

Introduction to Computer Security

Lecture 2

September 4, 2003

Protection System

Subject (S: set of all subjects)

OActive entities that carry out an action/operation on other entities; Eg.: users, processes, agents, etc.

Object (O: set of all objects)

OEg.:Processes, files, devices

Right

OAn action/operation that a subject is allowed/disallowed on objects

Access Control Matrix Model

Access control matrix

- O Describes the protection state of a system.
- O Characterizes the rights of each subject
- O Elements indicate the access rights that subjects have on objects
- ACM is an abstract model

O Rights may vary depending on the object involved

ACM is implemented primarily in two ways

O Capabilities (rows)

O Access control lists (columns)

State Transitions

• Let initial state $X_0 = (S_0, O_0, A_0)$

Notation

- $OX_i + \tau_{i+1} X_{i+1}$: upon transition τ_{i+1} , the system moves from state X_i to X_{i+1}
- OX + * Y: the system moves from state X to Y after a set of transitions
- $\bigcirc X_i + c_{i+1} (p_{i+1,1}, p_{i+1,2}, \dots, p_{i+1,m}) X_{i+1}$: state transition upon a command
- For every command there is a sequence of state transition operations

Primitive commands (HRU)

Create subject s	Creates new row, column in ACM;
Create object o	Creates new column in ACM
Enter r into $a[s, o]$	Adds <i>r</i> right for subject <i>s</i> over object <i>o</i>
Delete r from $a[s, o]$	Removes <i>r</i> right from subject <i>s</i> over object <i>o</i>
Destroy subject s	Deletes row, column from ACM;
Destroy object o	Deletes column from ACM

System commands using primitive operations

- process p creates file f with owner read and write (r, w) will be represented by the following:
 - Command *create_file*(*p*, *f*) Create object *f* Enter *own* into *a*[*p*,*f*] Enter *r* into *a*[*p*,*f*] Enter *w* into *a*[*p*,*f*]

End

 Defined commands can be used to update ACM
 Command make_owner(p, f) Enter own into a[p,f]

End

 Mono-operational: the command invokes only one primitive

Conditional Commands

Mono-operational + mono-conditional

Command grant_read_file(p, f, q) If own in a[p,f] Then Enter r into a[q,f] End

• Why not "OR"??

Mono-operational + biconditional

Command grant_read_file(p, f, q) If r in a[p,f] and c in a[p,f] Then Enter r into a[q,f] End

Fundamental questions

- How can we determine that a system is secure?
 - ONeed to define what we mean by a system being "secure"
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

A simple definition

O A secure system doesn't allow violations of a security policy

Alternative view: based on distribution of rights to the subjects

O Leakage of rights: (unsafe with respect to a right)

- Assume that A represents a secure state and a right r is not in any element of A.
- Right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which not containing r

• Safety of a system with initial protection state X_o

O Safe with respect to r: System is safe with respect to r if r can never be leaked

O Else it is called unsafe with respect to right r.

Safety Problem: formally

Given

Oinitial state $X_0 = (S_0, O_0, A_0)$ OSet of primitive commands *c* O*r* is not in $A_0[s, o]$

• Can we reach a state X_n where O∃s,o such that A_n[s,o] includes a right r not in A₀[s,o]?

- If so, the system is not safe
- But is "safe" secure?

Decidability Results (Harrison, Ruzzo, Ullman)

- Theorem: Given a system where each command consists of a single *primitive* command (monooperational), there exists an algorithm that will determine if a protection system with initial state X₀ is safe with respect to right *r*.
- Proof: determine minimum commands k to leak
 O Delete/destroy: Can't leak (or be detected)
 - O Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - O If *n* rights, leak possible, must be able to leak $n(|S_0|+1)(|O_0|+1)+1$ commands
- Enumerate all possible states to decide

Turing Machine

• TM is an abstract model of computer O Alan Turing in 1936

TM consists of

OA tape divided into cells; infinite in one direction OA set of tape symbols M

• M contains a special blank symbol b

OA set of states K

OA head that can read and write symbols

OAn action table that tells the machine

- What symbol to write
- How to move the head ('L' for left and 'R' for right)
- What is the next state

Turing Machine

- The action table describes the transition function
- Transition function $\delta(k, m) = (k', m', L)$:

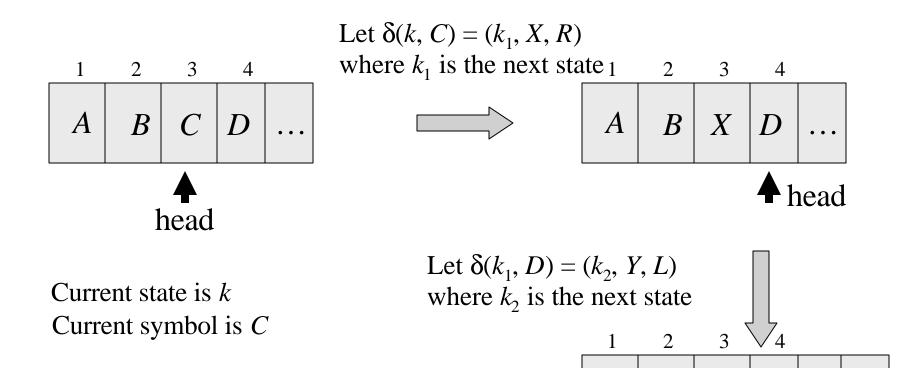
Oin state *k*, symbol *m* on tape location is replaced by symbol *m*',

Ohead moves to left one square, and TM enters state *k*'

• Halting state is q_f

OTM halts when it enters this state

Turing Machine



A

?

. . .

?

B

?

Turing Machine & halting problem

• The halting problem:

O Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

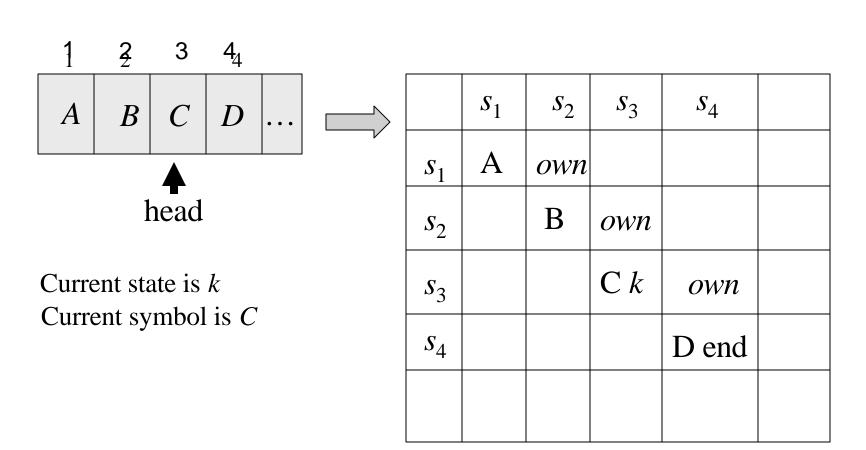
Reduce TM to Safety problem

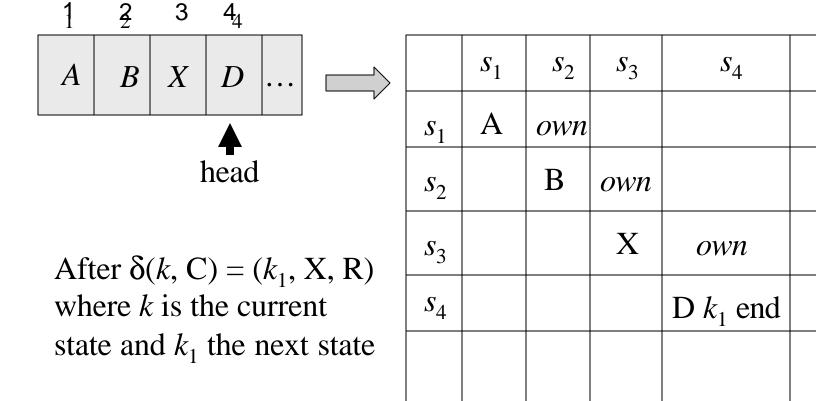
Olf Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)

General Safety Proble

- Theorem: It is undecidable if a given state of a given protection system is safe for a given generic right
- Proof: Reduce TM to safety problem
 - OSymbols, States \Rightarrow rights
 - OTape cell
 - OCell s_i has A OCell S_k

- \Rightarrow subject
- \Rightarrow s_i has A rights on itself
- \Rightarrow s_k has end rights on itself
- OState p, head at $s_i \implies s_i$ has p rights on itself
- ODistinguished Right own:
 - s_i owns s_i +1 for 1 = i < k



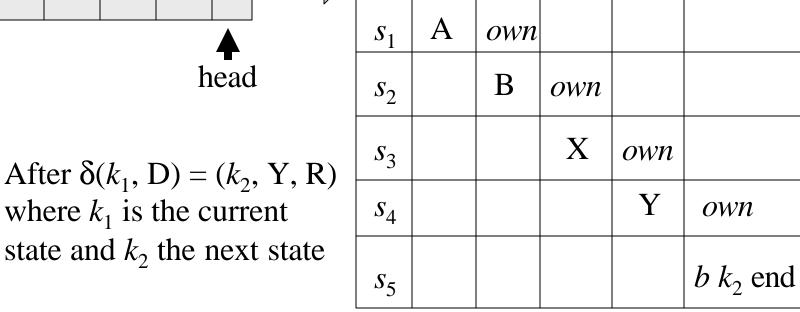


Command Mapping

 $\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$

command $c_{k,C}(s_3,s_4)$ **if** *own* **in** $A[s_3,s_4]$ **and** k **in** $A[s_3,s_3]$ **and** C **in** $A[s_3,s_3]$ **then**

delete k from A[s₃,s₃]; delete C from A[s₃,s₃]; enter X into A[s₃,s₃]; enter k₁ into A[s₄,s₄]; end



 S_3

 S_4

*s*₁

 S_2

3

X

where k_1 is the current

4₄

Y

head

2

B

A

 S_5

Command Mapping

 $\delta(k_1, D) = (k_2, Y, R)$ at end becomes

command crightmost_{k,C}(s_4 , s_5) if end in $A[s_4,s_4]$ and k_1 in $A[s_4,s_4]$ and D in $A[s_4,s_4]$ then

delete end from A[s₄,s₄]; create subject s₅; enter own into A[s₄,s₅]; enter end into A[s₅,s₅]; delete k₁ from A[s₄,s₄]; delete D from A[s₄,s₄]; enter Y into A[s₄,s₄]; enter k₂ into A[s₅,s₅];

Rest of Proof

- Similar commands move right, move right at end of tape
 O Refer to book
- Protection system exactly simulates a TM
 - O Exactly 1 end right in ACM
 - O1 right in entries corresponds to state
 - O Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - O Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached
- Conclusion: safety question undecidable

Other theorems

- Set of unsafe systems is recursively enumerable
 O Recursively enumerable?
- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
 - O P-SPACE?
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - O Delete **destroy**, **delete** primitives;
 - O The system becomes monotonic as they only increase in size and complexity

Other theorems

- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.
- Observations
 - OSafety is undecidable for the generic case
 - O Safety becomes decidable when restrictions are applied

What is the implication?

Safety decidable for some models

O Are they practical?

 Safety only works if maximum rights known in advance
 O Policy must specify all rights someone could get, not just what they have

O Where might this make sense?

Two key questions

O Given a particular system with specific rules for transformation, can we show that the safety question is decidable?

• E.g. Take-grant model

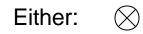
O What are the weakest restrictions that will make the safety question decidable in that system

Take-Grant Protection Model

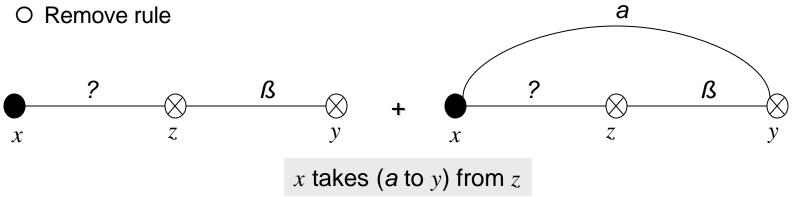
System is represented as a directed graph

Subject: 0 Object:

Ο

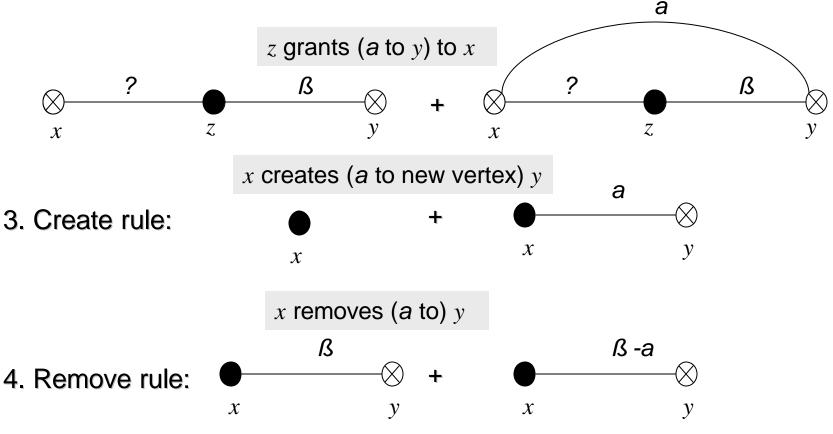


- O Labeled edge indicate the rights that the source object has on the destination object
- Four graph rewriting rules ("de jure", "by law", "by rights")
 - O Take rule
 - O Grant rule
 - O Create rule



Take-Grant Protection Model

2. Grant rule: if $g \in ?$, the take rule produces another graph with a transitive edge $a \subseteq B$ added.



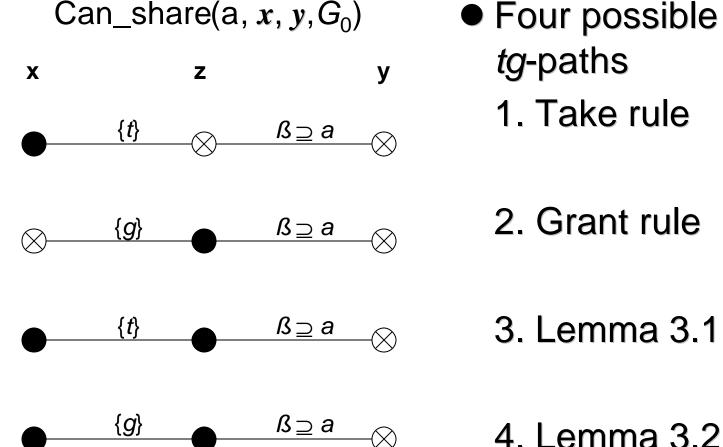
Take-Grant Protection Model: Sharing

- Given G_0 , can vertex **x** obtain a rights over **y**? OCan_share(a,x, y,G_0) is true iff
 - G_0 + * G_n using the four rules, &
 - There is an a edge from x to y in G_n
- tg-path: v₀,...,v_n with t or g edge between any pair of vertices v_i, v_{i+1}

OVertices *tg-connected* if *tg-path* between them

 Theorem: Any two subjects with tg-path of length 1 can share rights

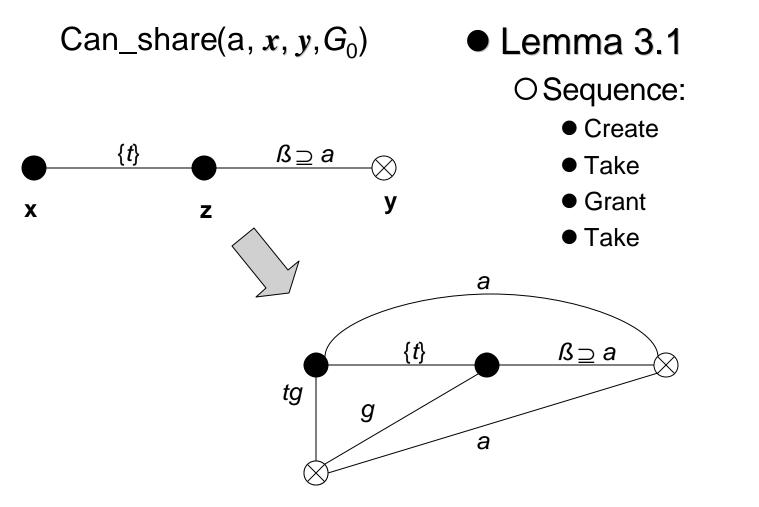
Any two subjects with *tg-path* of length can share rights



- Four possible length 1 tg-paths
 - 1. Take rule

INFSCI 2935: Introduction to Computer Security

Any two subjects with *tg-path* of length 1 can share rights



Other definitions

 Island: Maximal tg-connected subject-only subgraph

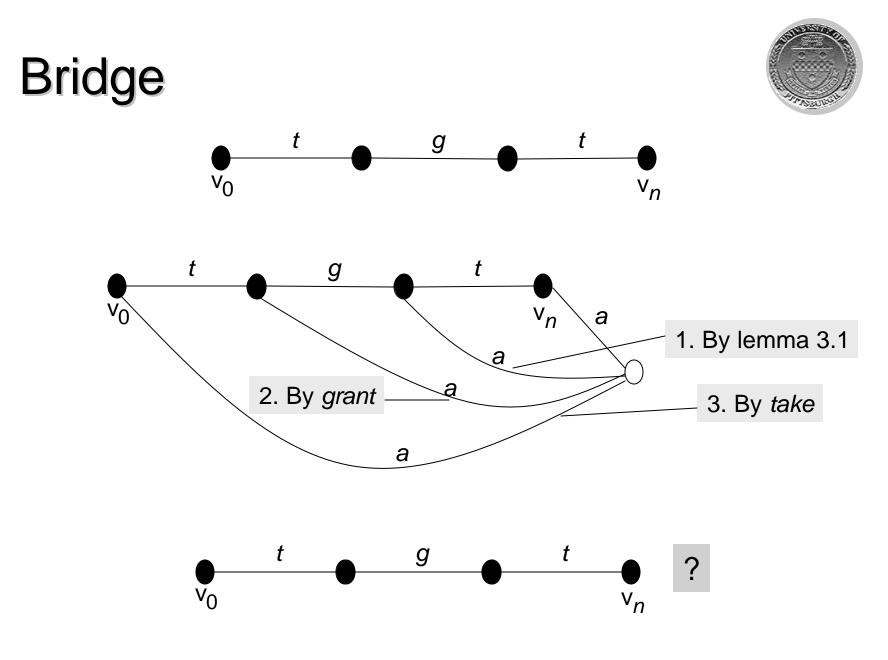
OCan_share all rights in island

OProof: Induction from previous theorem

• Bridge: *tg*-path between subjects v_0 and v_n with edges of the following form:

$$\bigcirc t_{?} *, t_{?} *$$

 $\bigcirc t_{?} *, g_{?}, t_{?} *$
 $\bigcirc t_{?} *, g_{?}, t_{?} *$



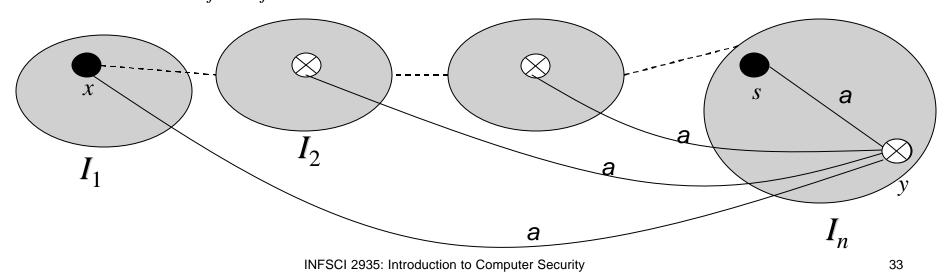
Theorem: Can_share(a, x, y, G_0) (for subjects)

 Subject_can_share(a, x, y, G₀) is true iff if x and y are subjects and

O there is an a edge from x to y in G_0 OR if:

 $\bigcirc \exists$ a subject $s \in G_0$ with an *s*-to-*y* a edge, and

O∃ islands $I_1, ..., I_n$ such that $x \in I_1$, $s \in I_n$, and there is a bridge from I_i to I_{i+1}



What about objects? Initial, terminal spans

• *x* initially spans to *y* if *x* is a subject and there is a *tg*-path associated with word $\{t_{?} \ ^{*}g_{?}\}$ between them

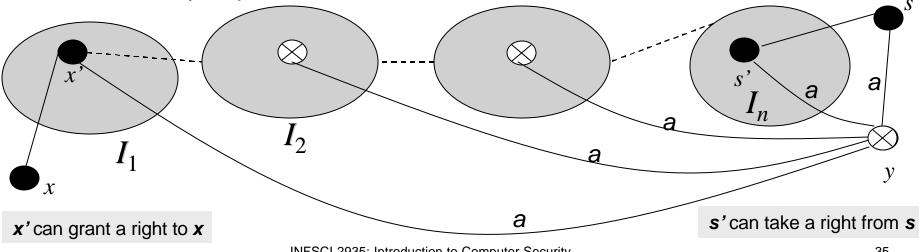
Ox can grant a right to y

• *x* terminally spans to *y* if *x* is a subject and there is a *tg*-path associated with word $\{t_{2}, *\}$ between them

Ox can take a right from y

Theorem: Can_share(a, x, y, G_{\cap})

- Can_share(a, x, y, G_0) iff there is an a edge from x to y in G_0 or if:
 - $\bigcirc \exists$ a vertex $s \in G_0$ with an s to y a edge,
 - \bigcirc \exists a subject x' such that x' = x or x' *initially spans* to x,
 - \bigcirc \exists a subject s' such that s'=s or s' terminally spans to s, and
 - \bigcirc \exists islands I_1, \ldots, I_n such that $x' \in I_1, s' \in I_n$, and there is a bridge from I_i to I_{i+1}



INFSCI 2935: Introduction to Computer Security

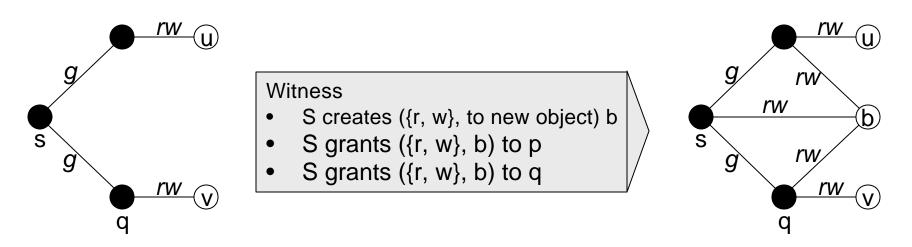
Theorem: Can_share(a, x, y, G_0)

- Corollary: There is an O(|V|+|E|) algorithm to test can_share: Decidable in linear time!!
- Theorem:
 - \bigcirc Let $G_0 = , R$ a set of rights.
 - \bigcirc $G_0 + * G$ iff G is a finite directed acyclic graph, with edges labeled from R, and at least one subject with no incoming edge.
 - O Only if part: v is initial subject and $G_0 + * G_i$;
 - No rule allows the deletion of a vertex
 - No rule allows the an incoming edge to be added to a vertex without any incoming edges. Hence, as v has no incoming edges, it cannot be assigned any

- O *If* part : *G* meets the requirement and $G_0 + *$
 - Assume v is the vertex with no incoming edge and apply rules
 - 1. Perform "v creates (a \cup {g} to) new xi" for all 2<=i <= n, and a is union of all labels on the incoming edges going into xi in G
 - For all pairs x, y with x a over y in G, perform "v grants (a to y) to x"
 - 3. If ß is the set of rights x has over y in G, perform "v removes (a \cup {g} ß) to y"

Take-Grant Model: Sharing through a Trusted Entity

- Let *p* and *q* be two processes
- Let *b* be a buffer that they share to communicate
- Let s be third party (e.g. operating system) that controls b

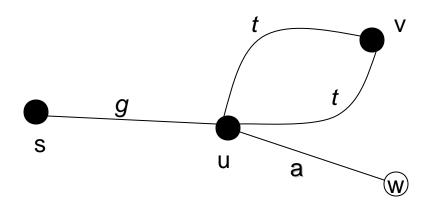


Theft in Take-Grant Model

- Can_steal(a,x,y,G₀) is true if there is no a edge from x to y in G₀ and ∃ sequence G₁, ..., G_n s. t.:
 ○∃ a edge from x to y in G_n,
 ○∃ rules ?₁,..., ?_n that take G_{i+1}+ ?_n G_i, and
 ○∀ v,w ∈ G_i, 1=i<n, if ∃ a edge from v to y in G₀ then ?_i is not "v grants (a to y) to w"
 - Disallows owners of a rights to y from transferring those rights
 - Does not disallow them to transfer other rights
 - This models a Trojan horse

A witness to theft

u grants (t to v) to s
s takes (t to u) from v
s takes (to w) from u



Theorem: When Theft Possible

- Can_steal(a, \mathbf{x} , \mathbf{y} , \mathbf{G}_0) iff there is no a edge from \mathbf{x} to \mathbf{y} in \mathbf{G}_0 and $\exists \mathbf{G}_1$, ..., \mathbf{G}_n s. t.:
 - O There is no a edge from \mathbf{x} to \mathbf{y} in G_0 ,
 - \bigcirc \exists subject x' such that x'=x or x' *initially spans* to x, and
 - $\bigcirc \exists$ **s** with a edge to **y** in G_0 and can_share(*t*, **x**', **s**, G_0)
- Proof:
 - $\mathsf{O} \Rightarrow: \mathsf{Assume}$ the three conditions hold
 - x can get t right over s (x is a subject)
 - x' creates a surrogate to pass to x (x is an object)
 - $O \Leftarrow$: Assume can_steal is true:
 - No a edge from definition.
 - Can_share($a, \mathbf{x}, \mathbf{y}, G_0$) from definition: a from \mathbf{x} to \mathbf{y} in G_n
 - **s** exists from can_share and earlier theorem
 - Can_share(*t*,**x**',**s**,*G*₀): **s** can't grant a (definition), someone else must get a from **s**, show that this can only be accomplished with take rule

Conspiracy

- Theft indicates cooperation: which subjects are actors in a transfer of rights, and which are not?
- Next question is

O How many subjects are needed to enable $Can_share(a, \mathbf{x}, \mathbf{y}, G_0)$?

Note that a vertex y

O Can take rights from any vertex to which it terminally spansO Can pass rights to any vertex to which it initially spans

• Access set $A(\mathbf{y})$ with focus \mathbf{y} (y is subject) is union of

- O set of vertices **y**,
- O vertices to which y initially spans, and
- O vertices to which y terminally spans

Conspiracy theorems:

• Deletion set d(y,y'): All $z \in A(y)$ n A(y') for which

O \boldsymbol{y} initially spans to \boldsymbol{z} and \boldsymbol{y}' terminally spans to $\boldsymbol{z} \cup$

 ${\sf O}$ y terminally spans to z and y' initially spans to z \cup

 $\texttt{O} \; \textbf{z=y} \cup \textbf{z=y'} \\$

• Conspiracy graph H of G_o:

O Represents the paths along which subjects can transfer rights

O For each subject in G_0 , there is a corresponding vertex h(x) in H

○ if d(y,y') not empty, edge from y to y'

• Theorem:

Can_share(a, x, y, G_0) iff conspiracy path from an item in an island containing x to an item that can steal from y

• Conspirators required is shortest path in conspiracy graph

• Example from book