O Note that a = m.q + r where q is another integer (quotient)

• Example: $42 \equiv 6 \mod 9$

O 9 divides 42-6 = 36

- \bigcirc 9 also divides 6-42 = -36
- O Note that 42 = 9.4 + 6

•
$$(q = 4)$$

Elementary Number Theory

- Natural numbers $N = \{1, 2, 3, ...\}$
- Whole numbers W = {0,1,2,3, ...}
- Integers $Z = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$

Divisors

OA number *b* is said to divide *a* if a = mb for some *m* where $a,b,m \in Z$

OWe write this as *b* | *a*

•Read as "b divides a"

Divisors

• Some common properties $O \text{ If } a \mid 1, a = +1 \text{ or } -1$ $O \text{ If } a \mid b \text{ and } b \mid a \text{ then } a = +b \text{ or } -b$ $O \text{ Any } b \in \mathbb{Z} \text{ divides } 0 \text{ if } b \neq 0$ $O \text{ If } b \mid g \text{ and } b \mid h \text{ then } b \mid (mg + nh) \text{ where } b, m, n, g, h \in \mathbb{Z}$

• Examples:

O The positive divisors of 42 are 1,2,3,6,7,14,21,42 O 3|6 and 3|21 => 3|21m+6n for $m,n \in \mathbb{Z}$

Prime Numbers

- An integer p is said to be a prime number if its only positive divisors are 1 and itself
 01, 3, 7, 11, ...
- Any integer can be expressed as a *unique* product of prime numbers raised to positive integral powers

• Examples

```
\bigcirc 7569 = 3 \times 3 \times 29 \times 29 = 3^2 \times 29^2
\bigcirc 5886 = 2 \times 27 \times 109 = 2 \times 3^3 \times 109
\bigcirc 4900 = 7^2 \times 5^2 \times 2^2
\bigcirc 100 = ?
```

```
O 250 = ?
```

• This process is called *Prime Factorization*

Greatest common divisor (GCD)

- Definition: Greatest Common Divisor OThis is the largest divisor of *both a* and *b*
- Given two integers a and b, the positive integer c is called their GCD or greatest common divisor if and only if
 - $\bigcirc c \mid a \text{ and } c \mid b$

OAny divisor of both a and b also divides c

- Notation: gcd(a, b) = c
- Example: gcd(49,63) = ?

Relatively Prime Numbers

 Two numbers are said to be relatively prime if their gcd is 1

O Example: 63 and 22 are relatively prime

 How do you determine if two numbers are relatively prime?

O Find their GCD or

O Find their prime factors

 If they do not have a common prime factor other than 1, they are relatively prime

O Example: $63 = 9 \times 7 = 3^2 \times 7$ and $22 = 11 \times 2$

Modular Arithmetic Again

• We say that $a \equiv b \mod m$ if $m \mid a - b$ O Read as: *a* is congruent to *b* modulo *m* O *m* is called the modulus O Example: $27 \equiv 2 \mod 5$

Note that b is the remainder after dividing a by m BUT

O Example: $27 \equiv 7 \mod 5$ and $7 \equiv 2 \mod 5$

• $a \equiv b \mod m \Longrightarrow b \equiv a \mod m$ O Example: $2 \equiv 27 \mod 5$

 We usually consider the smallest positive remainder which is sometimes called the residue

Modulo Operation

- The modulo operation "reduces" the infinite set of integers to a finite set
- Example: modulo 5 operation
 OWe have five sets
 - •{...,-10, -5, 0, 5, 10, ...} => $a \equiv 0 \mod 5$
 - •{...,-9,-4,1,6,11,...} => $a \equiv 1 \mod 5$
 - •{...,-8,-3,2,7,12,...} => $a \equiv 2 \mod 5$, etc.
 - OThe set of residues of integers modulo 5 has five elements $\{0,1,2,3,4\}$ and is denoted Z_5 .

Brief History

- All encryption algorithms from BC till 1976 were secret key algorithms
 - OAlso called private key algorithms or symmetric key algorithms
 - OJulius Caesar used a substitution cipher OWidespread use in World War II (enigma)
- Public key algorithms were introduced in 1976 by Whitfield Diffie and Martin Hellman

Cryptosystem

•(E, D, M, K, C)

OE set of encryption functions $e: M \times K \rightarrow C$ OD set of decryption functions $d: C \times K \rightarrow M$ OM set of plaintexts OK set of keys OC set of ciphertexts

Example

Example: Cæsar cipher OM = { sequences of letters } $OK = \{i \mid i \text{ is an integer and } 0 = i = 25 \}$ $OE = \{ E_k \mid k \in K \text{ and for all letters } m, \}$ $E_{k}(m) = (m + k) \mod 26$ $OD = \{ D_k \mid k \in K \text{ and for all letters } c, \}$ $D_{k}(c) = (26 + c - k) \mod 26$ OC = M

Cæsar cipher

• Let k = 9, m = "VELVET" (21 4 11 21 4 19) $\bigcirc E_k(m) = (30\ 13\ 20\ 30\ 13\ 28)\ mod\ 26$ = "4 13 20 4 13 2" = "ENUENC" $\bigcirc D_k(m) = (26 + c - k)\ mod\ 26$ = (21 30 37 21 30 19) mod 26 = "21 4 11 21 4 19" = "VELVET"

Α	В	С	D	Е	F	G	Н	I	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ
13	14	15	16	17	18	19	20	21	22	23	24	25

Attacks

Ciphertext only:

Oadversary has only Y;

O goal is to find plaintext, possibly key

• Known plaintext.

O adversary has X, Y; O goal is to find K

Chosen plaintext.

O adversary may gets a specific plaintext enciphered; O goal is to find key

Attacking a conventional cryptosystem

Cryptoanalysis:

- OArt/Science of breaking an encryption scheme
- OExploits the characteristics of algorithm/ mathematcis
 - Recover plaintext from the ciphertext
 - Recover a key that can be used to break many ciphertexts

Brute force

OTries all possible keys on a piece of ciphertext

 If the number of keys is small, Ed can break the encryption easily

Basis for Cyptoanalysis

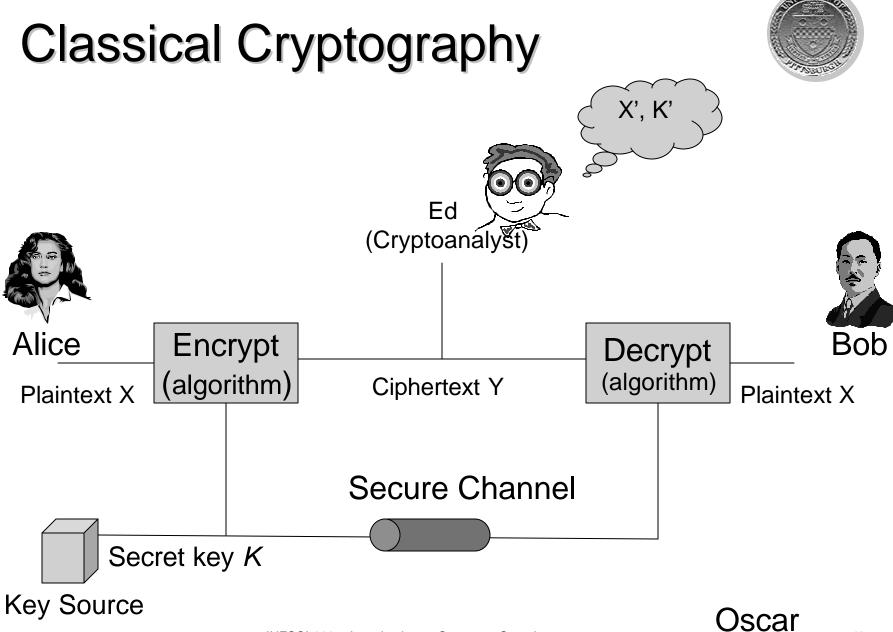
Mathematical attacks

OBased on analysis of underlying mathematics

Statistical attacks

OMake assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), *etc.* (called models of the language).

OExamine ciphertext, correlate properties with the assumptions.



Classical Cryptography

• Sender, receiver share common key

OKeys may be the same, or trivial to derive from one another

OSometimes called *symmetric cryptography*

• Two basic types

OTransposition ciphers

OSubstitution ciphers

Product ciphers

OCombinations of the two basic types

Classical Cryptography

- $y = E_k(x)$: Ciphertext \rightarrow Encryption
- $x = D_k(y)$: Plaintext \rightarrow Decryption
- k = encryption and decryption key
- The functions $E_k()$ and $D_k()$ must be inverses of one another

 $OE_k(D_k(y)) = ?$ $OD_k(E_k(x)) = ?$ $OE_k(D_k(x)) = ?$

Transposition Cipher

 Rearrange letters in plaintext to produce ciphertext

• Example (Rail-Fence Cipher) OPlaintext is "HELLO WORLD" ORearrange as HLOOL

ELWRD

OCiphertext is HLOOL ELWRD

Attacking the Cipher

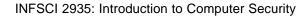
Anagramming

Olf 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition

ORearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 OHE 0.0305
 OHO 0.0043
 OHL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 OWH 0.0026
 OEH, LH, OH, RH, DH = 0.0002
- Implies E follows H



Arrange so that H and E are adjacent ΗE T.T. ΟW

 Read off across, then down, to get original plaintext

OR

LD

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 OPlaintext is HELLO WORLD;
 OKey is 3, usually written as letter 'D'
 OCiphertext is KHOOR ZRUOG

Attacking the Cipher

• Brute Force: Exhaustive search

Olf the key space is small enough, try all possible keys until you find the right one

OCæsar cipher has 26 possible keys

Statistical analysis

OCompare to 1-gram model of English

Statistical Attack

- Ciphertext is KHOOR ZRUOG
- Compute frequency of each letter in ciphertext:
 - G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1
- Apply 1-gram model of English
 OFrequency of characters (1-grams) in English is on next slide

Character Frequencies (Denning)

а	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	0	0.080	u	0.030
С	0.030	j	0.005	р	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
е	0.130	I	0.035	r	0.065	X	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

Statistical Analysis

- f(c) frequency of character c in ciphertext
- φ(*i*):
 - O correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is *i*

$$\bigcirc \varphi(i) = \sum_{0 = c = 25} f(c) p(c-i)$$

Oso here,

$$\varphi(i) = 0.1p(6-i) + 0.1p(7-i) + 0.1p(10-i) + 0.3p(14-i) + 0.2p(17-i) + 0.1p(20-i) + 0.1p(25-i)$$

• p(x) is frequency of character x in English

O Look for maximum correlation!

Correlation: $\varphi(i)$ for 0 = i = 25

i	j (<i>i</i>)	i	j (<i>i</i>)	i	j (<i>i</i>)	i	j (<i>i</i>)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

The Result

- Ciphertext is KHOOR ZRUOG
- Most probable keys, based on φ:
 - $\bigcirc i = 6, \phi(i) = 0.0660$

• plaintext EBIIL TLOLA (K = 10, (26 + 10 - 6) mod 26 = 4 = E)

 $\bigcirc i = 10, \ \phi(i) = 0.0635$

• plaintext AXEEH PHKEW (K = 10, (26 + 10 - 10) mod 26 = 0 = A)

 $\bigcirc i = 3, \phi(i) = 0.0575$

• plaintext HELLO WORLD (K = 10, (26 + 10 - 3) mod 26 = H = E)

 $\bigcirc i = 14, \phi(i) = 0.0535$

• plaintext WTAAD LDGAS

Only English phrase is for i = 3
 O That's the key (3 or 'D')

Cæsar's Problem

• Key is too short

OCan be found by exhaustive search

- OStatistical frequencies not concealed well
 - •They look too much like regular English letters

So make it longer

OMultiple letters in key

Oldea is to smooth the statistical frequencies to make cryptanalysis harder

Vigenère Cipher

• Like Cæsar cipher, but use a phrase

Example

OMessage THE BOY HAS THE BALL OKey VIG

OEncipher using Cæsar cipher for each letter:

keyVIGVIGVIGVIGVIGVplainTHEBOYHASTHEBALLcipherOPKWWECIYOPKWIRG

Relevant Parts of Tableau

V

V

W

Ζ

G

J

Ν

 \cap

Т

	G	I
A	G	I
B	Η	J
E	K	М
H	Ν	P
L	R	Т
0	U	W
S	Y	A
T	Z	В
Y	Ε	Н

- Tableau with relevant rows, columns only
- Example encipherments:
 O key V, letter T: follow V column down to T row (giving "O")
 - O Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

• *period*: length of key Oln earlier example, period is 3

tableau: table used to encipher and decipher

OVigènere cipher has key letters on top, plaintext letters on the left

 polyalphabetic: the key has several different letters

OCæsar cipher is monoalphabetic

Attacking the Cipher

Key to attacking vigenère cipher
 Odetermine the key length
 Olf the keyword is n, then the cipher consists of n monoalphabetic substitution ciphers

keyVIGVIGVIGVIGVIGVplainTHEBOYHASTHEBALLcipherOPKWWECIYOPKWIRG

keyDECEPTIVEDECEPTIVEDECEPTIVEplainWEAREDISCOVEREDSAVEYOURSELFcipherZICVTWQNGRZGVTWAVZHCQYGLMGJ

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - O Provably unbreakable; Why?
 - O Consider ciphertext DXQR. Equally likely to correspond to
 - plaintext DOIT (key AJIY) and
 - plaintext DONT (key AJDY) and any other 4 letters
 - O Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are *not* random

Overview of the DES

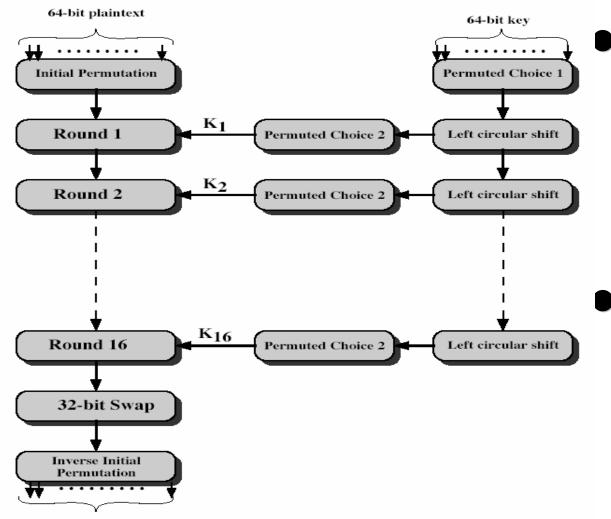
- A block cipher:
 - Oencrypts blocks of 64 bits using a 64 bit key Ooutputs 64 bits of ciphertext
 - OA product cipher
 - performs both substitution and transposition (permutation) on the bits

Obasic unit is the bit

 Cipher consists of 16 rounds (iterations) each with a round key generated from the usersupplied key

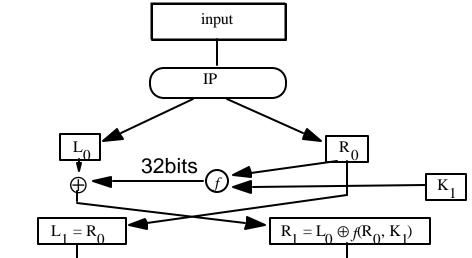
DES

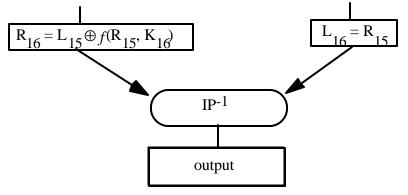
64-bit ciphertext



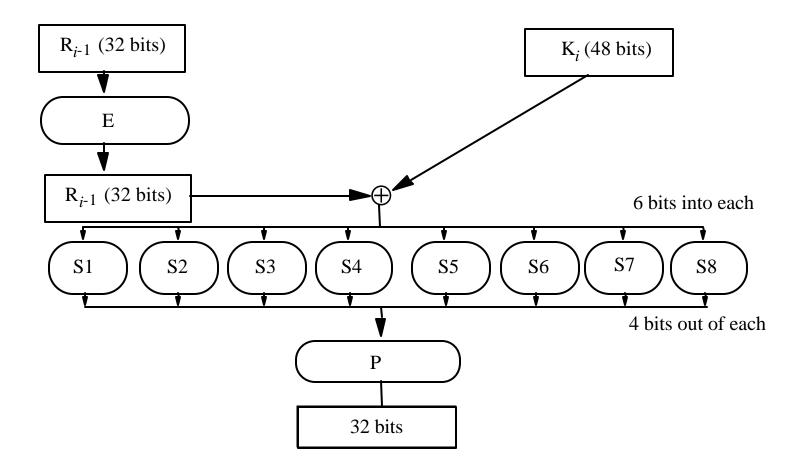
- Round keys are 48 bits each
 - O Extracted from 64 bits
 - O Permutation applied
- Deciphering involves using round keys in reverse

Encipherment





The *f* Function



Controversy

Considered too weak

ODiffie, Hellman said in a few years technology would allow DES to be broken in days

• Design using 1999 technology published

ODesign decisions not public

S-boxes may have backdoors

Undesirable Properties

• 4 weak keys

OThey are their own inverses

12 semi-weak keys

O Each has another semi-weak key as inverse

• Complementation property $ODES_k(m) = c \Rightarrow DES_k(m') = c'$

S-boxes exhibit irregular properties O Distribution of odd, even numbers non-random O Outputs of fourth box depends on input to third box

Public Key Cryptography

Two keys

OPrivate key known only to individual
OPublic key available to anyone
Public key, private key inverses

●ldea

OConfidentiality:

•encipher using public key,

decipher using private key

OIntegrity/authentication:

•encipher using private key,

• decipher using public one INFSCI 2935: Introduction to Computer Security

Requirements

- It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- It must be computationally infeasible to determine the private key from a chosen plaintext attack

Diffie-Hellman

Compute a common, shared key OCalled a symmetric key exchange protocol Based on discrete logarithm problem OGiven integers *n* and *g* and prime number *p*, compute k such that $n = q^k \mod p$ OSolutions known for small p OSolutions computationally infeasible as p grows large

Algorithm

• Constants known to participants Oprime *p*, integer *g* ? 0, 1, *p*–1

Anne

Ochooses private key kAnne, Ocomputes public key $KAnne = g^{kAnne} \mod p$

- To communicate with Bob,
 OAnne computes Kshared = KBob^{kAnne} mod p
- To communicate with Anne,
 OBob computes Kshared = KAnne^{kBob} mod p

Example

- Alice chooses kAlice = 5OThen *KAlice* = $17^5 \mod 53 = 40$ Bob chooses kBob = 7 OThen *KBob* = $17^7 \mod 53 = 6$ Shared key: O*KBob*^{kAlice} mod $p = 6^5$ mod 53 = 38 \bigcirc KAlice^{kBob} mod $p = 40^7 \mod 53 = 38$
- Assume p = 53 and g = 17

- Let p = 5, g = 3kA = 4, kB = 3
- KA = ?, KB = ?,KSshared = ?,

RSA

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n

• Totient function $\phi(n)$

- O Number of + integers less than n and relatively prime to n
 - Relatively prime means with no factors in common with n
- Example: $\phi(10) = 4$

O 1, 3, 7, 9 are relatively prime to 10

- **(77)** ?

O When p is a prime number

\$\operatorname{(pq) ?}\$
 O When p and q are prime numbers

Algorithm

Choose two large prime numbers p, q
OLet n = pq; then φ(n) = (p-1)(q-1)
OChoose e < n relatively prime to φ(n).
OCompute d such that ed mod φ(n) = 1
Public key: (e, n); private key: d
Encipher: c = m^e mod n
Decipher: m = c^d mod n

Example: Confidentiality

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53 O 17*53 mod 60 = ?
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 007¹⁷ mod 77 = 28
 004¹⁷ mod 77 = 16
 011¹⁷ mod 77 = 44
 011¹⁷ mod 77 = 44
 014¹⁷ mod 77 = 42
- Bob sends ciphertext [28 16 44 44 42]

Example

- Alice receives [28 16 44 44 42]
- Alice uses private key, d = 53, to decrypt message:
 - $O 28^{53} \mod 77 = 07$ H
 - $O \, 16^{53} \, \text{mod} \, 77 = 04$ E
 - O 44⁵³ mod 77 = 11
 - O 44⁵³ mod 77 = 11

 $O 42^{53} \mod 77 = 14$ O

 No one else could read it, as only Alice knows her private key and that is needed for decryption

Example: Origin Integrity/Authentication

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Alice wants to send Bob message HELLO (07 04 11 11 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated)

O 07⁵³ mod 77 = 35

O 04⁵³ mod 77 = 09

- O 11⁵³ mod 77 = 44
- $O \ 11^{53} \ mod \ 77 = 44$

O 14⁵³ mod 77 = 49

• Alice sends 35 09 44 44 49

Example

- Bob receives 35 09 44 44 49
- Bob uses Alice's public key, e = 17, n = 77, to decrypt message:
 - $O \ 35^{17} \ \text{mod} \ 77 = 07$ H
 - $O \ 09^{17} \mod 77 = 04$ E
 - $O 44^{17} \mod 77 = 11$ L
 - $O 44^{17} \mod 77 = 11$ L
 - $O 49^{17} \mod 77 = 14$ O
- Alice sent it as only she knows her private key, so no one else could have enciphered it
- If (enciphered) message's blocks (letters) altered in transit, would not decrypt properly

Example: Confidentiality + Authentication

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
 O Alice's keys: public (17, 77); private: 53
 O Bob's keys: public: (37, 77); private: 13
- Alice enciphers HELLO (07 04 11 11 14):

 $O (07^{53} \mod 77)^{37} \mod 77 = 07$ $O (04^{53} \mod 77)^{37} \mod 77 = 37$ $O (11^{53} \mod 77)^{37} \mod 77 = 44$

 $O (11^{53} \mod 77)^{37} \mod 77 = 44$

O (14⁵³ mod 77)³⁷ mod 77 = 14

• Alice sends 07 37 44 44 14

Example: Confidentiality + Authentication

OAlice's keys: public (17, 77); private: 53 OBob's keys: public: (37, 77); private: 13 • Bob deciphers (07 37 44 44 14): $O(07^{13} \mod 77)^{17} \mod 77 = 07$ Н $O(37^{13} \mod 77)^{17} \mod 77 = 04$ E $O(44^{13} \mod 77)^{17} \mod 77 = 11$ $O(44^{13} \mod 77)^{17} \mod 77 = 11$ $O(14^{13} \mod 77)^{17} \mod 77 = 14$

Security Services

Confidentiality

OOnly the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key

Authentication

OOnly the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

Integrity

OEnciphered letters cannot be changed undetectably without knowing private key

Non-Repudiation

OMessage enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
 - Olf 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - OAttacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Security Levels

Unconditionally Secure

OUnlimited resources + unlimited time

OStill the plaintext CANNOT be recovered from the ciphertext

Computationally Secure

OCost of breaking a ciphertext exceeds the value of the hidden information

OThe time taken to break the ciphertext exceeds the useful lifetime of the information

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
 OOr one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys

OComputationally infeasible to derive one from the other

Notation

$\bullet X \to Y : \{ Z \mid | W \} k_{X,Y}$

O X sends Y the message produced by concatenating Z and W enciphered by key $k_{X,Y}$, which is shared by users X and Y

• $A \rightarrow T$: { Z } $k_A \parallel$ { W } $k_{A,T}$

O A sends T a message consisting of the concatenation of Z enciphered using k_A , A's key, and W enciphered using $k_{A,T}$, the key shared by A and T

• r_1 , r_2 nonces (nonrepeating random numbers)

Session, Interchange Keys

• Alice wants to send a message *m* to Bob

OAssume public key encryption

- O Alice generates a random cryptographic key k_s and uses it to encipher m
 - To be used for this message *only*
 - Called a session key
- O She enciphers k_s with Bob's public key k_B
 - k_B enciphers all session keys Alice uses to communicate with Bob
 - Called an interchange key

O Alice sends $\{m\}k_s\{k_s\}k_B$

Benefits

- Limits amount of traffic enciphered with single key
 - O Standard practice, to decrease the amount of traffic an attacker can obtain

Prevents some attacks

O Example: Alice will send Bob message that is either "BUY" or "SELL". Eve computes possible ciphertexts {"BUY"} k_B and {"SELL"} k_B . Eve intercepts enciphered message, compares, and gets plaintext at once

Key Exchange Algorithms

• Goal: Alice, Bob get shared key

OKey cannot be sent in clear

- Attacker can listen in
- Key can be sent enciphered, or derived from exchanged data plus data not known to an eavesdropper

O Alice, Bob may trust third party

OAll cryptosystems, protocols publicly known

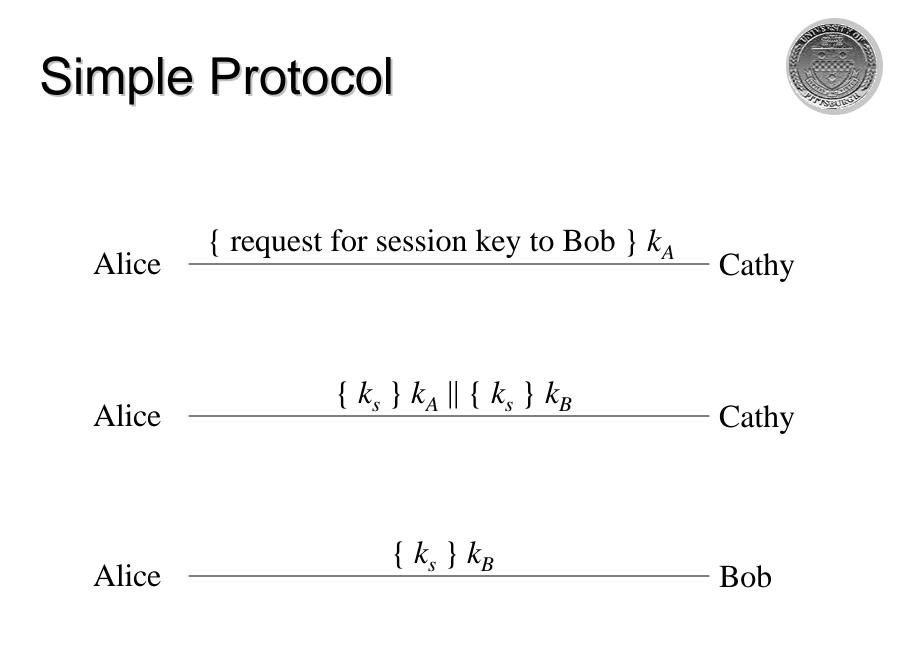
- Only secret data is the keys, ancillary information known only to Alice and Bob needed to derive keys
- Anything transmitted is assumed known to attacker

Classical Key Exchange

Bootstrap problem: how do Alice, Bob begin?

OAlice can't send it to Bob in the clear!

- Assume trusted third party, Cathy OAlice and Cathy share secret key k_A OBob and Cathy share secret key k_B
- Use this to exchange shared key k_s



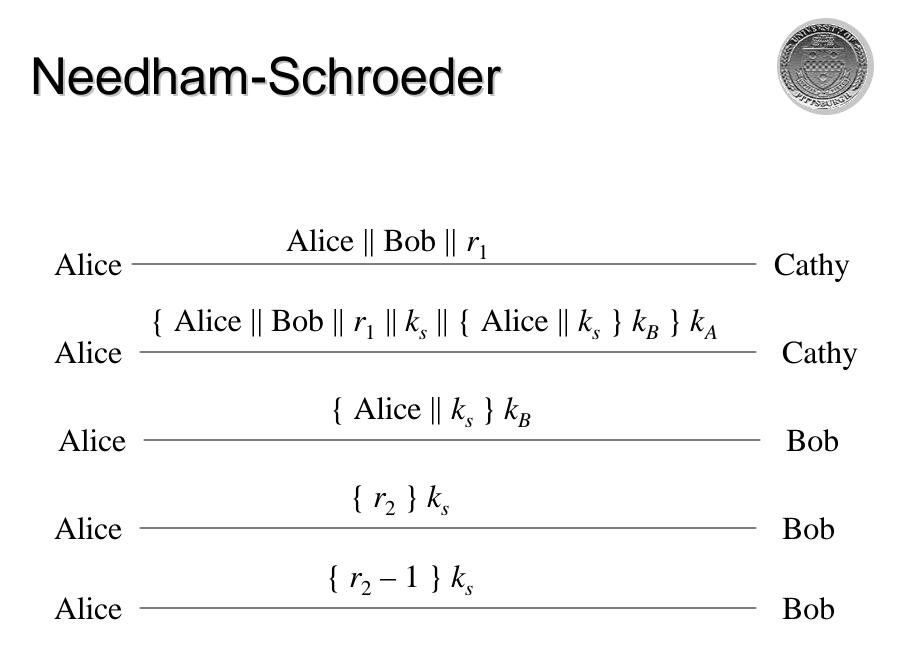
Problems

• How does Bob know he is talking to Alice?

OReplay attack: Eve records message from Alice to Bob, later replays it; Bob may think he's talking to Alice, but he isn't

OSession key reuse: Eve replays message from Alice to Bob, so Bob re-uses session key

Protocols must provide authentication and defense against replay



Argument: Alice talking to Bob

Second message

O Enciphered using key only she, Cathy know

• So Cathy enciphered it

O Response to first message

• As r_1 in it matches r_1 in first message

Third message

O Alice knows only Bob can read it

• As only Bob can derive session key from message

OAny messages enciphered with that key are from Bob

Argument: Bob talking to Alice

• Third message

O Enciphered using key only he, Cathy know

• So Cathy enciphered it

ONames Alice, session key

Cathy provided session key, says Alice is other party

Fourth message

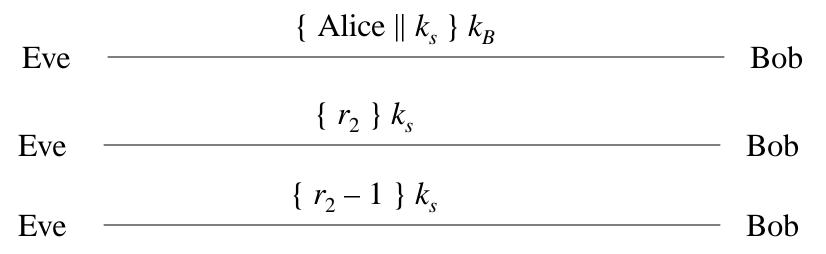
OUses session key to determine if it is replay from Eve

- If not, Alice will respond correctly in fifth message
- If so, Eve can't decipher r_2 and so can't respond, or responds incorrectly

Denning-Sacco Modification

- Assumption: all keys are secret
- Question: suppose Eve can obtain session key. How does that affect protocol?

O In what follows, Eve knows k_s



Solution

- In protocol above, Eve impersonates Alice
- Problem: replay in third step OFirst in previous slide
- Solution: use time stamp *T* to detect replay
- Weakness: if clocks not synchronized, may either reject valid messages or accept replays
 - O Parties with either slow or fast clocks vulnerable to replay

O Resetting clock does *not* eliminate vulnerability

Needham-Schroeder with Denning-Sacco Modification

