
Courtesy of Professors
Chris Clifton & Matt Bishop

INFSCI 2935: Introduction of Computer Security 1

September 4, 2003September 4, 2003

Introduction to Introduction to
Computer SecurityComputer Security

Lecture 2Lecture 2

INFSCI 2935: Introduction to Computer Security 2

Protection SystemProtection System

llSubject (S: set of all subjects)Subject (S: set of all subjects)
¡Active entities that carry out an action/operation

on other entities; Eg.: users, processes, agents,
etc.

llObject (O: set of all objects)Object (O: set of all objects)
¡Eg.:Processes, files, devices

llRightRight
¡An action/operation that a subject is

allowed/disallowed on objects

INFSCI 2935: Introduction to Computer Security 3

Access Control Matrix ModelAccess Control Matrix Model

ll Access control matrix Access control matrix
¡Describes the protection state of a system.
¡Characterizes the rights of each subject
¡Elements indicate the access rights that subjects have on

objects

ll ACM is an abstract modelACM is an abstract model
¡Rights may vary depending on the object involved

ll ACM is implemented primarily in two waysACM is implemented primarily in two ways
¡Capabilities (rows)
¡Access control lists (columns)

INFSCI 2935: Introduction to Computer Security 4

State TransitionsState Transitions

llLet initial state Let initial state XX00 = (= (SS00, , OO00, , AA00))
llNotationNotation
¡Xi + τi+1 Xi+1 : upon transition τi+1, the system

moves from state Xi to Xi+1

¡X +* Y : the system moves from state X to Y
after a set of transitions
¡Xi + ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : state

transition upon a command

llFor every command there is a sequence For every command there is a sequence
of state transition operationsof state transition operations

INFSCI 2935: Introduction to Computer Security 5

Primitive commands (HRU)Primitive commands (HRU)

Deletes column from ACMDeletes column from ACMDestroy objectDestroy object o

Deletes row, column from ACM;Deletes row, column from ACM;Destroy subjectDestroy subject s

Removes Removes rr right from subject right from subject ss over object over object ooDeleteDelete r fromfrom a[s, o]

Adds Adds rr right for subject right for subject ss over object over object ooEnterEnter r into into a[s, o]

Creates new column in ACMCreates new column in ACMCreate objectCreate object o

Creates new row, column in ACM; Creates new row, column in ACM; Create subjectCreate subject s

INFSCI 2935: Introduction to Computer Security 6

System commands using System commands using
primitive operationsprimitive operations

ll process process pp creates file creates file
ff with owner with owner readread and and
writewrite ((r, wr, w) will be) will be
represented by the represented by the
following:following:

Command create_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]

End

ll Defined commands Defined commands
can be used to can be used to
update ACMupdate ACM

Command make_owner(p, f)
Enter own into a[p,f]

End

ll MonoMono--operational: the operational: the
command invokes command invokes
only one primitiveonly one primitive

INFSCI 2935: Introduction to Computer Security 7

Conditional CommandsConditional Commands

llMonoMono--operational + operational +
monomono--conditionalconditional

Command grant_read_file(p, f, q)

If own in a[p,f]
Then

Enter r into a[q,f]
End

ll Why not “OR”??Why not “OR”??

llMonoMono--operational + operational +
biconditionalbiconditional

Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]
Then

Enter r into a[q,f]
End

INFSCI 2935: Introduction to Computer Security 8

Fundamental questionsFundamental questions

llHow can we determine that a system is How can we determine that a system is
secure?secure?
¡Need to define what we mean by a system

being “secure”

ll Is there a generic algorithm that allows us Is there a generic algorithm that allows us
to determine whether a computer system to determine whether a computer system
is secure?is secure?

INFSCI 2935: Introduction to Computer Security 9

What is a secure system?What is a secure system?

ll A simple definitionA simple definition
¡ A secure system doesn’t allow violations of a security policy

ll Alternative view: based on distribution of rights to the Alternative view: based on distribution of rights to the
subjectssubjects
¡Leakage of rights: (unsafe with respect to a right)
lAssume that A represents a secure state and a right r is not

in any element of A.
lRight r is said to be leaked, if a sequence of

operations/commands adds r to an element of A, which not
containing r

ll Safety of a system with initial protection state Safety of a system with initial protection state XXoo
¡Safe with respect to r: System is safe with respect to r if r

can never be leaked
¡Else it is called unsafe with respect to right r.

INFSCI 2935: Introduction to Computer Security 10

Safety Problem: Safety Problem:
formallyformally

llGivenGiven
¡initial state X0 = (S0, O0, A0)
¡Set of primitive commands c
¡r is not in A0[s, o]

llCan we reach a state Can we reach a state XXnn where where
¡∃s,o such that An[s,o] includes a right r not in

A0[s,o]?

- If so, the system is not safe
- But is “safe” secure?

INFSCI 2935: Introduction to Computer Security 11

Decidability ResultsDecidability Results
(Harrison, (Harrison, RuzzoRuzzo, , UllmanUllman))

ll TheoremTheorem:: Given a system where each command Given a system where each command
consists of a single consists of a single primitiveprimitive command (monocommand (mono--
operational), there exists an algorithm that will determine operational), there exists an algorithm that will determine
if a protection system with initial state if a protection system with initial state XX00 is safe with is safe with
respect to right respect to right rr..

ll Proof: determine minimum commands Proof: determine minimum commands kk to leakto leak
¡ Delete/destroy: Can’t leak (or be detected)
¡ Create/enter: new subjects/objects “equal”, so treat all new

subjects as one
¡ If n rights, leak possible, must be able to leak n(|S0|+1)(|O0|+1)+1

commands

ll Enumerate all possible states to decideEnumerate all possible states to decide

INFSCI 2935: Introduction to Computer Security 12

Turing MachineTuring Machine

ll TM is an abstract model of computerTM is an abstract model of computer
¡Alan Turing in 1936

ll TM consists ofTM consists of
¡A tape divided into cells; infinite in one direction
¡A set of tape symbols M
lM contains a special blank symbol b

¡A set of states K
¡A head that can read and write symbols
¡An action table that tells the machine
lWhat symbol to write
lHow to move the head (‘L’ for left and ‘R’ for right)
lWhat is the next state

INFSCI 2935: Introduction to Computer Security 13

Turing MachineTuring Machine

llThe action table describes the transition The action table describes the transition
functionfunction
llTransition function Transition function δδ((kk, , mm) = () = (kk′′, , mm′′, L):, L):
¡in state k, symbol m on tape location is

replaced by symbol m′,
¡head moves to left one square, and TM enters

state k′
llHalting state is Halting state is qqff
¡TM halts when it enters this state

INFSCI 2935: Introduction to Computer Security 14

Turing MachineTuring Machine

A B C …

1 2 3 4

head

Current state is k

Let δ(k, C) = (k1, X, R)
where k1 is the next state

Current symbol is C

D A B X …

1 2 3 4

head

D

A B ? …

1 2 3 4

head

?

Let δ(k1, D) = (k2, Y, L)
where k2 is the next state

?

?

INFSCI 2935: Introduction to Computer Security 15

Turing Machine & halting problemTuring Machine & halting problem

llThe The halting problemhalting problem: :
¡¡Given a description of an algorithm and a Given a description of an algorithm and a

description of its initial arguments, determine description of its initial arguments, determine
whether the algorithm, when executed with whether the algorithm, when executed with
these arguments, ever halts (the alternative is these arguments, ever halts (the alternative is
that it runs forever without halting).that it runs forever without halting).

llReduce TM to Safety problemReduce TM to Safety problem
¡If Safety problem is decidable then it implies

that TM halts (for all inputs) – showing that the
halting problem is decidable (contradiction)

INFSCI 2935: Introduction to Computer Security 16

General Safety General Safety ProbleProble

ll Theorem: It is Theorem: It is undecidableundecidable if a given state of a if a given state of a
given protection system is safe for a given given protection system is safe for a given
generic rightgeneric right
ll Proof: Reduce TM to safety problem Proof: Reduce TM to safety problem
¡Symbols, States ⇒ rights
¡Tape cell ⇒ subject
¡Cell si has A ⇒ si has A rights on itself
¡Cell sk ⇒ sk has end rights on itself
¡State p, head at si ⇒ si has p rights on itself
¡Distinguished Right own:
lsi owns si+1 for 1 = i < k

INFSCI 2935: Introduction to Computer Security 17

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head

Current state is k
Current symbol is C

D

1 2 3 4

INFSCI 2935: Introduction to Computer Security 18

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

A B X …

1 2 4

head

D

1 2 3 4

INFSCI 2935: Introduction to Computer Security 19

Command MappingCommand Mapping

δδ((kk, C) = (, C) = (kk11, X, R), X, R)

commandcommand cckk,C,C((ss33,,ss44))
ifif ownown inin AA[[ss33,,ss44]] andand kk inin AA[[ss33,,ss33]] andand C C inin AA[[ss33,,ss33]]
thenthen

deletedelete kk fromfrom AA[[ss33,,ss33];];
deletedelete C C fromfrom AA[[ss33,,ss33];];
enterenter X X intointo AA[[ss33,,ss33];];
enterenter kk11 intointo AA[[ss44,,ss44];];

endend

INFSCI 2935: Introduction to Computer Security 20

MappingMapping

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

A B X

1 2 4

head

Y

1 2 3 4

INFSCI 2935: Introduction to Computer Security 21

Command MappingCommand Mapping

δδ((kk11, D) = (, D) = (kk22, Y, R) at end becomes, Y, R) at end becomes

commandcommand crightmostcrightmostkk,C,C((ss44,,ss55))
ifif endend inin AA[[ss44,,ss44]] andand kk11 inin AA[[ss44,,ss44]] andand D D inin AA[[ss44,,ss44]]
thenthen

deletedelete endend fromfrom AA[[ss44,,ss44];];
create subjectcreate subject ss55;;
enterenter own own into into AA[[ss44,,ss55];];
enterenter endend intointo AA[[ss55,,ss55];];
deletedelete kk11 fromfrom AA[[ss44,,ss44];];
deletedelete D D fromfrom AA[[ss44,,ss44];];
enterenter Y Y intointo AA[[ss44,,ss44];];
enterenter kk22 intointo AA[[ss55,,ss55];];

endend

INFSCI 2935: Introduction to Computer Security 22

Rest of ProofRest of Proof

ll Similar commands move right, move right at end of tapeSimilar commands move right, move right at end of tape
¡Refer to book

ll Protection system exactly simulates a TMProtection system exactly simulates a TM
¡Exactly 1 end right in ACM
¡1 right in entries corresponds to state
¡Thus, at most 1 applicable command in each configuration

of the TM
ll If TM enters state If TM enters state qqff, then right has leaked, then right has leaked
ll If safety question decidable, then represent TM as above If safety question decidable, then represent TM as above

and determine if and determine if qqff leaksleaks
¡ Leaks halting state ⇒ halting state in the matrix ⇒ Halting

state reached
ll Conclusion: safety question Conclusion: safety question undecidableundecidable

INFSCI 2935: Introduction to Computer Security 23

Other theoremsOther theorems

ll Set of unsafe systems is recursively enumerableSet of unsafe systems is recursively enumerable
¡ Recursively enumerable?

ll For protection system without the create primitives, For protection system without the create primitives,
(i.e., delete (i.e., delete createcreate primitive); the safety question is primitive); the safety question is
complete in complete in PP--SPACESPACE
¡ P-SPACE?

ll It is It is undecidableundecidable whether a given configuration of a whether a given configuration of a
given monotonic protection system is safe for a given given monotonic protection system is safe for a given
generic rightgeneric right
¡ Delete destroy, delete primitives;
¡ The system becomes monotonic as they only increase in size

and complexity

INFSCI 2935: Introduction to Computer Security 24

Other theoremsOther theorems

ll The safety question for The safety question for biconditionalbiconditional monotonic monotonic
protection systems is protection systems is undecidableundecidable
ll The safety question for The safety question for monoconditionalmonoconditional, ,

monotonic protection systems is decidablemonotonic protection systems is decidable
ll The safety question for The safety question for monoconditionalmonoconditional

protection systems with protection systems with createcreate, , enterenter, , deletedelete
(and no (and no destroydestroy) is decidable.) is decidable.
ll ObservationsObservations
¡Safety is undecidable for the generic case
¡Safety becomes decidable when restrictions are

applied

INFSCI 2935: Introduction to Computer Security 25

What is the implication?What is the implication?

ll Safety decidable for some modelsSafety decidable for some models
¡ Are they practical?

ll Safety only works if maximum rights known in advanceSafety only works if maximum rights known in advance
¡ Policy must specify all rights someone could get, not just what

they have
¡Where might this make sense?

ll Two key questionsTwo key questions
¡Given a particular system with specific rules for transformation,

can we show that the safety question is decidable?
l E.g. Take-grant model

¡What are the weakest restrictions that will make the safety
question decidable in that system

INFSCI 2935: Introduction to Computer Security 26

TakeTake--Grant Protection ModelGrant Protection Model

ll System is represented as a directed graphSystem is represented as a directed graph
¡ Subject:
¡ Object:
¡ Labeled edge indicate the rights that the source object has on the destination

object

ll FourFour graph rewriting rules (“de graph rewriting rules (“de jurejure”, “by law”, “by rights”)”, “by law”, “by rights”)
¡ Take rule
¡ Grant rule
¡ Create rule
¡ Remove rule

Either:

?

a

ß? ß
++

x z y x z y

x takes (a to y) from z

INFSCI 2935: Introduction to Computer Security 27

TakeTake--Grant Protection ModelGrant Protection Model

2. Grant rule: if 2. Grant rule: if g g ∈∈??, the take rule produces another graph with a , the take rule produces another graph with a
transitive edge transitive edge aa ⊆⊆ ßß added.added.

?

a

ß? ß
++

x z y x z y

3. Create rule:3. Create rule: ++
a

x x y

4. Remove rule:4. Remove rule: ++
ß -a

x y

ß

x y

z grants (a to y) to x

x creates (a to new vertex) y

x removes (a to) y

INFSCI 2935: Introduction to Computer Security 28

TakeTake--Grant Protection Model:Grant Protection Model:
SharingSharing

ll Given Given GG00, can vertex , can vertex xx obtain obtain aa rights over rights over yy??
¡Can_share(a,x, y,G0) is true iff
lG0+* Gn using the four rules, &
lThere is an a edge from x to y in Gn

ll tgtg--pathpath: : vv00,…,,…,vvnn with with t or or g edge between any edge between any
pair of vertices pair of vertices vvii, , vvi+1i+1
¡Vertices tg-connected if tg-path between them

ll Theorem: Any two subjects with Theorem: Any two subjects with tgtg--pathpath of of
length 1 can share rightslength 1 can share rights

INFSCI 2935: Introduction to Computer Security 29

Any two subjects with Any two subjects with tgtg--pathpath of length 1 of length 1
can share rightscan share rights

ll Four possible length 1 Four possible length 1
tgtg--pathspaths
1. Take rule1. Take rule

2. Grant rule2. Grant rule

3. Lemma 3.13. Lemma 3.1

4. Lemma 3.24. Lemma 3.2

{t} ß ⊇ a

ß ⊇ a{g}

ß ⊇ a{t}

{g} ß ⊇ a

Can_share(a, xx, , yy,G0)

x yz

INFSCI 2935: Introduction to Computer Security 30

Any two subjects with Any two subjects with tgtg--pathpath of length 1 of length 1
can share rightscan share rights

ll Lemma 3.1Lemma 3.1
¡Sequence:
lCreate
l Take
lGrant
l Take

ß ⊇ a

a

{t}

Can_share(a, xx, , yy,G0)

x y

g
tg

ß ⊇ a{t}

a

z

INFSCI 2935: Introduction to Computer Security 31

Other definitionsOther definitions

ll IslandIsland: Maximal : Maximal tgtg--connected subjectconnected subject--only only
subgraphsubgraph
¡Can_share all rights in island
¡Proof: Induction from previous theorem

llBridgeBridge: : tgtg--path between subjects vpath between subjects v00 and and
vvnn with edges of the following form:with edges of the following form:
¡t? *, t? *
¡t? *, g? , t? *
¡t? *, g? , t? *

INFSCI 2935: Introduction to Computer Security 32

BridgeBridge

g tt

v0 vn a
1. By lemma 3.1

2. By grant 3. By take

a
a

a

g tt

v0 vn

g tt

v0 vn

?

INFSCI 2935: Introduction to Computer Security 33

Theorem: Theorem: Can_shareCan_share((aa,,xx,,yy,,GG00))
(for subjects)(for subjects)

ll Subject_can_shareSubject_can_share((aa, , xx, , yy,,GG00) is true) is true iffiff if if xx and and yy are are
subjects andsubjects and
¡ there is an a edge from x to y in G0
OR if:
¡ ∃ a subject s ∈ G0 with an ss--to-yy a edge, and
¡ ∃ islands I1, …, In such that xx ∈ I1, s ∈ In, and there is a bridge

from Ij to Ij+1

x s a

a
a

a

yII11
II22

IInn

INFSCI 2935: Introduction to Computer Security 34

What about objects?What about objects?
Initial, terminal spansInitial, terminal spans

llxx initially spansinitially spans to to yy if if xx is a subject and is a subject and
there is a there is a tgtg--path associated with word path associated with word
{{tt?? *g*g?? } between them} between them
¡¡xx can grant a right to yy

llxx terminally spansterminally spans to to yy if if xx is a subject and is a subject and
there is a there is a tgtg--path associated with word path associated with word
{{tt?? **} between them} between them
¡¡xx can take a right from yy

INFSCI 2935: Introduction to Computer Security 35

Theorem: Theorem: Can_shareCan_share((aa,,xx,,yy,,GG00))

ll Can_shareCan_share((aa,,xx, , yy,,GG00)) iffiff there is an there is an aa edge from edge from xx to to yy in in
GG00 or if:or if:
¡ ∃ a vertex ss ∈ G0 with an ss to yy a edge,
¡ ∃ a subject x’x’ such that x’=xx’=x or x’x’ initially spans to xx,
¡ ∃ a subject s’s’ such that s’=ss’=s or s’s’ terminally spans to ss, and
¡ ∃ islands II1, …, IIn such that x’x’ ∈ II1, s’s’ ∈ IIn, and there is a bridge

from Ij to Ij+1

x’ s’ a

a
a

a

yII11
II22

IInn

s

x

x’x’ can grant a right to can grant a right to xx s’s’ can take a right from can take a right from ss

a

INFSCI 2935: Introduction to Computer Security 36

Theorem: Theorem: Can_shareCan_share((aa,,xx,,yy,,GG00))

ll Corollary: There is an Corollary: There is an OO(|(|VV|+||+|EE|) algorithm to test |) algorithm to test
can_sharecan_share: : Decidable in linear time!!Decidable in linear time!!

ll Theorem:Theorem:
¡ Let G0 = , R a set of rights.
¡G0 +* G iff G is a finite directed acyclic graph, with edges labeled

from R, and at least one subject with no incoming edge.

¡Only if part: v is initial subject and G0 +* G;

lNo rule allows the deletion of a vertex
lNo rule allows the an incoming edge to be added to a

vertex without any incoming edges. Hence, as v has no
incoming edges, it cannot be assigned any

INFSCI 2935: Introduction to Computer Security 37

¡ If part : G meets the requirement and G0 +*
G
l Assume v is the vertex with no incoming edge

and apply rules
1. Perform “v creates (a ∪ {g} to) new xi” for all 2<=i

<= n, and a is union of all labels on the incoming
edges going into xi in G

2. For all pairs x, y with x a over y in G, perform “v
grants (a to y) to x”

3. If ß is the set of rights x has over y in G, perform
“v removes (a ∪ {g} - ß) to y”

INFSCI 2935: Introduction to Computer Security 38

TakeTake--Grant Model: Grant Model:
Sharing through a Trusted EntitySharing through a Trusted Entity

ll Let Let pp and and qq be two processes be two processes
ll Let Let bb be a buffer that they share to communicatebe a buffer that they share to communicate
ll Let Let ss be third party (e.g. operating system) that be third party (e.g. operating system) that

controls controls bb

g

g

q

b
s

rw
rw

rw

urw

vrw

g

g

q

s

urw

vrw

Witness
• S creates ({r, w}, to new object) b
• S grants ({r, w}, b) to p
• S grants ({r, w}, b) to q

INFSCI 2935: Introduction to Computer Security 39

Theft in TakeTheft in Take--Grant ModelGrant Model

ll Can_stealCan_steal((aa,,xx,,yy,,GG00) is true if there is no) is true if there is no aa edge edge
from from xx to to yy in in GG00 and and ∃∃ sequence sequence GG11, , ……, , GGnn s. t.:s. t.:
¡∃ a edge from x to y in Gn,,
¡∃ rules ?1,…, ?n that take Gi-1+ ?n Gi , and
¡∀ v,w ∈ Gi, 1=i<n, if ∃ a edge from v to y in G0 then

?i is not “v grants (a to y) to w”

- Disallows owners of a rights to y from transferring
those rights

- Does not disallow them to transfer other rights
- This models a Trojan horse

INFSCI 2935: Introduction to Computer Security 40

A witness to theftA witness to theft

llu grants (t to v) to su grants (t to v) to s
lls takes (t to u) from vs takes (t to u) from v
lls takes (to w) from us takes (to w) from u

g

s

w

t

t

aau

v

INFSCI 2935: Introduction to Computer Security 41

Theorem:Theorem:
When Theft PossibleWhen Theft Possible

ll Can_stealCan_steal((aa,,xx,,yy,,GG00)) iffiff there is no there is no aa edge from edge from xx to to yy in in GG00 and and ∃∃ GG11, ,
……, , GGnn s. t.:s. t.:
¡ There is no a edge from x to y in G0 ,
¡ ∃ subject x’ such that x’=x or x’ initially spans to x, and
¡ ∃ s with a edge to y in G0 and can_share(t,x’,s,G0)

ll Proof:Proof:
¡ ⇒: Assume the three conditions hold

l x can get t right over s (x is a subject)
l x’ creates a surrogate to pass to x (x is an object)

¡ ⇐: Assume can_steal is true:
l No a edge from definition.
l Can_share(a,x,y,G0) from definition: a from x to y in Gn

l s exists from can_share and earlier theorem
l Can_share(t,x’,s,G0): s can’t grant a (definition), someone else must get a

from s, show that this can only be accomplished with take rule

INFSCI 2935: Introduction to Computer Security 42

ConspiracyConspiracy

ll Theft indicates cooperation: which subjects are actors in Theft indicates cooperation: which subjects are actors in
a transfer of rights, and which are not?a transfer of rights, and which are not?

ll Next question is Next question is
¡ How many subjects are needed to enable Can_share(a,x,y,G0)?

ll Note that a vertex yNote that a vertex y
¡ Can take rights from any vertex to which it terminally spans
¡ Can pass rights to any vertex to which it initially spans

ll AAcccceessss ssetet A(A(yy) with focus) with focus yy (y is subject) is union of (y is subject) is union of
¡ set of vertices y,
¡ vertices to which y initially spans, and
¡ vertices to which y terminally spans

INFSCI 2935: Introduction to Computer Security 43

Conspiracy theorems:Conspiracy theorems:

ll Deletion set Deletion set dd((yy,,yy’’): All): All zz ∈∈ A(A(yy)) nn A(A(yy’’) for which) for which
¡ y initially spans to z and y’ terminally spans to z ∪
¡ y terminally spans to z and y’ initially spans to z ∪
¡ z=y ∪ z=y’

ll Conspiracy graph H of GConspiracy graph H of G00: :
¡ Represents the paths along which subjects can transfer rights
¡ For each subject in G0, there is a corresponding vertex h(x) in H
¡ if d(y,y’) not empty, edge from y to y’

ll Theorem: Theorem:
Can_shareCan_share((aa,,xx,,yy,,GG00)) iffiff conspiracy path from an item in an island conspiracy path from an item in an island
containing containing xx to an item that can steal from to an item that can steal from yy

ll Conspirators required is shortest path in conspiracy graphConspirators required is shortest path in conspiracy graph
ll Example from bookExample from book

